
 1

Computing on Masked Data: a High Performance
Method for Improving Big Data Veracity

Jeremy Kepner, Vijay Gadepally, Pete Michaleas, Nabil Schear, Mayank Varia, Arkady Yerukhimovich, Robert K. Cunningham
MIT Lincoln Laboratory, Lexington, MA, U.S.A.

Abstract— The growing gap between data and users calls for
innovative tools that address the challenges faced by big data
volume, velocity and variety. Along with these standard three
V’s of big data, an emerging fourth “V” is veracity, which
addresses the confidentiality, integrity, and availability of the
data. Traditional cryptographic techniques that ensure the
veracity of data can have overheads that are too large to apply to
big data. This work introduces a new technique called
Computing on Masked Data (CMD), which improves data
veracity by allowing computations to be performed directly on
masked data and ensuring that only authorized recipients can
unmask the data. Using the sparse linear algebra of associative
arrays, CMD can be performed with significantly less overhead
than other approaches while still supporting a wide range of
linear algebraic operations on the masked data. Databases with
strong support of sparse operations, such as SciDB or Apache
Accumulo, are ideally suited to this technique. Examples are
shown for the application of CMD to a complex DNA matching
algorithm and to database operations over social media data.

Keywords-Big Data; Accumulo; D4M; Security; Encryption

I. INTRODUCTION

Big data and big data solutions are commonly characterized
by the three V’s: volume, velocity, and variety [Laney 2001].
The 17 member agencies of the US intelligence community
face many similar issues in transforming their big data into
actionable solutions for their users. Led by the National
Security Agency, a Common Big Data Architecture (CBDA)
was developed based on the Google Big Table design [Chang
2008] to help address these issues and is now in wide use. The
centerpiece of the CBDA is the Apache Accumulo database
(accumulo.apache.org) and its D4M (aka NuWave) schema
[Kepner 2013a]. The CBDA connects users with data using a
range of technologies: file systems, ingest processes, databases,
data analytics, web services, scheduling, and elastic computing
(Figure 1). Increasingly, big data solutions must address the
confidentiality, integrity and availability of their data leading to
the designation of a fourth V: veracity.

There are many veracity challenges in a big data system
(see Figure 1a): external denial of service, credential stealing,
cross virtual machine (VM) side channels, VM hypervisor
privilege escalation, remote code injection, data integrity
attacks, data loss/exfiltration, insider threats, internal network
resource attacks, and supply chain attacks [Evans 2013]. These
attacks threaten the availability, confidentiality, and the
integrity of both the original data and the analytic results.

(a) big data veracity: challenges

(b) big data veracity: current approaches

(c) big data veracity: vision

Figure 1. The Common Big Data Architecture connects diverse users
with diverse data. Shown are big data veracity challenges (a),
current approaches (b), and longer term vision (c).

Users

Data

Analytics
A

C

D E

B

Computing

Web

Files

Scheduler

Ingest &
Enrichment Ingest &

Enrichment Ingest
Databases

Remote Code
Injection

Insider Threat

Hypervisor
Privilege

Escalation

Cross VM Side
Channels

Data Loss /
Exfiltration Data Integrity Data Integrity

Attack

Credential Stealing
External Denial

Of Service

01011
01100
101…

01011
01100
101…

01011
01100
101…

Supply Chain

Internal Network
Resource Attacks

Users

Data

Analytics
A

C

D E

B

Computing

Web

Files

Scheduler

Ingest &
Enrichment Ingest &

Enrichment Ingest
Databases

01011
01100
101…

01011
01100
101…

01011
01100
101…

Encrypted
link

Encrypted
link

Encrypted
link

Encrypted
storage

Encrypted
storage

Users

Data

Analytics
A

C

D E

B

Computing

Web

Files

Scheduler

Ingest &
Enrichment Ingest &

Enrichment Ingest
Databases

01011
01100
101…

01011
01100
101…

01011
01100
101…

Compute on
Encrypted Data

Compute on
Encrypted Data

Compute on
Encrypted Data

This work is sponsored by the Assistant Secretary of Defense for Research and Engineering under Air Force Contract #FA8721-05-C-0002. Opinions,
interpretations, recommendations and conclusions are those of the authors and are not necessarily endorsed by the United States Government.
U.S. Government work not protected by U.S. copyright.

 2

These attacks threaten to degrade the availability of the big
data system, compromise the confidentiality of the data and
analytics used, and violate the integrity of both the original data
and the analytic results. There are several approaches to
mitigating these veracity challenges. Data centric veracity
protections are particularly useful for preserving the
confidentiality of the data. Typical defenses of this type
include (see Figure 1b): encrypting the links between users and
the big data system, encrypting the links between the data
sources and the big data system, encrypting the data in the file
system, and encrypting data in the database when it is at rest.
These approaches are all significant steps forward in improving
the veracity of a big data system. However, all of these
approaches require that the data be decrypted for it to be used
inside the big data system, which requires that the keys to the
data be available to the big data system thus exposing the data
to any attacker able to breach the boundaries of the system.

One vision (Figure 1c) for a big data system is to have data
sources encrypt data prior to transmitting it to the system, have
the big data system operate on the data in encrypted form, and
only allow authorized users the keys to decrypt the answer for
their specific result. Such a system makes the underlying big
data technologies oblivious to the details of the data and would
go a long way towards mitigating the big data veracity
challenges described above. As a result, the data and
processing can be outsourced to an untrusted cloud while
preserving the confidentiality of the data and results.

Our Computing on Masked Data (CMD) system is a first
step in this direction allowing for basic computations on
encrypted data to enable a rich class of analytics. CMD
combines efficient cryptographic encryption methods with an
associative array representation of big data to enable a low
computation cost approach to both computation and query
while revealing only a small amount of information about the
underlying data. The overhead of CMD is sufficiently low (~2x)
to make it feasible for big data systems. Currently, all big data
systems must operate on their data in the clear. CMD raises the
bar by enabling some important computations on encrypted
data while not dramatically increasing the computing resources
required to perform those operations.

The outline of the rest of this paper is as follows. Section II
gives a brief introduction to the relevant cryptographic tools.
Section III describes the mathematics of associative arrays that
underpin CMD and the D4M schema that is used to transform
big data into associative arrays. Section IV describes the CMD
system and how it can be integrated with the standard big data
schemas. Section V presents the results of using CMD for
analyses on bioinformatics and social media data. Section VI
presents our conclusions and plans for future work.

II. RELEVANT CRYPTOGRAPHIC TOOLS
There are several cryptographic tools that one could use to

build a system like CMD. First, fully homomorphic encryption
(FHE) allows for arbitrary analytic computations to be
performed on encrypted data without decrypting it and while
preserving its semantic security (i.e., no information about the
data is leaked other than its length). FHE has been an active
topic of research since its discovery [Gentry 2009].
Nevertheless, the best currently available schemes [Perl 2011,

Halevi 2014] have an overhead of 105 or more, making them
too slow for use in practical big data systems.

If one is willing to allow a small amount of information
about the encrypted data to be revealed, a much more efficient
alternative to using FHE is to design protocols that leverage
more traditional cryptographic techniques to carry out queries
on encrypted data. One example of such a protocol is CryptDB
[Popa 2011], which constructs a practical database system
capable of handling most types of SQL queries on encrypted
data. It uses deterministic encryption (DET), which always
encrypts the same data to the same ciphertext, to enable
equality queries; order-preserving encryption (OPE), which
encrypts data in a way that preserves the original order of the
data, to enable range queries; and additively homomorphic
encryption (HOM+), which enables summing values directly on
encrypted data, to perform basic analytics. Several other
protocols achieving alternative trade-offs between leakage and
efficiency have been proposed by e.g. [Cash 2013, Raykova
2012, Pal 2012]. Additional solutions are also possible using
techniques for secure multi-party computation [Yao 1982, Ben-
Or 1988] but these require further improvement to achieve the
required performance.

CMD provides another important technology to this space
of solutions (Figure 2) that trade off computational overhead
and data leakage and is the first to focus on big data systems.

Figure 2. Trade space showing compute overhead versus information
leakage for different approaches. RND is a semantically secure
encryption scheme (i.e., it leaks no other information other then the
length of the message). DET deterministically encrypts each input
into exactly one ouput thus leaking equality information. OPE
encrypts the data in a way that preserves (and thus reveals) the
relative order of the all inputs. CLEAR has no encryption and leaks all
information to someone who has access to the data. FHE is fully
homomorphic encryption. MPC is multi-party computation. CMD
most often uses DET and OPE.

III. ASSOCIATIVE ARRAYS
CMD operates by working on a mathematical object called

an associative array that combines features of sparse matrices
and triple store databases (such as Apache Accumulo).

Associations between multidimensional entities (tuples)
using number/string keys and number/string values can be
stored in associative arrays. An implementation of associative
arrays can be found in the D4M software package
(d4m.mit.edu)[Kepner 2012]. In two dimensions, A D4M
associative array entry might be

A('alice ', 'bob ') = 'cited '
or A('alice ', 'bob ') = 47.0

Information Leakage

∞

C
om

pu
te

 O
ve

rh
ea

d

CLEAR RND DET OPE

105

104

103

102

101

100
Big Data

Today

FHE

CMD

MPC

 3

The above tuples have a 1-to-1 correspondence with their triple
store representations

('alice ','bob ','cited ')
or ('alice ','bob ',47.0)

Associative arrays can represent complex relationships in
either a sparse matrix or a graph form (see Figure 3). Thus,
associative arrays are a natural data structure for performing
both matrix and graph algorithms. Such algorithms are the
foundation of many complex analytics [Kepner 2011].

Constructing complex, composable query operations can be
expressed using simple array indexing of the associative array
keys and values, which themselves return associative arrays

A('alice ',:) alice row
A('alice bob ',:) alice and bob rows
A('al* ',:) rows beginning with al
A('alice : bob ',:) rows alice to bob

The composability of associative arrays stems from the ability
to define fundamental mathematical operations whose results
are also associative arrays. Given two associative arrays A and
B, the results of all the following operations will also be
associative arrays

A + B A - B A & B A|B A*B
Associative array composability can be further grounded in an
axiomatic definition for associative arrays in terms of semi-
modules over semi-rings [Kepner 2013b].

Figure 3. A graph describing the relationship between alice, bob,
and carl (left). A sparse associative array A captures the same
relationships (right). The fundamental operation of graphs is finding
neighbors from a vertex (breadth first search). The fundamental
operation of linear algebra is vector matrix multiply. D4M associative
arrays make these two operations identical. Algorithm developers
can use both graph and linear algebra to perform complex operations.

Associative arrays are a critical part of D4M, which has proven
useful in a variety of domains (e.g., documents, network logs,
social media, and DNA sequences). Measurements using D4M
indicate these algorithms can be implemented with a tenfold
decrease in coding effort when compared to standard
approaches [Kepner 2012]. For example, the D4M schema
(aka NuWave) used extensively by the Apache Accumulo
community allows diverse data to be quickly ingested and fully
indexed using a handful of tables. A feature of the D4M
schema is that the data obeys the algebra of associative arrays.

The top part of Figure 4 demonstrates an example of how
D4M transforms network log data into an associative array.
The raw network traffic logs are collected in a dense tabular
form that is made sparse using the same approaches found in
the standard D4M schema (i.e., each dense table column and
value are appended to make a new sparse table column). CMD
exploits this same sparse structure to work on associative
arrays that have been encrypted in various forms.

IV. COMPUTING ON MASKED DATA SYSTEM
The standard CMD use case is as follows. First, users

transform their data into associative arrays following the D4M
schema (as described in Section III). Then, the components of
the associative array’s rows, columns, and values are masked
using different encryption schemes; this process induces a
permutation on rows and columns as they are restructured in
lexicographic order by their masks. At this point the masked
data structure can optionally be distributed to a system in the
encrypted form. Next, algebraic operations are performed on
the masked associative arrays. Finally, the results are collected
by the user and unmasked.

The bottom part of Figure 4 demonstrates some of the
masks that can be used in CMD: DET for the rows (since range
queries on rows aren’t required), OPE for the columns (which
allows for range queries), and RND (a semantically secure
encryption scheme) for the values. Another option would be to
use an additively homomorphic encryption scheme (HOM+) if
the values require summing.

Figure 4. Masking network data records. Dense data is made sparse
using the D4M schema that is widely used in the Apache Accumulo
community. Dense table column names and values are appended to
make columns in the sparse table, which moves most of the semantic
content into the rows and columns. The sparse table is then masked
using a variety of encyrption schemes depending upon the desired
application. The rows are masked using DET, the columns are
masked using OPE, and the values are masked using RND.

DET and OPE induce a random permutation on the rows
and columns (resp.) of the sparse matrix, but the overall
structure of the matrix is preserved. Linear algebra and the
algebra of associative arrays are invariant to such permutations
(i.e., linear algebraic operations on the masked table will have
the same effect as linear algebraic operations on the unmasked
sparse table). This is the key concept of CMD, and gives it the
ability to perform a wide range of operations on masked data.

Note that CMD may leak the permuted sparse structure of
the table. However, determining whether this corresponds to a
known unpermuted structure requires solving the graph
isomorphism problem, which is not believed to have a generic
efficient solution.

Computing the src_ip to srv_ip graph from the network
log data shown in Figure 4 is accomplished by matrix

x! ATx!AT!

!

alice!

bob!

alice!

carl!

bob!

carl!
cited!

cited!

log_id src_ip srv_ip

001 128.0.0.1 208.29.69.138

002 192.168.1.2 157.166.255.18

003 128.0.0.1 74.125.224.72
208.29.69.138

src_ip|128.0.0.1 src_ip|192.168.1.2 srv_ip|157.166.255.18 srv_ip|208.29.69.138 srv_ip|74.125.224.72

log_id|100 1 1

log_id|200 1 1

log_id|300 1 1 1

Use as id
row

Create columns for
each unique dense
column/value pair

bgdjbeaddcbb pjdmjpcggdib qlhnlrjkgkoh rstpwrqqiwtr swvuzzvzjyux

eqkrihkp nxujqeox jdxgtxib

byzzrrpo skasemic zfvfvfek

cjytgntp clssgcuq ziurycfn jsbmcbnl

Rows:
DET

Columns:
OPE

Values:
RND

Dense Table

Sparse Table

Masked Table

 4

multiplication of different parts of the table. Figure 5 shows
the process by which query columns are selected, masked with
OPE, and then used to select parts of the table to be multiplied.
Associative array algebra allows many possible matrix
multiplies to be defined beyond the traditional: +.* (i.e.,
elements are multiplied and then summed in the usual
numerical sense). A particularly useful associative array
matrix multiply is the “pedigree preserving” matrix multiply:
∪.& (i.e., elements are first “&” and then unioned). Figure 5
shows how CMD carries out this operation using D4M syntax
with the function CatKeyMul performing the pedigree
preserving matrix multiply. The result is an associative array
depiction of the src_ip to srv_ip graph with the
corresponding lists of log_id’s stored in the values. In this
example, the system holding the table and the system
performing the matrix multiply never unmask the data. This is
possible since OPE allows the encrypted range query to select
the relevant rows for the multiplication and DET encryption of
the rows allows for concatenation. The query parameters and
the results are masked and unmasked independently from the
storage and computation systems.

Figure 5. Querying and correlating masked data. Query columns are
specified by the user and then masked by the user using OPE.
Pedigree preserving matrix mulply is then performed on the masked
data. The result is unmasked by the user revealing src_ip to
srv_ip graph with values corresponding to the log_id.

V. IMPLEMENTATION & RESULTS
This section describes a prototype system for a subset of

CMD and its applications to bioinformatics and social media
data. At the moment, the prototype system supports DET
encryption using the AES256 [FIPS 197] implementation found
in OpenSSL (www.openssl.org) in cipher block chaining mode.
The cryptographic key and initialization value1 used in DET are
derived from a user-provided password. To make string
handling easier, the results are made into printable characters
using Base64 encoding (code.google.com/p/stringencoders).

1The current implementation of CMD uses the same initialization
value for all plaintexts. Unfortunately, this permits equality testing
between 16-byte blocks of large encrypted data items. Future
versions may use message-dependent initialization values [Popa
2011, Halevi 2003] to provide better security at a small performance
cost.

The prototype implementation consists of four new D4M
functions to go from plaintext (pt) to masktext (mt)

mt = StrMask(pt,password) Mask string
pt = StrUnmask(mt,password) Unmask string
Amt = Mask(Apt,password) Mask array
Apt = Unmask(Amt,password) Unmask array

In the current implementation, Mask always performs DET. To
mask an array, StrMask is applied independently to each cell
in the array. An optional 3rd argument to these functions would
allow the CMD system to utilize other encryption primitives
like OPE; this will be implemented in future versions.

An example application where masking can be helpful is in
the matching of genetic sequence information. This problem is
amenable to D4M because matching of genetic sequences can
be accomplished with a simple associative array matrix
multiply [Kepner 2013c], and it is amenable to CMD because
masking can alleviate privacy concerns.

As a demonstration, consider an associative array of genetic
DNA data where each row is the name of the sample, each
column is unique 10-mer of DNA (i.e., a sequence of 10 bases
– a c g t), and each value is the position of that 10-mer in the
sequence. For example, a few samples from the National
Center for Biotechnology Information (NCBI) GenBank
database (www.ncbi.nlm.nih.gov/genbank/) look like:

Masking all data with DET produces the following:

Notice that both the rows and columns have been permuted.
Finding the matches in this data is accomplished with the
following D4M matrix multiply and threshold operation

Xmt = Abs0(Amt) * Abs0(Amt.’) Norm & multiply
Xtop = Xmt > cut Threshold

where .’ denotes the matrix transpose, Abs0 performs the
zero-norm on the values (i.e., converts all non-zero values to

!A = CatKeyMul(!T(:,'src_ip|000. : src_ip|999.')).’,!
 !T(:,'srv_ip|000. : srv_ip|999.')))!

Mask column ranges
with OPE

!A = CatKeyMul(!T(:,'bgdjbeaddcbb : pjdmjpcggdib ')).’,!

 !T(:,'qlhnlrjkgkoh : swvuzzvzjyux ')))

A qlhnlrjkgkoh rstpwrqqiwtr swvuzzvzjyux

 bgdjbeaddcbb eqkrihkp cjytgntp cjytgntp

 pjdmjpcggdib cjytgntp

Pedigree preserving
matrix multiply

A srv_ip|157.166.255.18 srv_ip|208.29.69.138 srv_ip|74.125.224.72

 src_ip|128.0.0.1 log_id|100 log_id|300 log_id|300

 src_ip|192.168.1.2 log_id|200

Unmask OPE rows/columns and DET values

Apt

aa
aa
ac
ta
at

aa
aa
ac
ta
tt

aa
aa
ac
tt
ta

aa
aa
ag
aa
at

aa
aa
ag
aa
cc

JN005713.1:AEN70400.1 597
JN005718.1:AEN70406.1 300
JN005718.1:AEN70407.1 9 459
JN033200.1:AEK64751.1 597
JN851865.1:AFN02593.1 332
JN851865.1:AFN02596.1 176
JN851865.1:AFN02601.1 38
JN851865.1:AFN02604.1 309

Amt

5
A
N
e
c

A
r
+
w
v

1
o
b
h
V

H
3
p
o
r

A
A
=
=

B
0
+
E
E

j
a
o
J
T

X
O
Y
w
B

K
/
q
X
Z

V
Q
=
=

Q
j
P
f
r

M
m
U
+
d

y
o
q
3
y

G
z
v
2
r

C
w
=
=

R
U
K
k
N

W
I
3
v
L

m
B
d
m
J

B
+
5
d
r

J
g
=
=

e
s
5
m
9

k
c
E
6
i

B
o
T
M
z

v
d
M
b
e

+
w
=
=

8cYAGF9vJjRMrJz
HDbS9ohtbedz41X
Du5UbNUxmAM50=

fUstngef
q1UMYwO8
dQscIg==

8cYAGF9vJjRMrJz
HDbS9oiGM/ijoC5
jWGfUnorPzdu0=

QbA5pxfo
CbCzuR4m
EBIAJg==

8cYAGF9vJjRMrJz
HDbS9orPYpw0B8S
ChdTXTRV6N9nQ=

hYrPmkVx
qi9pZzT9
SRgBDw==

8cYAGF9vJjRMrJz
HDbS9osG32fnb+k
5TbFcKlZ+0G5w=

/ju1MSx2
2AgMr8oP
EqFMtQ==

EPPrWCthJ7q7bfM
rgfJo4hq2+TTarA
+kVSgfdfbS7KQ=

o1hyGImM
qfkTh+jv
voetlg==

EPPrWCthJ7q7bfM
rgfJo4sNiT++k9B
oV4OWP0rIlI60=

E/t2jH8X
nUhthHun
K0zhlQ==

4Bb8w6BI
KbvJWgqi
6Xg2AQ==

GgnerAuBESX1bi/
QbuXApH+WeaWKU6
68H/QpQibHvvY=

heyVUO8r
qBftKX6c
3FVFvA==

tgGLs3km72vPOAK
b8VoLG+53S/QZlc
Vfa8FKv5y6xfE=

heyVUO8r
qBftKX6c
3FVFvA==

 5

1), and cut is user defined threshold parameter. The resulting
associative array, Xmt, holds the masked DNA matches

Unmasking the above matrix gives the same result as if the
computation had been performed on the plaintext data

Figure 6 shows the performance of the various parts of the

computation as a function of the size of the DNA data. The
runtime of the masked computation is within a factor of 2 of
the runtime of the plain computation across the entire range.
The increase in execution time is due to the increase in the data
size that comes from padding the data to 16 bytes blocks for
encryption and Base64 encoding. This doubles the size of the
data and results in a doubling of computation time. For many
big data systems, doubling the computation time in exchange
for taking the data out of the clear is a reasonable tradeoff.

The masking time at small data sizes is dominated by the
overhead of our implementation that currently uses file IO.
Future implementations can use direct procedure calls to
remove this overhead. At larger data sizes, the masking time
approaches a constant overhead of 0.6 times the compute time.
The majority of this mask time arises from the permutation of
the resulting associative array to maintain lexicographic order.
In applications where this is not required, this step can be
eliminated. Thresholding of the values makes the output DNA
match matrix (Xtop) much smaller than the input DNA matrix
and so the unmask time is small and is dominated by the file IO
of the implementation. As with the masked computation time,

future implementations can use direct procedure calls to
remove this overhead.

Figure 6. Performance of CMD on finding matches in DNA data. The
graphs shows the execution time (in seconds) versus the number on
non-zero entries in the matrix, which corresponsds to the number
DNA sequences in the data. The masked compute time is always
within a factor of 2 of the plain compute, which is the performance
goal of the CMD approach. The masking and unmasking time are
relatively small compared to the compute time.

The CMD system has also been implemented to work with
the D4M package and Apache Accumulo database. D4M
operations to insert and query associative arrays to and from
an Accumulo database remain unchanged. In order to insert
masked data, a user would issue a mask command to the data
prior to inserting. To query for masked data, a user would send
a masked query and unmask the resultant associative array.
Consider a user who wishes to use the CMD system to store
and retrieve Twitter data stored in an Accumulo database.

To insert an associative array A into an Accumulo table T
with password password using the CMD system, the user
would first mask A using password and then insert into T
using the D4M put command. For example:
 Amt = Mask(A,password) Mask A
 put(T,Amt) Insert Amt into T

After inserting, table T now contains the masked elements
of A. To query the table T for keyword word, the query must
be done with the masked version of word using the same
password during insert. Further, the query will return an
associative array whose elements are masked. In order to view
the plaintext, this associative array will need to be unmasked
using the same password as before. For example:
 Amt=T(:,StrMask(word,password)) Query
 Apt=Unmask(Amt,password) Unmask

A prototype Twitter corpus was used to test the
performance of the CMD on database operations such as
inserting and querying. The performance of using the CMD
system vs. standard plaintext operations is summarized in
Figure 7. The left y-axis corresponds to insertion times and the
right y-axis corresponds to query times.

Xmt
8
c
Y
A
G
F
9
v
J
j
R
M
r
J
z

H
D
b
S
9
o
h
t
b
e
d
z
4
1
X

D
u
5
U
b
N
U
x
m
A
M
5
0
=

8
c
Y
A
G
F
9
v
J
j
R
M
r
J
z

H
D
b
S
9
o
i
G
M
/
i
j
o
C
5

j
W
G
f
U
n
o
r
P
z
d
u
0
=

8
c
Y
A
G
F
9
v
J
j
R
M
r
J
z

H
D
b
S
9
o
r
P
Y
p
w
0
B
8
S

C
h
d
T
X
T
R
V
6
N
9
n
Q
=

8
c
Y
A
G
F
9
v
J
j
R
M
r
J
z

H
D
b
S
9
o
s
G
3
2
f
n
b
+
k

5
T
b
F
c
K
l
Z
+
0
G
5
w
=

E
P
P
r
W
C
t
h
J
7
q
7
b
f
M

r
g
f
J
o
4
h
q
2
+
T
T
a
r
A

+
k
V
S
g
f
d
f
b
S
7
K
Q
=

E
P
P
r
W
C
t
h
J
7
q
7
b
f
M

r
g
f
J
o
4
s
N
i
T
+
+
k
9
B

o
V
4
O
W
P
0
r
I
l
I
6
0
=

G
g
n
e
r
A
u
B
E
S
X
1
b
i
/

Q
b
u
X
A
p
H
+
W
e
a
W
K
U
6

6
8
H
/
Q
p
Q
i
b
H
v
v
Y
=

t
g
G
L
s
3
k
m
7
2
v
P
O
A
K

b
8
V
o
L
G
+
5
3
S
/
Q
Z
l
c

V
f
a
8
F
K
v
5
y
6
x
f
E
=

8cYAGF9vJjRMrJzH
DbS9ohtbedz41XDu
5UbNUxmAM50=

1 1

8cYAGF9vJjRMrJzH
DbS9oiGM/ijoC5jW
GfUnorPzdu0=

1 1 1

8cYAGF9vJjRMrJzH
DbS9orPYpw0B8SCh
dTXTRV6N9nQ=

1 1 1

8cYAGF9vJjRMrJzH
DbS9osG32fnb+k5T
bFcKlZ+0G5w=

1 1 1

EPPrWCthJ7q7bfMr
gfJo4hq2+TTarA+k
VSgfdfbS7KQ=

1

EPPrWCthJ7q7bfMr
gfJo4sNiT++k9BoV
4OWP0rIlI60=

1 2

GgnerAuBESX1bi/Q
buXApH+WeaWKU668
H/QpQibHvvY=

1 1

tgGLs3km72vPOAKb
8VoLG+53S/QZlcVf
a8FKv5y6xfE=

1 1

Xpt

JN
00
57

13
.1
:A

EN
70
40
0.
1

JN
00
57

18
.1
:A

EN
70
40
6.
1

JN
00
57

18
.1
:A

EN
70
40
7.
1

JN
03
32

00
.1
:A

EK
64
75
1.
1

JN
85
18

65
.1
:A

FN
02
59
3.
1

JN
85
18

65
.1
:A

FN
02
59
6.
1

JN
85
18

65
.1
:A

FN
02
60
1.
1

JN
85
18

65
.1
:A

FN
02
60
4.
1

JN005713.1:AEN70400.1 1 1
JN005718.1:AEN70406.1 1
JN005718.1:AEN70407.1 2 1
JN033200.1:AEK64751.1 1 1
JN851865.1:AFN02593.1 1 1 1
JN851865.1:AFN02596.1 1 1 1
JN851865.1:AFN02601.1 1 1 1
JN851865.1:AFN02604.1 1 1

102 103 104 105 106
10−3

10−2

10−1

100

101

number of matrix entries

ex
ec

ut
io

n
tim

e

plain compute
masked compute
mask
unmask

 6

Figure 7. Performance of CMD system on a varying number of
Tweets. The Left Y-axis corresponds to the time taken for Inserting
data. The red line corresponds to the CMD insert operation which
includes time for masking and inserting. The cyan line corresponds to
just inserting plaintext. The red and cyan lines show the relative
performance between CMD and plaintext and corresponds to an
overhead less than 2x. The right Y-axis corresponds to the time taken
for querying for data. As querying in Accumulo is a constant time
operation, both lines are relatively flat. The difference between the
green and blue dashed lines correspond to the overhead incurred in
masking the query and unmasking the result associative array.

Figure 7 shows the perforomance obtained by the CMD
system for a varying data size from 10,000 tweets to 50,000
tweets. The Twitter data inserted is represented by the D4M
schema. The insert times include time taken for inserting (and
masking) the data stored in all the tables required by the D4M
Schema. These operations are dominated by the database
insert and query time. The increase in insert and query time is
due to the increase in the data size that comes from padding
the data to 16 bytes blocks for encryption and base64
encoding. This doubles the size of the data and results in a
doubling of insert and query time. This is a reasonable
tradeoff for many big data systems in exchange for no longer
having data in the clear.

VI. SUMMARY & FUTURE WORK
CMD is a novel approach that increases big data veracity

while allowing a wide range of computations and queries to be
performed with low overhead. The encryption schemes used in
CMD can be tailored to the application: semantically secure,
deterministic, order preserving, and homomorphic encryption
can be used in complementary fashion to provide the best
overall application solution. Through continued dialog
between big data application designers and cryptographers,
further improvements can fine-tune the balance between
performance and veracity of big data systems.

A prototype CMD was implemented with DET by adding
four functions to the existing D4M library. Using this
implementation, CMD was demonstrated on a DNA sequence
matching problem and the performance met the 2x
performance goal. The CMD system was also demonstrated

with a social media dataset that also met the performance goals.
Future improvements to the prototype include expanding and
improving the encryption schemes to use the full set developed
in CryptDB and using direct procedure calls to reduce the
overhead of the mask and unmask functions.

REFERENCES
[Ben-Or 1988] M. Ben-Or, S. Goldwasser, & A. Wigderson, “Completeness

Theorems for Non-Cryptographic Fault-Tolerant Distributed
Computation (Extended Abstract),” STOC 1988

 [Cash 2013] D. Cash, S. Jarecki, C.S. Jutla, H. Krawczyk, M.-C. Rosu, & M.
Steiner, “Highly-Scalable Searchable Symmetric Encryption with
Support for Boolean Queries,” CRYPTO 2013

[Chang 2008] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. Wallach, M.
Burrows, T. Chandra, A. Fikes, & R. Gruber, “Bigtable: A Distributed
Storage System for Structured Data,” ACM Transactions on Computer
Systems, Volume 26 Issue 2, Jun 2008

[Evans 2013] E. Evans & R. Grossman, “Cyber Security and Reliability in a
Digital Cloud,” U.S. Department of Defense Science Board Study, Jan
2013

[FIPS 197] “Announcing the ADVANCED ENCRYPTION STANDARD
(AES),” Federal Information Processing Standards Publication 197,
United States National Institute of Standards and Technology (NIST),
November 26, 2001

[Gentry 2009] C. Gentry, “Fully Homomorphic Encryption Using Ideal
Lattices,” 41st ACM Symposium on Theory of Computing (STOC),
2009

[Halevi 2003] S. Halevi and P. Rogaway, “A Tweakable Enciphering Mode.”
In: CRYPTO, D. Boneh (ed.), LNCS, vol. 2729, pp. 482-499, Springer,
2003

[Halevi 2014] S. Halevi & V. Shoup, "Algorithms in HElib." Cryptology
ePrint Archive, Report 2014/106. http://eprint.iacr.org/2014/106

[Kepner 2011] J. Kepner & J. Gilbert, “Graph Algorithms in the Language of
Linear Algebra,” SIAM Press, Philadelphia, 2011

[Kepner 2012] J. Kepner, W. Arcand, W. Bergeron, N. Bliss, R. Bond, C.
Byun, G. Condon, K. Gregson, M. Hubbell, J. Kurz, A. McCabe, P.
Michaleas, A. Prout, A. Reuther, A. Rosa & C. Yee, “Dynamic
Distributed Dimensional Data Model (D4M) Database and Computation
System,” ICASSP, Mar 25-30, 2012

[Kepner 2013a] J. Kepner, C. Anderson, W. Arcand, D. Bestor, W. Bergeron,
C. Byun, M. Hubbell, P. Michaleas, J. Mullen, D. O’Gwynn, A. Prout,
A. Reuther, A. Rosa, & C. Yee, “D4M 2.0 Schema: A General Purpose
High Performance Schema for the Accumulo Database,” IEEE HPEC,
Sep 10-12, 2013

[Kepner 2013b] J. Kepner & J. Chaidez, “The Abstract Algebra of Big Data,”
Union College Mathematics Conference, Oct 19, 2013

[Kepner 2013c] J. Kepner, D. Ricke, & D. Hutchinson, “Taming Biological
Big Data with D4M,” Lincoln Laboratory Journal, Vol 20, No 1, 2013

[Laney 2001] D. Laney, “3D Data Management: Controlling Data Volume,
Velocity and Variety,” Gartner, 6 Feb 2001

[Pal 2012] Pal, P., Lauer, G., Khoury, J., Hoff, N., Loyall, J.: P3S: A privacy
preserving publish-subscribe middleware. In: Narasimhan, P.,
Triantafillou, P. (eds.) Middleware 2012. LNCS, vol. 7662, pp. 476–495.
Springer, Heidelberg, 2012

[Perl 2011] H. Perl, M. Brenner, & M. Smith, "Poster: an implementation of
the fully homomorphic Smart-Vercauteren crypto-system." CCS 2011

[Popa 2011] R.A. Popa, C.M.S. Redfield, N. Zeldovich, & H. Balakrishnan,
“CryptDB: Protecting Confidentiality with Encrypted Query
Processing,” Proceedings of the 23rd ACM Symposium on Operating
Systems Principles (SOSP), Cascais, Portugal, Oct 2011

[Raykova 2012] M. Raykova, A. Cui, B. Vo, B. Liu, T. Malkin, S.M.
Bellovin, & S.J. Stolfo, “Usable, Secure, Private Search,” IEEE Security
& Privacy 10(5), 2012

[Yao 1982] A.C.-C. Yao, “Protocols for Secure Computations (Extended
Abstract),” FOCS 1982

10000 20000 30000 40000 50000
0

50

100

Number of Tweets

In
se

rt
Ti

m
e

(s
ec

)
Comparison between CMD and Plaintext Performance

10000 20000 30000 40000 50000
0

0.2

0.4

0.6

0.8

1

10000 20000 30000 40000 50000
0

0.2

0.4

0.6

0.8

1

Q
ue

ry
 T

im
e

(s
ec

)

Mask and Insert time
Plaintext Insert time
Query and Unmask time
Plaintext Query time

