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COMPUTING OF GRAPHS
OF RELATIONS USING GENERATIVE GRAMMARS (*)

by Dan A. Smmovicr (1)

Communicated by J.-F. PERROT

Abstract. — By considering representations of graphs of relations on the set of natural num.bers by
bounded languages it is possible to develop a study of relations which are computable in a certain sense
by context-sensitive grammars. There are obtained closure proprieties for the class of these relations,
which allow to prove the context-sensitiveness of certain languages.

Résumé. — Enreprésentant les graphes de relations définies sur les nombres entiers par des langages
bornés, on peut étudier les relations qui sont calculables (en un certain sens) par des grammaires
« context-sensitive ». On obtient des propriétés de fermeture pour cette famille de relations, qui
permettent d’établir que certains langages sont « context-sensitive ».

1. INTRODUCTION

We shall define an encoding of graphs of relations over the set of natural
numbers using bounded languages. Thus, it will be possible “to compute” these
graphs using generative grammars. Qur attention is focused on relations which
are computable by context-sensitive grammars. Among other facts we shall
obtain several closure properties of the class of bounded context-sensitive
languages, which will imply that certain intricate languages are context-
sensitive.

Our study is situated in the stream of the study of relations [1, 3] which has

been largely developed in the last years. Similar techniques have been used in [1]
or [5].

We use, in general, the notations and results from [4] and [6].

(*) Received April 1979, Revised October 1979.
(*) University of Tasi, Department of Mathematics, Iasi, Romania.
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280 D. A. SIMOVICI

A relation f from the set M, to the set M,, denoted by f: M; > M, is a
mapping f: Z(M,)— P (M,) [where # (M) is the power set of M], which is
completely additive, i.e.

FU{41jedph=U{FApljet}.

The values of f on singletons, f({x}), are denoted by f (x).
The graph of f is the set

Yfz{(x> y)lxeM1> yEMZa yef(-x)}

f:M,->M,andg: M, > Mj are two relations we shall use their product
feog: M| — Ms, where z € f og(x) iff there exists ye M , such that y € f(x) and
zeg(y).

In view of the associativity of the Cartesian product many relations can have
the same graph. The domain and the codomain of f are dom
f={xIxeM,, f(x)#®} and codom f={J {f(x)|xedom f}.

Let Ob % and Mor ¥ be the class of objects and morphisms, respectively of the
category €. € (X, Y) is the set of all morphisms from Mor % from X to Y.

2 will be the category defined by Ob Z= { N"|ne N }and Z(N', N*)={f| f
is a relation, f: N"—> N%}. A subcategory & of # is semiadmissible if
Ob # =0bZ and:

(@) from feo/ (N', N¥) it follows that N x fe Z/(N**", N1*%), where
Nxf(p,q)={(p,n|ref(q)}, VpeN, geN’

(the left cylindrification property);

(i) the functions ©0,:N*->N*¥ and A:N->N? given by
0, (m, n, p)=(n, m, p), A(n)=(n, n), Ym, ne N, pe N*~2 belong to Mor .

If of is semiadmissible and the projection IT belongs to « (N, N %) then ./ is an
admissible category.

Forn=(ny, ..., n,)e N*thesum ) {n;|1<j<k} will be denoted by || n||. A
relation f: N"— N°® is extending (anti-extending) if there exists a positive
constant M , such that

Inll <M slimli(J[nll 2 M ;|| mll)
for every me f (n). By Ex and Ax we shall denote the subcategories of # defined
by
ObAx=0bEx=0b2%

R.A.LR.O. Informatique théorique/Theoretical Informatics



COMPUTING OF GRAPHS OF RELATIONS USING GENERATIVE GRAMMARS 281

and
Ex(N*, N"y={f|f: N*— N", fis extending }
Ax(N*, N*)={f|f: N*— N*, fis anti-extending } .

It is easy to see that Ex is a semiadmissible subcategory and Ax an admissible
one.

2. CONTEXT-SENSITIVE RELATIONS AND SUBCATEGORIES OF %
Let Q be the infinite alphabet

Q={x1,...,x,,,...}u{yl,...,y,,,...}

and let us consider the (m+ n)-uple

X=(X, ccs X s Vas o> Y JEQ™™
If P is an (m+n)-uple from N™*" P=(p,, ..., Pm> 941> - - > 4,) the word
w=x'...x"y, ...y, wil be denoted by w=X". The bounded
language { X* |Pe A}, where A is a subset of N™*", will be denoted by X*.

For a relation f: N™ — N", L, will be the language L ;= { X" |Pevy [},
where X is a standard (m+n)uple X =(Xq, ..., Xps V1> - s Ya)

If Lisa bounded language, L < { X* | Pe N™*"} weshall denote by Z, the set
of relations #, = { f|L,=L }.

A grammar is defined, as usual, as a 4-uple G=(Vy, V7, &,, F), where V' and
V, are disjoint alphabets, £, € ¥V}, is the initial symbol and F is a finite set of pairs
(u, v)such that uis a word over V=V, u V; containing al least one symbol from
Vy and v is a word over V. The symbols from V' are called nonterminals and
those of V. terminals; if (4, v) € F then (u, v)is arule and this pair is written u — v.

13 L3

The relations “=" and “=" are used in their standard sense (see, for
instance [6]). L (G) is the language generated by the grammar G,

L(G)={p|go=p, peVi}.

-

DeriniTion 1: The relation f is computed by the grammar Gif L (G)=L ;. &;
will be the class of type-jrelationsi. e. the class of relations which are computable
by type-j grammars (using Chomsky’s hierarchy), j e { 0,1,2,3 } . The members
of #; will be termed with the same name as the classes of corresponding
grammars. For instance, we shall speak about “context-sensitive relations”.

vol. 14, n° 3, 1980



282 D. A. SIMOVICI

By restricting the morphisms from £ (N", N™) to those belonging to #,, we
do not obtain a subcategory since the composition of two context-sensitive
relations is not in general a context-sensitive relation. Moreover, we have:

TueoreM 1: The class R is equal to B o R .

Proof: If feR(N", N°) "R, the langnage L ;= { X© |Peyf} is a type-0
language, where X=(xy, ..., X,, Y1, -- -, V). Using a well known result
(see [6], p. 89) there exists a mapping ¢ : N"** — N such that the language

L1={ZQ|Q=(H1, e Ny Pis ooy Pss la

(p(nla s By Dy ve s ps)):(nla s By Dy ve s ps)er}
is context-sensitive, where

Z:(xla cees Xes V1, o ey .VS: Vs+1s YS+2)‘

Let f; be the relation fy : N"— N°*? belonging to £, .
Since the language

L={YS|S:(qla cees (s 1) g, 915 ---» qs)ENsX {1} XN1+s}a

with Y=(y;, ..., ¥2s+2) 1S context-sensitive we shall consider the context-
sensitive relation f, : N¥*? - N* from £, . It follows that f=f, ¢ f>.
Indeed, let (ny, ..., n,, q,, ..., g;)€7 f. In view of the definitions of f; and
fritfollowsthat(ny, ...,n,,qq, .-, q5, L, @Ry, .. .,0,, 44, -..,qs)) €Y frand
(@e; - 545, L0y, oo ny, g4, 000,440,445 - -5 45)€Y fo, hence (ny, .. ., 1y,
g1 -5 qs)€Y(f10f2).
Coaversely, if (ny, ..., n,,q94, ..., q,)€Y(f1 o f,) there exists an (s +2)-uple

(mla ceey Mg, Moyg, ms+2) such that~(n1: ceey Mpqy, My, ooy My, Mgy,
ms+2)€'Yf1 and (m1: ceey Myt Msia, Gy, - - oy qS)EYfZ' USlng the same
definitions of f, and f, we obtain (ny, ..., n,,my, ..., m,)ey fand m;=q;, for

1 <j<s. Therefore (ny, ..., n,, q1, ..., q;)€y fand we have vy f=v(f; 0 f3),
hence f=f, o f,. We have thus obtained the inclusion Z,E#,°%;.

To prove the converse inclusion, let f; and f, be two context-sensitive
relations, f, : N" = N*, f, : N*— N*. Since the languages { X" |Pey f; } and
{Y%|0€y f,}, with

X:(Xl:"'axr’yla-~'>ys), Y:(y17-~‘ays’zla”'7zs)
are context sensitive it follows that the languages
Li={X"|Peyfi}{z}*.. . {z.}*

R.A.LR.O. Informatique théorique/Theoretical Informatics



COMPUTING OF GRAPHS OF RELATIONS USING GENERATIVE GRAMMARS 283

and
Ly={x.}*... {x}*{Y%Qev [:}
are also context-sensitive. The class of context-sensitive languages is closed with
respect to intersection hence the language
L'=L,nL,={T%|\U=(ny, ...,n,, My, ..., Mg, P15 - -, Do)
(ny, ...,n,my, ..., m)EY f1,(My, ..., Mg, Dy, ..., P)EY 2}

1s context-sensitive, where T={(Xy, ..., Xy, Vi -« +s Vs Z1s - - =» Zy1)-
The image of the language L’ under the homomorphism

- *
Bo{Xy, o Xy Yy oo Vs 21y ooy 24}

—’{xu~-~,an’1,-«-,J’s>Z1,---,Z:}*
defined by
u, if we{xy, ...,%, 21, ..y Ze ),
= 1
h(w) { A, it ue{yy, .oyt (@)

is the language L, ={(xy,...,%,,2;,...,2)"|Vey(fiofz)} hence
f1f, is a type-0 relation. Here A is the null word.

LemMma 1: Let f, : N"> N° and f,: N*—> N*' be two context-sensitive
relations. If either f, is anti-extending or f, is extending it follows that f, o f, isa
context-sensitive relation.

Proof: Let TV be a word from the language L' defined in the previous
Theorem. The length of this word, / (TY) is

”(nla ety nr)” +”(m1’ 3ms)“+ H(pl’ >pt)”

The mapping his a linear erasing with respect to L' if there exists an integer c = 1
for which / (TY)< [/ (h(TY)), i.e.

Imy, ..o m)ll Se=DUl(ry, o m) I+ (P -5 PIID-
If f, is antiextending we have
(g, - m)ll ZMy ll(my, - my)
hence

My, oo, m) SOU/M N, - m) T+ IR s pIID.

vol. 14, n°3, 1980



284 D. A. SIMOVICL

When f, is extending it follows that

”(mI: ] ms)” éMfz “(pl: R ] pt)”
SIM N0 - m )+ 1P - - PO,

Using the fact that the class of context-sensitive languages is closed with respect
to linear erasings we obtain the desired assertion. B

LemMa 2: Let f be a context-sensitiverelation, f : N' — N*. Therelation N x f
obtained from f by left cylindrification, N x f : N*** — N1*5is context-sensitive.

Proof: Since f is context-sensitive the language

Lf= {XPIP:(nl’ ceey By, My, '--ams)> (ml’ "'9ms)ef(n15 MR nr)}

is context-sensitive, where X =(x, ..., X,, V1, - . ., V). Let us consider the
substitution ¢ defined by

o(x,)={x,x,}, 1Lpsr
and

o(y)={y, v} for 1=¢<s.

The language K= (J{x"{x,, ..., %, }*y"{y1, ..., ys}*|n20} is ob-
viously context-sensitive hence so is the language

e(L,)nK
={x"x} ... xEy" Y. ye|neN, (my, ..., m)ef(ny, ..., n)}.
Since Ly, =@ (L ;) Kitfollowsthat N x fisa context-sensitive relation. W

Remark 1:If f: N" — N*is a context-sensitive relation it is possible to prove
in the same manner that the right cylindrification of f,

fXN : N'+1—)N8+1,

where f xN(q, p)= {(r, p)Ire f(q)}, VpeN, qe N" is also context-sensitive.
Moreover, the repeated left and right cylindrification of f: N* x for f x N" are
also context-sensitive for every k, he N.

Let f: N"—> N% g: N'> N* be two relations. The relation
fXg . Nr+t_>Ns+u
is defined by

(ml’ cees Mgy gy, o vy qu)e(fxg)(nl, TR TS ETIE pt)
iff(Wlla Cees ms)ef(nla L] er), (qla DR qu)eg(pla ttes pt)‘

R.ALR.O. Informatique théorique/Theoretical Informatics



285 COMPUTING OF GRAPHS OF RELATIONS USING GENERATIVE GRAMMARS
THEOREM 2: If the relations f : N" — N°and g : N* — N* are context-sensitive
it follows that f x g is also context-sensitive.

Proof: Let G, and G, be the length increasing grammars,

Gf=(VNf9{x1: ..-,X,, Y1, L) ys}yéof’ Ff))
Go=Vy,, {x1, ... X, Y1, s Vi) Eogr Fy)
which generate the languages
L,={X"|Peyf} and L,={X"?|Qevg},

respectively, where
X=(X1, ey Xp, V15 -5 Vs) and X =(x, . s Xgy V15 «vvs V)

Without restricting the generality we shall suppose Vy, N Vy, =0. We have to
prove that the language L, , is context sensitive. To this end we shall prove that
L., is generated by a length-increasing grammar with regular restrictions
(see [6], pp. 190-191) using the fact that every such grammar generates a
context-sensitive language.

Let F y and Fg be the sets of rules obtained from F, and F, by replacing
Vi, ---» ¥s DY N1, ..., M, and, respectively x4, ..., x; by &1, ..., &;, where
Ny ---,Msand €%, ..., & are new symbols. Let us consider the grammar

G:(VN7 {xla vy Xpy xlla RIS X;, Vi, - yss yll, LR ] yzln E.)O’ F)
We assume that the rule u — v can be applied only to sentential forms belonging
to the language

p(u—)v)g(VNU{xlﬁ --':xr7xl15 '-':xtl, Yis <5 Vss yll, ] yt’l})*:

which is a regular one.
The set of rules F consists from the following groups of rules:
(i) the initial Tule £ = E4,E 045
(i) m;€h—>Exmy 1S j<sand 1Sh<t
(i) &y = xp, ISh=t,m; >y, 1< j<s with
pPErox=pMm;—y)={x}* .. {x}*{&L x }*. ..
R EITE T LR PV 70 LR £ 8 L SUD LI R

(iv) the rules from F s and Fq.
When p is not explicitely given we assume that
p(u_)v)=(VNU{x17 ...,X,,Xi, --',xtl: yl’ Ceey y57 y,h v ey y;})*

vol. 14, n°3, 1980



286 D. A. SIMOVICI

Let us prove that L(G)=L,,,. f weL,,, we have

__m m, .'n P P, 1q q,
w—xll...x, xll...xt yl...ys’yl'...yu 5

where (py, ..., p)efmy, ..., m), Gy, ---, g )Eg(ny, ..., n). The word w
can be obtained in G be the following derivation:

* * X
m My AP ps £ /0y ey, 0q
o (=>, €os8o0q s xPoooxt i mEED Gy
P} it
; XM m, g, me oDy ps ' .
e XYL LB MYy
(ii)
* XM My 1y m 3Py Ps 1,/ 0 1y
= 1 e X, X s XYY YS YL Y E= W,

{iii)
hence we L(G). The subscripts indicate the group of rules which was used.

The converse inclusion can be obtained by remarking that a derivation £y = w
G

is necessarily splitted in the way just indicated. W
Let "us define now the subcategories Ax; and Ex, of # by

ObAx,;=0bEx,=0b % and
Ax,;(N", N")=Ax(N", NV R,
Ex (N", N")=Ex(N", N")n &,.
TureorEM 3: Ax, is an admissible and Ex, a semiadmissible subcategory of .

Proof: If fieAx;(N",N%) and f,eAx,(N* N') it follows that
fiof,eAx(N", N"), using Lemma 1. By the same lemma, from
fi€Ex,(N", N%), f,eEx,(N*%, N if follows that f;o f,e Ex,(N", N?).

If fe Ax, (N",N°®) [or Ex,(N",N°®)] the left cylindrification of f is clearly
anti-extending (or, respectively extending). Using lemma 2 we infer that
N xf is context-sensitive, hence N xfeAx,(N",N%) [respectively
N x feEx,(N", N*)]. -

1t is clear that A belongs to both to Ax, (N, N2)and Ex, (N, N ?) because the
language ’
Ly={X"|X=(xy, ¥, y2), P=(n, n, n), neN}

is context-sensitive. For 8, we have
Ly ={(x4s- %, V1525 Vi)

Q=(m,n,py, .., Pr—2s N M, Prs - o pk—z)ENZk}
which is also context-sensitive.

R.A.1.LR.O. Informatique théorique/Theoretical Informatics



COMPUTING OF GRAPHS OF RELATIONS USING GENERATIVE GRAMMARS 287
We conclude that Ax,; and Ex, are semiadmissible subcategories. Moreover,
since ITe Ax (N, N°) it follows that Ax, is an admissible subcategory. M
Let now [n]be theset {1, ..., n} and f: [p} - [g] be a function. The logical
function generated by f is the function f* : N?— N? defined by
f# (nla s nq):(nf(1)7 e e nf(p)):
for every (n,, ..., ny)e N%

The proposition 1.4 .1 from [4] states that if o7 id an admissible subcategory of
Z# and f: [p=Tq] is a function then f* e o/ (N4, N'}. As a consequence we
obtain the following.

CoroLLARY 1: For every function f: [p]— [q] the language

K
Lf#:{(xla -~*:xq5 Y1, *--:yp) |
K=y, ...,n5 00, -0 p) By, .0, nq)eN"}
is context-sensitive.

Example 1: Let us consider the function f: [m]—[1], where f(j)=1, for
1< j =m. The language

Ly ={x}y}...ymlneN}

is context-sensitive. For the function & : [27] - [r] defined by

. i if 1=5jsr,
h(j)=+ . . .
j—r, if r+1Z5j<52r,
we obtain the context-sensitive language

ny

Lys={xy . ..xX¢ yv. .. yv v v5l(ng,...,n,)eN"}.

Let f; : N"— N/, f, : N" - N* be two relations. We shall define the relation
(f,,f,> : N' = NJ** by taking

(pla ey pj; dis - - qh)€<f17f2>(n1’ ""nr)
iff
(pla "'7pj)€f1(nla ey nr) and (q19 L] qh)efZ(nl’ L] nr)'

THeoREM 4: If fi : N"— NJ and f, : N" > N"* are two context-sensitive
relations then { f, f, > is also context-sensitive.

Proof: The function h* : N* — N2 defined in corollary 1 is antiextending with
M ,» =1/2. Using theorem 2 it follows that f; x f, : N2 = NJ/*" is context-
sensitive. In view of lemma 1 the relation h* o(f; x f5) : N* —» N/** is context-
sensitive. It is easy to see that { fi, f, > =h" o(f} xf,) is context-sensitive. M

vol. 14, n°3, 1980



288 D. A. SIMOVICI

3. CLOSURE PROPRIETIES OF THE CLASSES %, AND %,

For arelation f: N” — N” we shall denote by f” its j-th power (with respect to
relation product) and by [ the relation f* : N”— N" given by

fr=U{riz1}.
Taeorem 5: If f is a relation from R, then f* e R,.

Proof: Suppose that L, is generated by the grammar
G=(1N’ {x19 ey Xpy yly ] yr}ng’F)‘

F’ is the set of rules which is obtained from F by replacing y, ..., y, by r new
nonterminals 14, ..., N, respectively. We shall consider the grammar

G+=(INU{n17 e N N, n':90,61},lr,90,F+),

where F , consists from several groups-of rules which we shall present explicitely
in the sequel, such that the language generated by G, is L+ .

Let K=(n,, ...,n,,my, ..., m)eyf. The r-uples (n,,...,n,) and
{my, ..., m,) will be denoted by B and T, respectively. There exists a natural
number p, p=1 such that Key(f?), hence there exists p—1 r-uples
H;=(h}, ..., hi), 1<j<p—1 such that

Kl::(n15 .. ',nr’hi: ’h})e’Y.f’
Ko=(ht, ..., he b3, .. BDex |,
sz(hlll_l’ LRI h;{’_laml: RN mr)EYf:

The r-uple T will be denoted also by H ,. Since weinclude F'in F , wehavein G ,
the derivations

* .
&:0 = (xl’ sy X Mo "",nr)st 1§]§P,

which will be used in the derivation of the word (x4, ..., X,, y1, ..., ¥,)X inthe
grammar G | .

We shall consider also in F , the following set of rules:
(1) the set of initial rules

{90—’5_,0190—’22071&091, N1Vt -0 nr—)yr}
allows either to generate the word
(15 «ovs Xps Vs oo s V)P €L(G)=L;

R.A.LR.O. Informatique théorique/Theoretical Informatics



COMPUTING OF GRAPHS OF RELATIONS USING GENERATIVE GRAMMARS 289

or to produce the derivation

*
eO = &On&oel = (xla R xra‘nl’ e ey ‘nr)K1
N1y ooy Xy M1s - o> N2 0.

(i) The permutation rules ;1 — MM 1 <j<k=r allow to move the n ;s
until they are situated near n.

(iii) The group of eliminationrulesm ;n x; —» n, 1 < j<r gives us the possibility

to eliminate pairwise the symbols ¢, ..., n,, Xy, ..., X,. Only after their
complete elimination it is possible to apply one of the rules x;nn, —»n', 15,
k<r in order to obtain 1",

At this stage we have the derivation

*

e0 = (xla"‘5xr’n1’--‘1nr)K‘n(x1:‘~-axr:nla'~"7nr)K291

::; (xla -"axr)Bnl(n15 ] T]r)Hzel'

By using the permutation rules n'n; —»n;n’, 1<j<r, n’ is moved to right
until 8;. Now we can use the rule n’6; — 1§y 0, and a new derivation process
can be initiated using the rules from F'. The derivation is developped as follows

£

e0 = (xla'~"xr)B(n1’~~'anr)Hzn(x1:"':xnn1>""nr)Kael'

Using again the elimination rules we have

*
eO = (xl,--~=Xr)Bn(T]1,---,Tlr)H391
= (Xu---,xr)Bn'(ﬂn-~,ﬂr)H391

* ’
= (x19 "'axr)B(nly cees Tlr)HaTl 61
= (x1> ---,Xr)B(Th, ceey T]r)H’TlEJoel
= (-xh---axr)B(nb'~~’nr)H3n(x1>"'axr’nla"'3nr)K491

£
= (xl) -~-,Xr)3(1'11, e nr)TT]'91:>(x1> s Xy le IR T])‘)K491
ES
= (Xg, o Xy Vs oo VK

The last step was realized using the rule '8, — A. We have thus obtained the
inclusion L ;£ L(G ). The converse inclusion can be proved by analysing the
structure of derivations from G .. This proof is left to the reader. W

vol. 14, n*3, 1980



290 D. A. SIMOVICI

ReMARK 2: If w=(xy, ..., X,, y1, ..., y,)X is a non-empty word from
L(G.,) it is easy to see that for the working space of w in the grammar G .,
denoted by WS, (w), we have :

WSs, w)S max { max (|BlI+21H;Il+H;s:ll+3)},

{(Hy, ... H,) 1sj2p-1

where max is considered over all possible (r+s)-uples H,, ..., H,.
{H,, ....,H,}
THEOREM 6: If f: N" — N" is an extending (anti-extending) context sensitive
relation with M ;<1 (with M ;2 1) then so is the relation f* : N* — N".

Proof: 1t is easy to see that if f isextending with M ;<1 or anti-extending with
M ;>1 then ™ enjoys the same property.
If f is extending we have

IBI=M IHll, WH =M NH, ..., WH,_[ISMT],
hence || H;|| < || T|| for 1< j<p-—1,since M < 1. It follows that

WSe, w)SUBI+3ITI+3=6(BII+ 1 T1)=61(w).

When f is anti-extending we have

IBI=M NH I, | Hi[|Z2M [ Holl, .- [ Hpo | ZM I T,
hence WS;, (w)=4[IBIl+3=7(I1BII+ TI)=T1(w).
It follows that in both cases L (G , ) is context-sensitive (due to the workspace
thorem, see [6]) and the proof is completed. W
If for the relation f:N"— N° we consider the set of numbers

Sy={linll/llmlllmef(n), neN"} the last theorem can be reformulated as
follows:

THEOREM 6’ : Suppose that for the context-sensitive relation f : N* — N' we
have either S; <[0,1] or S; S [1, + ). Then f* is also a context-sensitive
relation and S+ is also included either in [0, 1] or in [1, + c0), respectively.

Remark 3: Let f, g be two relations from Ax, (N, N*). Since the class of
context-sensitive languages is closed with respect to union and intersection it
follows that the relations k= f U gand h= f n g belong to Ax; (N", N*) by taking
M;=min (M,,M,) and M, =max (M, M,). A similar argument points that
Ex, (N", N?)is closed with respect to union and intersection of relations. Let f
be a relation f: N"— N".

If 3,is the diagonal relation, &, : N” — N" we shall define f* : N> N" by
f*=8,u f*. It is clear that f* belongs to Ax(N", N)(Ex(N", N") iff f+
belongs to Ax(N’,N") (or Ex(N", N"), respectively).
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The exponential of a function f: N” — N' is the function f¥ : N'*! > N’
given by
iy, ...,n, 0=(n,, ..., n),
f§(n1, R 1) P+1)=f(f§(n17 cees By, p)):

for every ny, ..., n,, peN.

‘THEOREM 7: Ifk : N" — N"is acontext-sensitive function for which S, <[0,1) or
S =1, + o) then k® is also a context-sensitive function.

Proof: Denoting as usual p—1=max(p—1,0), VpeN, let us define the
functions f: N"™** > N"and g : N"*! - N"*1 by
Yf:{(nly RN () 0: Ryy o oey nr)lnl, ] anN},

Yg= {(nla sy By B, My, ~--;mr’n;1)l(-m1> cees mr)=k(n1: ---’nr)}‘

It is easy to see that k¥ =g* f(see [4], for instance).

Using our previous results it would be sufficient to prove that
g*eAx (N""1 N"™"Yor g*eEx,(N"**, N"*!) since [ is both extending and
anti-extending.

If S,c[0, 1) it follows that ||(ny, ..., n)[l <|[(my, ..., m)|[, for every
(mlﬁ R mr):k(nla ey nr)a
hence || (ny, ..., n)ll+n<l(my, ..., m)l| +n—1, which implies
”(nla '-~anr’ n)” <1
“(mls B (O m)” =
for every (my, ..., m,, meg(n,, ..., n,, n).

In an analogous manner it is possible to prove that, if S, (1, + oo) we have

”(nla -":nr’ n)” zl,
“(mla e,y m)“
for every (m,, ..., m,, mjeg(n,, ..., n,, n), hence in every case we conclude

that g is a context-sensitive relation. W

Example 2: The function f: N — N given by f(n)=n+1, Vae N is context-
sensitive since the language L = {x'l‘ yi*lneN } is context-sensitive. Using
theorem 7 it follows that f%: N2> N is context-sensitive because
S;={n/(n+1)|neN}<[0,1). We have f%(n,p)=n+p, Vn,peN. This
function will be denoted by 7. Applying repeatedly the cylindrification we
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obtain the context-sensitive function

2

@5 =(... (95 xN)ogg) xN.. )0 gy,

where ¢{(n;, ..., n,)=n+...+n,, ¥(ny, ...,n)eN".

Since II x N xN is anti-extending and context-sensitive it follows that
g=(IIx N x N)o @2 is context sensitive where g (m, n, gy=n+q,Vm, n, ge N.If
k : N> N is the null function k(n)=0, Vne N, we can define the function
h: N2> N by recursion starting from k and g by h(m, 0)=0 and
h(m, n+1)=n+h(m, n), Vm, ne N.Itis cleat that h(m, n)=mn,V¥m,ne N. This
function will be denoted by @7 . It follows that the function

Pp=(... (97 xN)o @) xN...)o 07,

where ¢; (ny, ..., n)=ny...n,, ¥(n,, ..., n)eN"is context-sensitive.

- Given thefunctions f: N"— Nfandg : N"*1** - N* the function defined by
recursion from f and g is the function h : N*** — N* for which h(p, 0)= f (p)
and h(p, n+1)=g(p, n, h(p, n)), for peN", neN.

ReEMark 4: Let ki be the function defined by recursion from f and g. There exists
two functions J ;: N**1 - N7*1*s*1 apd ¢ : N**1+s— N**1+s guch that the
function T : N**! » N"*1%s defined by

I'(p, m)=(p, m, h(p, m)),

for every peN’, meN is the product I'=\yo¢’. Indeed, by taking

V(p, m)=(p, 0, f(p), m) and ¢ (p, n, 9)=(p, n-+1, g(p, n, g)), for every peN",
ge N*, m, ne N, the last relation can be easily verified by induction on m.

TueorEM 8: If f: N"' > N%and g : N"*1%75 5 N gre two context-sensitive
Sfunctions and there exists a positive number € for which ||g (p, n, )| +1> || g|| +¢
then the function h defined by recursion from f and g is context-sensitive.

Proof: In order to prove that the function I previously defined is context-
sensitive we have to prove only that s is context-sensitive and @ is extensive and
context-sensitive. ‘

Since f is context-sensitive the language

Lf:{(xly ey Xps V1o "':yS)K!K=(p1, «es Dps g1, - - qs)e'Yf}
is context sensitive. It is easy to see that the language
L\ll:{(xlz vy Xy Xpg1s Vi -"syr+s+2)Hl

H:(pb s Pes My Pas ooy Do 03 q1> 59 m)e'Y‘l'}

is also context-sensitive.
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The function ¢ is extensive. Moreover, the condition from the 5th theorem is
satisfied since we have

lipli+n+ligll _ lpll+n+llqil
lo(p, n, il lipll+n+1+ilg(p, n, g)ll

1 llg(p, n, @li+1—llqll <1_e<l.
[lpll+n+1+]lg(p, n, @l

Since T is context-sensitive the language

— Q
LF—'{(Xla cees Xy Xex1s Vs oves Ves Yet1s YVed2s o0 v Yr+s+1) I

Q:(pla s Des My Dy e Pes M Gy, ., Qr)e'yr}

Is context-sensitive. By considering the homomorphism

x:{xls ey X1y Vi "~7yr+s+1}*—’{x1, cees Xy yla RS | yr+s+1}*
defined by
7\,, if Ze{xl,...,x,+1},
x(z)= X;, if z=y;, 1<jSr+1,

Yi—wo+1) if z=y;, jzr+2,
it is easy to see that y is a linear erasing with respect to L. hence the language
{XPIP=(p17 s Des M, 4y, -, qs): (ql: ] qs)=h(p1, s DY m)}

1s context-sensitive, where X =(x, ..., X,4+1, V1, ..., Vs)- This implies that
1s a context-sensitive function. M

4. ELEMENTARY EXAMPLES OF CONTEXT-SENSITIVE LANGUAGES

We have developed in our previous papers [7, 8] a systematic way of proving
that certain classes of languages are included into the class of context-sensitive
languages. Now, we shall recapture some of our results and obtain several new
examples of context-sensitive languages.

Tueorem 9: If f € Ex, (N7, N¥) then the language
Cf={ Y IM=(yy, ..., ¥ Mecodomf}

is also context-sensitive. Also, if feAx, (N',N®) the language
D,;={X%X=(xy, ..., X,), Qedom f'} is context-sensitive.
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Proof: Since f'is extending and context-sensitive the language L ;= { (¢, ..

b

Xy V1s - > ¥s)" | Peyf}iscontext-sensitive and there exists M ;€ R , such that
My, ooy BJISM(l (my, ..., mg}l, for every (ny,...,njedomf,
(my, ...,myef(ny, ...,n,). Letusconsider the homomorphism y: {x,, ...,
Xps Vis oo ey YS}*—‘){yl, ...,ys}* given by
V() z, if ze{xl,...,x,},
Z)=
X, if ze{ys, ..., ¥s)-
Since
l((xla ey Xps yla AR YS)P):”(HI: :nr)H+”(m17 sms)H
é(Mf+1)”(m1) ey ms)ll‘:(Mf+1)l(\lj(xla s Xps Vi - "’ys)P))l,
where P=(ny, ..., n,, my, ..., my), it follows that \ is an (M ;+1) linear

erasing with respect to L ;. Hence C =V (L) is also context-sensitive.

For D, (when f 'is context-sensitive and anti-extending) the proof is
similar. W

Lemma 3: The function g: N?> — N defined by g (m, n)=m-nfor everym,neN,
belongs to Ax, (N2, N), where m~n=max {m—n, 0), Vm, neN.

Proof: The language which represents the graph of g is

L,={xTx3|m neN,m<n}u{x2x}y7 "|m, neN, m>n}.

Since the language { x7 x%|m, neN, m<n} is obviously context-sensitive we
have to prove only that the language

E={xTx4y? "Im,neN, m>n}

is context-sensitive. To this end let us consider the substitution ¢ defined by
@(x)={x;} and o(x)={x,,y} and the context-sensitive language
Lo={x7x7|meN}.Itis easy to see that we have E=@(Lo)n {x, }* {x,}*
{y1}*, hence L, is context-sensitive. It is clear that g is anti-extending. W

THEOREM 10: The distance functiond,: N* — N defined by d, {m, n)=|m—n|,
Vm, ne N is context-sensitive and anti-extending.

Proof: Let us consider the function f: [4] > [2] given by f(1)=f(4)=1 and
f(2)=f(3)=2 and the sum-function p?: N* - N, where ¢¢ (m, n)=m+n. We
have d, (m, n)=g (m, n)+g (n, m), hence we can writed ; = @2 o(g xg) o f*. Since
92,9 x g and fbelong to Mor Ax, it follows that d , is context-sensitive and anti-
extending. W
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Let d,: N2 - N be the distance function given by
d(my, ...,m, ,nq, ...,n)={m;—n|+...+|m,—n,|.

CoRroLLARY 2: The function d, is context-sensitive and anti-extending.

Proof:Ttisclear thatd,=@.o(d; x ... xd{)oh*  where h:[2¥] — [r]is defined
by

h(j)= (j+1)/2, when jisodd,
| r+j/2,  when jiseven,

for all j, 1<j<2r. According to the theorem 10 it follows that d, is context-
sensitive. MW

Example 3: Let go, g1 €Ax (N°, N") be two relations and let sg: N — N be
the function given by sg (0)=0 and sg (n)=1, for n=1. Since d, and sg are anti-
extending it follows that the relation g=<{g,, g, ) od, o sg is context-sensitive
and anti-extending. Iff: N* — N is an anti-extending context-sensitive relation it
follows that the relation f, given by

P (p):{f(p), if go(p)#9.(p).
’ 0, if go(p)=g1(p)

is context-sensitive since f, =<g,f>o@z. This is the context-sensitive
« analogue » of the conditional definition of recursive functions.

LemMa 4: If f:N""' > N is a context-sensitive function then the function

fk:Nr_')N given b_)’ fk(pla s pr):f (pls ] pr> k): fOV eUeVy
(p1, ..., p,)EN" is context-sensitive.
Proof: Ttis easy tosee that L, =L, " {xy, ..., X, }* x4, {yi, ..., ys}*is

context-sensitive since the class of context-sensitive languages is closed with
respect to intersection. W

ReMARK 5: The same result holds by fixing any argument of f.

Theorem 11: Let f: N'*! — N be a context-sensitive function and consider the
functions G: N'** — N and H: N**! —» N defined by

G(p, =Y {f(p,m)|0=m=n},
H(p, n=I{f(p, m|0<m=n}, VpeN’', meN.

G is a context-sensitive function. If, for n=1 we have f (p, n)=1,VpeN" it
follows that H is also context-sensitive.
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Proof: Since the function f'is context-sensitive, using lemma 4, it follows that

the function f;, where f, (p)=f(p,0) is also context-sensitive. For G and H
we can write

G(p, O)=H(p, 0)=fo(p)

and G (p, n+1)=03 (f(p, n+1), G (p, n), H (p, n+)=07 (f (p, n+1),
H(p, n). Let us consider the functions g, h: N**'*' - N by g (p, n, 9)= f(p,
n+1)+q,h(p,n,q)=f(p,n+1)q,YpeN",n,qe N.Since G and H are defined by
‘recursion starting from f,, g, and, respectively from f;, kit follows that G and H
are context-sensitive, using the 6th theorem. W

Example 4: The function f: N2 — N defined by f(m, n)=(m+1)""!,Vm,neN
is context-sensitive. Indeed, we have

f(m, 0)=m+1,
f(m, n+1)=07(m+1, f(m, n),

for every m, ne N. Thus fis defined by recursion from the functions h: N » N, g:
N? - N,where h(m)=m+1,g(m,n,q)=(m+1)q,Ym, n,ge N.Itisclear that|| g
(m, n, @))|+1=]gi+1, hence we can apply the 8th theorem. It follows that f'is
context sensitive.

By applying lemma 4 we obtain the context-sensitive functions f;: N > N,
fi(m)=a""*andf,: N > N,f,(m)=(m+1)*,Ym,ne N, where a, be N,a, b= 1.

Since L, and L, are context-sensitive languages so are x; L, and x, L;,
where L, , L, are subsets of {x1, y1 } * We infer that the functions f1: N —» N,
f51 N =N, where f'(n)=a", f'(m)=m®” for m, n=1 are context-sensitive
functions. By adding to the graphs of fi and f, the pairs (0, 1) and (0, 0),
respectively, we obtain the context-sensitive functions exp,: N - N, exp,(n)=a"
and pow,: N —» N, pow, (m)=m", for m, neN.

Example 4: The linear function lin,: N —» N, lin, (n}=an, Vne is context-
scnsitive since the language describing its graph is {x% y{"|neN}. Every
polynomial with integer non-negative coefficients is a context-sensitive function.
Indeed, let P be the polynomial P(n)=a, " + ... +a,n". We have

P= f# o[(pow, olin, ) x ... x (pow, olin, )1o@g",

where f* is the logical function considered in example 1, hence P is context-
sensitive.

Since P is an extending relation it follows that the language { y** |ne N} is
context-sensitive (see [7]).
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THeoreEM 12: Let f: N - N, g: N > N be two context-sensitive functions for

which lim g(n)/f(n)= + oo, The function g~ fdefined by(g -~ f)(n)=g (n)= f(n),

n - oo

VneN, is context-sensitive.

Proof: Since f and g are context-sensitive so is the function ¢ f, g > hence the
language L={x7 y{™ y4™|neN} is context-sensitive. Let h; be the
substitution defined by h, (x,)={x:}, hy(y;)={y(} and by (y;)={y2,y}.
The language

L'=h (L)~ {x} y7 y5 y"im, k,neN}
is context-sensitive and we have
L'={x1 y{® y§"= IO yI®|gm)2 f(n), neN}.

The homomorphism h, given by h, (x;)=x1,h,(y2)=y, and hy(yi)=h,()=e
is a 2-linear erasing with respect to L’. Indeed, let w'e L’ be

w =x" y{(n) ygz(n)— f(n)yf(n)

and h,(w)=x% y4™~ 7™ Since lim g(n)/f (n)=oo there exists an integer nj

such that, if n>n4 it follows g (n) >3 f(n). Thus, we have [(w')<21(h, (w)); h,yisa
2-linear erasing and the language

L'=h, (L)={x% y4™~ /™ |gm)2 f(n), neN}

is context-sensitive. The language L,_ , can be thus obtained by adding to L’ a
finite language, hence g f'is a context-sensitive function.

We obtain an extension of the aforementioned result concerning polynomials
in the following.

CoroLLARY 3: Every polynomial P with integer coefficients, whose dominant
coefficient is positive defines a context-sensitive function f: N — N, where
f(n)=max {P(n), 0}, VneN.

Proof: Every polynomial which satisfies the conditions of this corollary can be
written as P (n)=K (n)— H (n), where K and H are polynomials whose degrees
are p and g, respectively (p>gq) having integer non-negative coefficients.

Therefore, we have lim (K (n)/H (n)=c0. Since K and H are context-sensitive

n - o
functions, using theorem 12 the function K~ H=max (P (n), 0) is context-
sensitive. W

Let f: N > N be an increasing function.
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DeriniTion 2: The completion of f is the relation fi N> N defined by
vf={(mfm=<m<fn+1)}.

THEOREM 13: The completion of an increasing context-sensitive function f for
which there exists a positive integer k such that for everyne N, f (n+1)/f(n)<k s
a context-sensitive relation.

Proof: The relation o={(n,n+1)|neN, n=1} is anti-extending with
M ;=1/2, hence o o fis context-sensitive. It follows (using an argument similar
to the first part of the proof of theorem 12) that the language

L={xty{MyfeD-s® S0 peN},

is context-sensitive. The homomorphism h defined by h(z)=zifze{x,,y,,y, }
and h (y)=eis a 2-linear erasing with respect to L since fis increasing. Therefore
the language

L'=h(L)={x} y{ " y§ "+ S @ ne N}

is context-sensitive.

Let us consider the substitution {, where y(x;)={x,}, ¥ (y,)={y;} and
V(y,)={y1,y,}. We obtain the context-sensitive language

L'=Y(L)n {x}*{yi}*{r2}"

and we have

L"={x1y{®%iyy e+ =S =i| 0<j< f(n+1)— f(n), neN}.

Using the homomorphism h’ withh'(x)=x,,h'(y{)=y;and h'(y,)=e, which
is a k-linear erasing for L'’ we have the language

Ly={x}y{®*]|0<j<f(n+1)—f(n), neN},

which is context-sensitive and represents the graph of /i Therefore the
completition fis context-sensitive. MW

RemARK 6: It is clear that the codomain of the completion of a context-
sensitive function which satisfies the conditions of theorem 13 coincides with the
set {m|mzf(0)}.

Let g be the function g: codom f — N defined by g (m)=nif n is the unique
number for which f(n)<m< f(n+1). Since the language {x'} y7|m, neN,
(n, myey f~} is  context-sensitive it follows that the language
L,={x7Ty{™|m=0} is context-sensitive.
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Example 5: It is clear that the function pow , with p2>2 satisfies the conditions
from theorem 13 and pow,(0)=0, hence the language {x7 W me N }is
context-sensitive. The same conditions are fulfilled by exp,, with a= 2 hence the
language { x7 y™® [me N} is context-sensitive.

The results obtained in the second section of this paper give the possibility to
prove in a rather simple manner that certain complicate languages are context-
sensitive. For instance, by applying theorem 6 to the function exp , it follows that
the language

2

{izﬁ |m,neN},

is context-sensitive.

In a next Note we shall discuss the connection between the class of context-
sensitive functions and certain subrecursive hierarchies (see [2]).
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