
 1 

Computing on Masked Data: a High Performance 
Method for Improving Big Data Veracity 

Jeremy Kepner, Vijay Gadepally, Pete Michaleas, Nabil Schear, Mayank Varia, Arkady Yerukhimovich, Robert K. Cunningham 
MIT Lincoln Laboratory, Lexington, MA, U.S.A. 

Abstract— The growing gap between data and users calls for 
innovative tools that address the challenges faced by big data 
volume, velocity and variety.  Along with these standard three 
V’s of big data, an emerging fourth “V” is veracity, which 
addresses the confidentiality, integrity, and availability of the 
data.  Traditional cryptographic techniques that ensure the 
veracity of data can have overheads that are too large to apply to 
big data.  This work introduces a new technique called 
Computing on Masked Data (CMD), which improves data 
veracity by allowing computations to be performed directly on 
masked data and ensuring that only authorized recipients can 
unmask the data.  Using the sparse linear algebra of associative 
arrays, CMD can be performed with significantly less overhead 
than other approaches while still supporting a wide range of 
linear algebraic operations on the masked data.  Databases with 
strong support of sparse operations, such as SciDB or Apache 
Accumulo, are ideally suited to this technique.  Examples are 
shown for the application of CMD to a complex DNA matching 
algorithm and to database operations over social media data. 
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I.  INTRODUCTION 

Big data and big data solutions are commonly characterized 
by the three V’s: volume, velocity, and variety [Laney 2001]. 
The 17 member agencies of the US intelligence community 
face many similar issues in transforming their big data into 
actionable solutions for their users. Led by the National 
Security Agency, a Common Big Data Architecture (CBDA) 
was developed based on the Google Big Table design [Chang 
2008] to help address these issues and is now in wide use.  The 
centerpiece of the CBDA is the Apache Accumulo database 
(accumulo.apache.org) and its D4M (aka NuWave) schema 
[Kepner 2013a].  The CBDA connects users with data using a 
range of technologies: file systems, ingest processes, databases, 
data analytics, web services, scheduling, and elastic computing 
(Figure 1).   Increasingly, big data solutions must address the 
confidentiality, integrity and availability of their data leading to 
the designation of a fourth V: veracity. 

There are many veracity challenges in a big data system 
(see Figure 1a): external denial of service, credential stealing, 
cross virtual machine (VM) side channels, VM hypervisor 
privilege escalation, remote code injection, data integrity 
attacks, data loss/exfiltration, insider threats, internal network 
resource attacks, and supply chain attacks [Evans 2013].  These 
attacks threaten the availability, confidentiality, and the 
integrity of both the original data and the analytic results.   

(a) big data veracity: challenges 

(b) big data veracity: current approaches 

(c) big data veracity: vision 

Figure 1.  The Common Big Data Architecture connects diverse users 
with diverse data.  Shown are big data veracity challenges (a), 
current approaches (b), and longer term vision (c). 
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These attacks threaten to degrade the availability of the big 
data system, compromise the confidentiality of the data and 
analytics used, and violate the integrity of both the original data 
and the analytic results.  There are several approaches to 
mitigating these veracity challenges.  Data centric veracity 
protections are particularly useful for preserving the 
confidentiality of the data.  Typical defenses of this type 
include (see Figure 1b): encrypting the links between users and 
the big data system, encrypting the links between the data 
sources and the big data system, encrypting the data in the file 
system, and encrypting data in the database when it is at rest.  
These approaches are all significant steps forward in improving 
the veracity of a big data system.  However, all of these 
approaches require that the data be decrypted for it to be used 
inside the big data system, which requires that the keys to the 
data be available to the big data system thus exposing the data 
to any attacker able to breach the boundaries of the system. 

One vision (Figure 1c) for a big data system is to have data 
sources encrypt data prior to transmitting it to the system, have 
the big data system operate on the data in encrypted form, and 
only allow authorized users the keys to decrypt the answer for 
their specific result.  Such a system makes the underlying big 
data technologies oblivious to the details of the data and would 
go a long way towards mitigating the big data veracity 
challenges described above. As a result, the data and 
processing can be outsourced to an untrusted cloud while 
preserving the confidentiality of the data and results. 

Our Computing on Masked Data (CMD) system is a first 
step in this direction allowing for basic computations on 
encrypted data to enable a rich class of analytics.  CMD 
combines efficient cryptographic encryption methods with an 
associative array representation of big data to enable a low 
computation cost approach to both computation and query 
while revealing only a small amount of information about the 
underlying data. The overhead of CMD is sufficiently low (~2x) 
to make it feasible for big data systems.  Currently, all big data 
systems must operate on their data in the clear. CMD raises the 
bar by enabling some important computations on encrypted 
data while not dramatically increasing the computing resources 
required to perform those operations. 

The outline of the rest of this paper is as follows.  Section II 
gives a brief introduction to the relevant cryptographic tools.  
Section III describes the mathematics of associative arrays that 
underpin CMD and the D4M schema that is used to transform 
big data into associative arrays.  Section IV describes the CMD 
system and how it can be integrated with the standard big data 
schemas.  Section V presents the results of using CMD for 
analyses on bioinformatics and social media data.  Section VI 
presents our conclusions and plans for future work. 

II. RELEVANT CRYPTOGRAPHIC TOOLS 
There are several cryptographic tools that one could use to 

build a system like CMD. First, fully homomorphic encryption 
(FHE) allows for arbitrary analytic computations to be 
performed on encrypted data without decrypting it and while 
preserving its semantic security (i.e., no information about the 
data is leaked other than its length).  FHE has been an active 
topic of research since its discovery [Gentry 2009]. 
Nevertheless, the best currently available schemes [Perl 2011, 

Halevi 2014] have an overhead of 105 or more, making them 
too slow for use in practical big data systems. 

If one is willing to allow a small amount of information 
about the encrypted data to be revealed, a much more efficient 
alternative to using FHE is to design protocols that leverage 
more traditional cryptographic techniques to carry out queries 
on encrypted data.  One example of such a protocol is CryptDB 
[Popa 2011], which constructs a practical database system 
capable of handling most types of SQL queries on encrypted 
data. It uses deterministic encryption (DET), which always 
encrypts the same data to the same ciphertext, to enable 
equality queries; order-preserving encryption (OPE), which 
encrypts data in a way that preserves the original order of the 
data, to enable range queries; and additively homomorphic 
encryption (HOM+), which enables summing values directly on 
encrypted data, to perform basic analytics.  Several other 
protocols achieving alternative trade-offs between leakage and 
efficiency have been proposed by e.g. [Cash 2013, Raykova 
2012, Pal 2012].  Additional solutions are also possible using 
techniques for secure multi-party computation [Yao 1982, Ben-
Or 1988] but these require further improvement to achieve the 
required performance. 

CMD provides another important technology to this space 
of solutions (Figure 2) that trade off computational overhead 
and data leakage and is the first to focus on big data systems. 

 
Figure 2.  Trade space showing compute overhead versus information 
leakage for different approaches.  RND is a semantically secure 
encryption scheme (i.e., it leaks no other information other then the 
length of the message). DET deterministically encrypts each input 
into exactly one ouput thus leaking equality information.  OPE 
encrypts the data in a way that preserves (and thus reveals) the 
relative order of the all inputs. CLEAR has no encryption and leaks all 
information to someone who has access to the data. FHE is fully 
homomorphic encryption.  MPC is multi-party computation. CMD 
most often uses DET and OPE. 

III. ASSOCIATIVE ARRAYS 
CMD operates by working on a mathematical object called 

an associative array that combines features of sparse matrices 
and triple store databases (such as Apache Accumulo). 

Associations between multidimensional entities (tuples) 
using number/string keys and number/string values can be 
stored in associative arrays.  An implementation of associative 
arrays can be found in the D4M software package 
(d4m.mit.edu)[Kepner 2012].  In two dimensions, A D4M 
associative array entry might be 
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The above tuples have a 1-to-1 correspondence with their triple 
store representations  

('alice ','bob ','cited ') 
or ('alice ','bob ',47.0) 

Associative arrays can represent complex relationships in 
either a sparse matrix or a graph form (see Figure 3). Thus, 
associative arrays are a natural data structure for performing 
both matrix and graph algorithms. Such algorithms are the 
foundation of many complex analytics [Kepner 2011]. 

Constructing complex, composable query operations can be 
expressed using simple array indexing of the associative array 
keys and values, which themselves return associative arrays 

A('alice ',:)  alice row 
A('alice bob ',:)  alice and bob rows 
A('al* ',:)  rows beginning with al 
A('alice : bob ',:) rows alice to bob  

The composability of associative arrays stems from the ability 
to define fundamental mathematical operations whose results 
are also associative arrays. Given two associative arrays A and 
B, the results of all the following operations will also be 
associative arrays 

A + B    A - B    A & B    A|B    A*B  
Associative array composability can be further grounded in an 
axiomatic definition for associative arrays in terms of semi-
modules over semi-rings [Kepner 2013b]. 

 
Figure 3.  A graph describing the relationship between alice, bob, 
and carl (left). A sparse associative array A captures the same 
relationships (right). The fundamental operation of graphs is finding 
neighbors from a vertex (breadth first search). The fundamental 
operation of linear algebra is vector matrix multiply. D4M associative 
arrays make these two operations identical.  Algorithm developers 
can use both graph and linear algebra to perform complex operations. 

Associative arrays are a critical part of D4M, which has proven 
useful in a variety of domains (e.g., documents, network logs, 
social media, and DNA sequences). Measurements using D4M 
indicate these algorithms can be implemented with a tenfold 
decrease in coding effort when compared to standard 
approaches [Kepner 2012].  For example, the D4M schema 
(aka NuWave) used extensively by the Apache Accumulo 
community allows diverse data to be quickly ingested and fully 
indexed using a handful of tables. A feature of the D4M 
schema is that the data obeys the algebra of associative arrays. 

The top part of Figure 4 demonstrates an example of how 
D4M transforms network log data into an associative array.  
The raw network traffic logs are collected in a dense tabular 
form that is made sparse using the same approaches found in 
the standard D4M schema (i.e., each dense table column and 
value are appended to make a new sparse table column).  CMD 
exploits this same sparse structure to work on associative 
arrays that have been encrypted in various forms.  

IV. COMPUTING ON MASKED DATA SYSTEM 
The standard CMD use case is as follows.  First, users 

transform their data into associative arrays following the D4M 
schema (as described in Section III). Then, the components of 
the associative array’s rows, columns, and values are masked 
using different encryption schemes; this process induces a 
permutation on rows and columns as they are restructured in 
lexicographic order by their masks.  At this point the masked 
data structure can optionally be distributed to a system in the 
encrypted form. Next, algebraic operations are performed on 
the masked associative arrays.  Finally, the results are collected 
by the user and unmasked. 

The bottom part of Figure 4 demonstrates some of the 
masks that can be used in CMD: DET for the rows (since range 
queries on rows aren’t required), OPE for the columns (which 
allows for range queries), and RND (a semantically secure 
encryption scheme) for the values.  Another option would be to 
use an additively homomorphic encryption scheme (HOM+) if 
the values require summing. 

 
Figure 4.  Masking network data records.  Dense data is made sparse 
using the D4M schema that is widely used in the Apache Accumulo 
community.  Dense table column names and values are appended to 
make columns in the sparse table, which moves most of the semantic 
content into the rows and columns.  The sparse table is then masked 
using a variety of encyrption schemes depending upon the desired 
application.   The rows are masked using DET, the columns are 
masked using OPE, and the values are masked using RND. 

DET and OPE induce a random permutation on the rows 
and columns (resp.) of the sparse matrix, but the overall 
structure of the matrix is preserved. Linear algebra and the 
algebra of associative arrays are invariant to such permutations 
(i.e., linear algebraic operations on the masked table will have 
the same effect as linear algebraic operations on the unmasked 
sparse table).  This is the key concept of CMD, and gives it the 
ability to perform a wide range of operations on masked data. 

Note that CMD may leak the permuted sparse structure of 
the table. However, determining whether this corresponds to a 
known unpermuted structure requires solving the graph 
isomorphism problem, which is not believed to have a generic 
efficient solution. 

Computing the src_ip to srv_ip graph from the network 
log data shown in Figure 4 is accomplished by matrix 
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multiplication of different parts of the table.  Figure 5 shows 
the process by which query columns are selected, masked with 
OPE, and then used to select parts of the table to be multiplied.  
Associative array algebra allows many possible matrix 
multiplies to be defined beyond the traditional: +.* (i.e., 
elements are multiplied and then summed in the usual 
numerical sense).  A particularly useful associative array 
matrix multiply is the “pedigree preserving” matrix multiply: 
∪.& (i.e., elements are first “&” and then unioned).  Figure 5 
shows how CMD carries out this operation using D4M syntax 
with the function CatKeyMul performing the pedigree 
preserving matrix multiply.  The result is an associative array 
depiction of the src_ip to srv_ip graph with the 
corresponding lists of log_id’s stored in the values.  In this 
example, the system holding the table and the system 
performing the matrix multiply never unmask the data.  This is 
possible since OPE allows the encrypted range query to select 
the relevant rows for the multiplication and DET encryption of 
the rows allows for concatenation.  The query parameters and 
the results are masked and unmasked independently from the 
storage and computation systems. 

 
Figure 5.  Querying and correlating masked data.  Query columns are 
specified by the user and then masked by the user using OPE.  
Pedigree preserving matrix mulply is then performed on the masked 
data.  The result is unmasked by the user revealing src_ip to 
srv_ip graph with values corresponding to the log_id. 

V. IMPLEMENTATION & RESULTS 
This section describes a prototype system for a subset of 

CMD and its applications to bioinformatics and social media 
data.  At the moment, the prototype system supports DET 
encryption using the AES256 [FIPS 197] implementation found 
in OpenSSL (www.openssl.org) in cipher block chaining mode.  
The cryptographic key and initialization value1 used in DET are 
derived from a user-provided password.  To make string 
handling easier, the results are made into printable characters 
using Base64 encoding (code.google.com/p/stringencoders). 

                                                             
1The current implementation of CMD uses the same initialization 
value for all plaintexts. Unfortunately, this permits equality testing 
between 16-byte blocks of large encrypted data items. Future 
versions may use message-dependent initialization values [Popa 
2011, Halevi 2003] to provide better security at a small performance 
cost. 

The prototype implementation consists of four new D4M 
functions to go from plaintext (pt) to masktext (mt) 

mt  = StrMask(pt,password)     Mask string 
pt  = StrUnmask(mt,password)   Unmask string 
Amt = Mask(Apt,password)       Mask array 
Apt = Unmask(Amt,password)     Unmask array 

In the current implementation, Mask always performs DET.  To 
mask an array, StrMask is applied independently to each cell 
in the array.  An optional 3rd argument to these functions would 
allow the CMD system to utilize other encryption primitives 
like OPE; this will be implemented in future versions. 

An example application where masking can be helpful is in 
the matching of genetic sequence information.  This problem is 
amenable to D4M because matching of genetic sequences can 
be accomplished with a simple associative array matrix 
multiply [Kepner 2013c], and it is amenable to CMD because 
masking can alleviate privacy concerns. 

As a demonstration, consider an associative array of genetic 
DNA data where each row is the name of the sample, each 
column is unique 10-mer of DNA (i.e., a sequence of 10 bases 
– a c g t), and each value is the position of that 10-mer in the 
sequence.  For example, a few samples from the National 
Center for Biotechnology Information (NCBI) GenBank 
database (www.ncbi.nlm.nih.gov/genbank/) look like: 

 
Masking all data with DET produces the following: 

 
Notice that both the rows and columns have been permuted.  
Finding the matches in this data is accomplished with the 
following D4M matrix multiply and threshold operation 

Xmt  = Abs0(Amt) * Abs0(Amt.’) Norm & multiply  
Xtop = Xmt > cut               Threshold  

where .’ denotes the matrix transpose, Abs0 performs the 
zero-norm on the values (i.e., converts all non-zero values to 
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1), and  cut is user defined threshold parameter.  The resulting 
associative array, Xmt, holds the masked DNA matches  

 
Unmasking the above matrix gives the same result as if the 
computation had been performed on the plaintext data 

 
Figure 6 shows the performance of the various parts of the 

computation as a function of the size of the DNA data.  The 
runtime of the masked computation is within a factor of 2 of 
the runtime of the plain computation across the entire range.  
The increase in execution time is due to the increase in the data 
size that comes from padding the data to 16 bytes blocks for 
encryption and Base64 encoding.  This doubles the size of the 
data and results in a doubling of computation time.  For many 
big data systems, doubling the computation time in exchange 
for taking the data out of the clear is a reasonable tradeoff. 

The masking time at small data sizes is dominated by the 
overhead of our implementation that currently uses file IO.  
Future implementations can use direct procedure calls to 
remove this overhead.  At larger data sizes, the masking time 
approaches a constant overhead of 0.6 times the compute time.  
The majority of this mask time arises from the permutation of 
the resulting associative array to maintain lexicographic order.  
In applications where this is not required, this step can be 
eliminated.  Thresholding of the values makes the output DNA 
match matrix (Xtop) much smaller than the input DNA matrix 
and so the unmask time is small and is dominated by the file IO 
of the implementation.  As with the masked computation time, 

future implementations can use direct procedure calls to 
remove this overhead.  

 
Figure 6.  Performance of CMD on finding matches in DNA data.  The 
graphs shows the execution time (in seconds) versus the number on 
non-zero entries in the matrix, which corresponsds to the number 
DNA sequences in the data.  The masked compute time is always 
within a factor of 2 of the plain compute, which is the performance 
goal of the CMD approach.  The masking and unmasking time are 
relatively small compared to the compute time. 

The CMD system has also been implemented to work with 
the D4M package and Apache Accumulo database. D4M 
operations to insert and query associative arrays to and from 
an Accumulo database remain unchanged. In order to insert 
masked data, a user would issue a mask command to the data 
prior to inserting. To query for masked data, a user would send 
a masked query and unmask the resultant associative array. 
Consider a user who wishes to use the CMD system to store 
and retrieve Twitter data stored in an Accumulo database.  

To insert an associative array A into an Accumulo table T 
with password password using the CMD system, the user 
would first mask A using password and then insert into T 
using the D4M put command. For example: 
   Amt = Mask(A,password)        Mask A 
   put(T,Amt)                    Insert Amt into T  

After inserting, table T now contains the masked elements 
of A. To query the table T for keyword word, the query must 
be done with the masked version of word using the same 
password during insert. Further, the query will return an 
associative array whose elements are masked. In order to view 
the plaintext, this associative array will need to be unmasked 
using the same password as before. For example: 
    Amt=T(:,StrMask(word,password))  Query 
    Apt=Unmask(Amt,password)         Unmask  

A prototype Twitter corpus was used to test the 
performance of the CMD on database operations such as 
inserting and querying. The performance of using the CMD 
system vs. standard plaintext operations is summarized in 
Figure 7. The left y-axis corresponds to insertion times and the 
right y-axis corresponds to query times. 
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Figure 7.  Performance of CMD system on a varying number of 
Tweets. The Left Y-axis corresponds to the time taken for Inserting 
data. The red line corresponds to the CMD insert operation which 
includes time for masking and inserting. The cyan line corresponds to 
just inserting plaintext. The red and cyan lines show the relative 
performance between CMD and plaintext and corresponds to an 
overhead less than 2x.  The right Y-axis corresponds to the time taken 
for querying for data. As querying in Accumulo is a constant time 
operation, both lines are relatively flat. The difference between the 
green and blue dashed lines correspond to the overhead incurred in 
masking the query and unmasking the result associative array. 

Figure 7 shows the perforomance obtained by the CMD 
system for a varying data size from 10,000 tweets to 50,000 
tweets. The Twitter data inserted is represented by the D4M 
schema. The insert times include time taken for inserting (and 
masking) the data stored in all the tables required by the D4M 
Schema.  These operations are dominated by the database 
insert and query time.  The increase in insert and query time is 
due to the increase in the data size that comes from padding 
the data to 16 bytes blocks for encryption and base64 
encoding.  This doubles the size of the data and results in a 
doubling of insert and query time.  This is a reasonable 
tradeoff for many big data systems in exchange for no longer 
having data in the clear. 

VI. SUMMARY & FUTURE WORK 
CMD is a novel approach that increases big data veracity 

while allowing a wide range of computations and queries to be 
performed with low overhead.  The encryption schemes used in 
CMD can be tailored to the application: semantically secure, 
deterministic, order preserving, and homomorphic encryption 
can be used in complementary fashion to provide the best 
overall application solution.  Through continued dialog 
between big data application designers and cryptographers, 
further improvements can fine-tune the balance between 
performance and veracity of big data systems. 

A prototype CMD was implemented with DET by adding 
four functions to the existing D4M library.  Using this 
implementation, CMD was demonstrated on a DNA sequence 
matching problem and the performance met the 2x 
performance goal.  The CMD system was also demonstrated 

with a social media dataset that also met the performance goals. 
Future improvements to the prototype include expanding and 
improving the encryption schemes to use the full set developed 
in CryptDB and using direct procedure calls to reduce the 
overhead of the mask and unmask functions.   
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