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We show that complex periodic metasurfaces can be simply represented by conformal transformations from

the flat surface of a slab of material to a periodic grating leading to a methodology for computing their properties.

Matrix equations are solved to give accurate solutions of Maxwell’s equations with detailed derivations given in

the Supplemental Material.
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I. INTRODUCTION

In this paper we propose a methodology accurate at the

level of Maxwell’s equations for analyzing one-dimensional

(1D) structures imprinted upon a 2D surface.

Transformation optics is a powerful tool used to analyze

complex structures. It exploits the invariant form of Maxwell’s

equations under coordinate transformations: only the values

of ε, μ change under a transformation. This property has

been exploited to simplify computer codes [1] and to design

cloaks [2–4]. A review can be had in Ref. [5]. Conformal

transformations in 2D are a special case as they leave ε, μ

unchanged in the 2D plane and have been long exploited to

solve problems in electrostatics [6]. In the past we and others

have used conformal transformations to analyze subwave-

length plasmonic systems where a quasistatic approximation

is accurate [7–10]. Retardation can be added as a perturbation

to give an accurate account of their optical properties and

at the same time the transformations reveal startling rela-

tionships between the transformed systems. However, where

surfaces and metasurfaces are concerned retardation is not

a perturbation and we must find solutions to the full set of

Maxwell’s equations [11]. Also it is useful to be able to

calculate the out-of-plane response of a metasurface where the

fields are no longer confined to the 2D plane of the conformal

transformation.

A related approach, also based on coordinate transforma-

tions, has been taken by Chandezon et al. [12] and by Barnes

et al. [13]. Our method differs in being based on conformal

transformations and although the numerics are rather similar,

conformal transformations have the advantage of giving more

physical insight: for example, by revealing hidden properties

of the metasurface such as the otherwise unexpected degener-

acy of dispersion curves as we shall describe later in the paper.

Metamaterials are materials structured on a scale less than

the wavelength and much attention has been concentrated on

metasurfaces where the structure is confined to the surface

region, and a wealth of technology enables sophisticated

engineering of these structures [12–20]. In this paper we

concentrate on 1D surface structures, which in essence are

complex gratings but which, as we shall show, can have re-

sponses far more interesting than the simple diffraction effects

shown by conventional gratings. This is particularly true when

the surface in question is metallic, supporting short wave-

length surface plasmons [21]. Gratings couple external radi-

ation to surface plasmons, dramatically so when the trans-

formations are singular [22]. At the same time the precise

configuration of the surface structure changes the nature of

the surface plasmons.

In our approach we assume that the metasurface is defined

as an interface between two media within each of which the

permittivity is constant. We exploit the observation that any

single valued surface (i.e. a surface that in Fig. 1 has one value

of x for every value of y) can be transformed to a flat surface

by a conformal mapping between two coordinate systems,

z = z(w), (1)

where z and w are complex variables,

z = x + iy, w = u + iv. (2)

For example a series of mappings takes a flat surface into

the surface of a cylinder,

w
′
= ew, (3)

whose surface can then be distorted in an arbitrary fashion,

z′
= z′(w′), (4)

and finally unwrapped into a second surface with periodic

structure in the v axis,

z = Ŵ ln z′. (5)

The three mappings are shown in Fig. 1. The only limitation

is that the metasurface should be single valued.

Conformal mappings [23] have been utilized to solve

electrostatic problems where the potential ϕ(z) automatically

obeys the 2D Laplace equation if it is an analytic function of

z. Making a transformation and evaluating the potential in the

new frame, ϕ(w), yields a function which also obeys Laplace.

Hence, solving the problem in one frame gives solutions in all

transformed frames.
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FIG. 1. A series of conformal tranformations takes a flat surface

to a metasurface.

At first sight this observation leads to a paradox: if any

surface can be conformally mapped to a flat surface then logic

dictates that in the quasistatic limit both surfaces share the

same spectrum. The flaw in this argument is that for this to be

true the mappings have to be conformal and analytic, which

in general they are not. If present, branch cuts introduced by

singularities require additional sets of boundary conditions

that spoil the argument [24]. However, there are some trans-

formations for which there are no branch cuts, or where the

branch cuts can be ignored.

In this paper we break free of restrictions to in-plane

quasistatic solutions allowing full electromagnetic solutions

of any polarization, but still exploiting other advantages of a

conformal description of the metasurface. We adopt the coor-

dinate definition given in Fig. 2 in which the surface normal is

the x axis, the y axis is normal to the lines of the grating, and

the s axis is parallel to the lines. The x, y coordinates can be

represented by a complex number z = x + iy. In 1D structures

the system remains translationally invariant along the s axis

x

y

s

FIG. 2. Definition of the three axes, x, y, s. The angles θ, φ

define the wave vector, with components kx, k + g and ks, where g

is the reciprocal lattice spacing [see Eq. (8)].

and all transformations used to generate the metasurface are

confined to the x, y plane.

A simple rule [25] gives the values of ε, μ in the trans-

formed frame: if we compress the x coordinates by a factor

of β, then in the transformed frame components of ε, μ along

this direction are reduced by a factor of β, those in the y, s

directions are increased by β−1. If the transformation is to be

conformal, i.e., to preserve angles in the x, y plane, then there

must also be a compression of β along the y axis. As a result,

our formulas show that the two compressions cancel in the

x, y plane but leave the s components increased by β−2. This

invariance of in-plane components accounts for the value of

conformal transformations in 2D quasistatic problems where

electric fields are confined to the x, y plane. In the general

solution that follows, fields can have any orientation and do

not obey Laplace, nevertheless we can exploit the invariance

of ε, μ in the x, y plane to navigate our way around the

boundary matching problem.

Conformal transformations are most applicable to 2D prob-

lems where there is a well-known recipe for a transformation

to be conformal. To extend these ideas 3D systems, i.e., 2D

metasurfaces, would require application of the full scope of

transformation optics and is beyond the scope of the present

paper.

II. THE FORMALISM

In the general case we must work with both electric and

magnetic fields. We choose to define the two possible polar-

izations as S, where the magnetic fields are confined to the x, y

plane, and P where the electric fields are confined to the x, y

plane. The axes are defined in Fig. 2. Note that the choice of

polar coordinates is not the conventional one for surfaces.

We write the incident fields in the metasurface frame,

HS inc
=

∑

g

(

HS inc
gx x̂ + HS inc

gy ŷ
)

e−ikgxx+i(k+g)y+ikss,

(6)

EP inc
=

∑

g

(

EP inc
gx x̂ + EP inc

gy ŷ
)

e−ikgxx+i(k+g)y+ikss,

where

k2
gx + (k + g)2

+ k2
s = εk2

0 = εω2c−2
0 , (7)

ω is the frequency, and c0 is the velocity of light in free space.

The permittivity of the medium is given by ε. The grating

spacing a = 2π Ŵ defines the reciprocal lattice vectors,

g = n
/

Ŵ, (8)

where n is an integer. The associated electric fields for S

polarization, and magnetic fields for P polarization, are to be

had from Maxwell’s equations. In general, the metasurface

will mix the two polarizations.

The unknowns to be determined are: waves leaving the sur-

face defined by HS ref , EP ref ; inside the medium there will, in

general, be waves incident on the surface from sources within

the medium, HS iin, EP iin, and waves leaving the surface

heading deeper into the medium, HS trans, EP trans. We solve

for these fields by requiring that field components parallel to
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the surface match across the boundary. This can be done in

any frame of reference but is most easily done in the w frame,

where the surface is defined to be flat. Using the well-known

formulas,

HS
u = HS

x

∂x

∂u
+ HS

y

∂y

∂u
= HS

x

∂y

∂v

− HS
y

∂x

∂v

,
(9)

HS
v

= HS
x

∂x

∂v

+ HS
y

∂y

∂v

= −HS
x

∂y

∂u
+ HS

y

∂x

∂u
,

with similar expressions for EP
u , EP

v
. The spatial dependence

of the fields is calculated by first writing the x, y coordinates

in complex notation,

x =
1

2
(z + z∗), y =

1

2i
(z − z∗), (10)

then substituting for z in terms of w,

HS inc
=

∑

g

{
(

HS inc
gu û + HS inc

gv v̂
)

×e−ikgx
1
2

[z(w)+z∗(w∗ )]+(k+g) 1
2

[z(w)−z∗(w∗ )]+ikss

}

,

EP inc
=

∑

g

{
(

EP inc
gu û + EP inc

gv v̂
)

×e−ikgx
1
2

[z(w)+z∗(w∗ )]+(k+g) 1
2

[z(w)−z∗(w∗ )]+ikss

}

.

(11)

Once we know the transformation z(w) these expressions can

be expanded as waves in the w frame. The expansion typi-

cally converges accurately using terms of the order of 10–15

leading to computational efficiency. Reflected and transmitted

waves can be expressed in a similar fashion.

These waves are now ready to be matched at the interface.

In addition we must calculate the corresponding electric fields

for the S polarized fields and magnetic fields for the P

polarized case. In general there are two components parallel

to the surface. The component along the s axis is calculated

from Maxwell’s equations in the metasurface frame then

transformed into the slab frame; the component along the v

axis is calculated from Maxwell’s equations applied in the slab

frame.

Matching the waves at the flat interface in the slab frame

gives rise to a set of matrix equations that can be solved

for the reflection and transmission coefficients. Details are

straightforward but lengthy and are given in the Supplemental

Material [26].

III. FIRST EXAMPLE

To show the effect of taking retardation into account we

use a simple example provided by the transformation,

z = Ŵ ln z′
= ln

1

w
′ − iw′

0

= ln
1

ew − iw′
0

. (12)

This transformation gives rise to a rich sequence of metasur-

faces [27].

For purposes of illustration we assume that the grating is

made from a metal with permittivity of the Drude form,

ε(ω) = 1 −
ω2

p

ω(ω + iγ )
. (13)

We assume ωp = 8 eV, typical of a noble metal. The param-

eter γ represents resistive losses and is typically of the order

eV (
)

sp

3

4

6

7

5

0.1 0.2 0.3 0.4 5.00.0

k 2 a( )

period                   = 15.70nm

modulation depth =   2.44nm

FIG. 3. Compares analytic theory with numerics of COMSOL

calculations (shown as dots) for a metasurface pictured at the top

of the figure. The analytic theory is essentially exact. Also shown are

the light line and the quasistatic approximation as a dashed line.

of 0.1 − 0.2 eV for the noble metals. However, for purposes

of clarity when presenting dispersion curves we set γ to a

very small value. If desired any functional form can be used

for ε(ω).

Outside the metal we assume a vacuum. Other parameters

are set to represent a relatively weak grating, approximately

sinusoidal in form with a period, a, which is set to much less

than the free space wavelength enabling coupling to surface

plasmons:

w0 = 1.5, Ŵ = 2.5 nm, u0 = 1.0, (14)

which implies a period of 15.7 nm and a modulation depth

of 2.44 nm. See the Supplemental Material for a definition

of u0. Dispersion curves for wave vectors lying along the

y axis are shown in Fig. 3. These were deduced from the

reflection coefficients that show a peak due to coupling to

surface plasmons when the dispersion relation is satisfied.

Note that the analytic theory is essentially exact with no

divergence from COMSOL numerics. The dashed line shows

the quasistatic theory that neglects retardation. As we have

noted in earlier publications [27] the quasistatic solution

reduces to the flat surface result at the zone center. The theory

shows a plasmon polariton tracking the light line at low fre-

quencies then hybridizing with the quasistatic result spoiling

the degeneracy at the zone center. Near the zone boundary

the quasistatic approximation is quite accurate revealing the

dominant electrostatic nature of short wavelength solutions.

In addition there is a multitude of shorter wavelength surface

plasmon bands almost degenerate at the surface plasmon

frequency. The grating being predominantly sinusoidal hardly

splits these bands apart. More strongly modulated gratings do
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give rise to splittings of these higher order bands but only at

the zone boundary.

Between the light line and the zone center modes are not

exact eigenstates but form resonances subject to radiative de-

cay. However, coupling is primarily magnetic in nature: in the

slab frame the transformed μs acquires a grating-like structure

and couples surface plasmons to external radiation. Thus, the

lower order modes are not well defined to the left of the light

line as they dissolve into the continuum. However, since the

higher order surface plasmons are primarily electrostatic in

character, coupling is weak and radiative lifetimes are long

and these modes are relatively well defined beyond the light

line. We plot the trajectories of these resonance in Fig. 3.

The higher order modes hardly interact with this relatively

weak grating and exhibit the near zero dispersion of the modes

of a flat surface. This is a relatively trivial instance of slow

light, which has been thoroughly discussed in Ref. [28].

At the Brillouin zone boundary a large band gap opens.

Note that, typical of photonic systems, the lower state is

depressed more that the upper state is raised. This has con-

sequences for the zero point energy of the system: it would

appear that at least as far as the dispersion relations are

concerned a distortion of the surface is energetically favored.

Of course there are other forces acting against an instability

but significantly very many metal surfaces do show recon-

structions of a grating-like form.

IV. SECOND EXAMPLE

One of the advantages of calculating reflection and trans-

mission matrices is that further interfaces can be taken into

account via multiple scattering theory. If a sample has two

interfaces with transmission and reflection coefficients as

defined in Fig. 4, then the combined system has reflection and

transmission matrices as follows:

R−
= r−

1 + t+

1 (1 − r−

2 r+

1 )−1r−

2 t−

1 ,

R+
= r+

2 + t+

1 (1 − r+

1 r−

2 )−1r+

1 t+

2 ,
(15)

T −
= t−

2 (1 − r+

1 r−

2 )−1t−

1 ,

T +
= t+

1 (1 − r−

2 r+

1 )−1t+

2 .

In this way we calculate the reflectivity of a thin slab of metal

one side of which is a planar interface with the vacuum, the

other side a metasurface as defined above.

Figure 5 shows a check against simulations on the accuracy

of our codes. The parameters used were as follows:

w0 = 0.8781, Ŵ = 2.5 nm, u0 = 0.8044. d = 0.5,

(16)

r1t1
+

r1
+

t1

r2

r2
+

t2
+

t2

FIG. 4. Definition of the reflection and transmission coefficients

at each surface of a grating of finite thickness.

ks = 0.02

k = 0.0

k = 0.01

k = 0.02

k = 0.03

ks = 0.0

ks = 0.01

ks = 0.02

ks = 0.03

k = 0.02

1.0

0.0

1.0

0.0

0.1

0.0

0.1

0.0

0.2

0.0

0.2

0.0
3.3 3.43.3 3.4eV( ) eV( )

REE REE

RHH RHH

REH REH

period                       = 15.70nm

modulation depth     =   2.05nm

maximum thickness =   3.39nm

FIG. 5. Profile of the metasurface to scale followed by the total

reflected intensity calculated as a function of frequency for various

incident waves defined by k, ks. Dots represent COMSOL calculations.

which implies a period of 15.7 nm and a modulation depth

of 2.05 nm, and a maximum thickness of 3.39 nm. See the

Supplemental Material for a definition of u0 and d.

Hybrid modes form between the two surfaces that are

approximately symmetric and antisymmetric. The thinner the

grating the lower in frequency is the antisymmetric mode and

we shall concentrate on this mode.

We identify modes by calculating reflection coefficients

for various angles of incidence. Peaks in reflection identify

frequencies of modes that are not perfectly defined because

decay into the vacuum ensures a finite lifetime reflected in

the finite widths of the peaks. Figure 5 plots reflectivities as

a function of the wave vector parallel to the surface for two

different directions.

The left column shows the reflectivity spectrum for a wave

with incident wave vector contained in the x − s plane

(ks = 0.02, k = 0, red line), as the incidence wave vector

moves out of that plane, (k changing from 0.01 to 0.03, orange

to green lines). The right column shows the corresponding

results for nonzero k, as the plane of incidence goes out from

the y − x plane. While the upper and middle panel present the

copolarized reflectivity for each polarization (REE , RHH ), the

lower panel shows how the cross-polarized response (REH )

becomes nonzero when the plane of incidence does not corre-

spond with the symmetry planes of the metasurface.

Extracting the band dispersion from these figures yields

Fig. 6. In this instance the modes are well defined to the left of

the light line and form well-defined sharp resonances enabling

us to continue the dispersion relationship into this region. This

is because their subwavelength nature inhibits coupling to the
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FIG. 6. Dispersion of surface plasmon modes for two polariza-

tions as defined in the supplemental material (a) S polarized and

(b) P polarized. Note the differing frequency scales. Dots represent

COMSOL calculations. (c) and (d) show intersections of dispersion

surfaces for the same grating. Note the strong dispersion with k and

weak dispersion with ks requiring different scales for each, hence

distorting circles into ellipses. Except for the intrusion of the light

circle, the curves approximately represent two circles intersecting

near k = 0, ks = 0.2.

far field. Note the degeneracy at the zone center in Figs. 6(a)

and 6(b) which is exact in the quasistatic limit, the linear

dispersion with k, and the quadratic dispersion with ks. In the

latter case the single band shown is in fact doubly degenerate

at the origin and approximately so at other values of ks, though

the splitting is too small to show in this scale. Again note the

perfect agreement with the numerics.

Another way to display dispersion is to present sections of

the isofrequency surfaces; two of which are given in Figs. 6(c)

and 6(d). Note the different scales on the two axes distorting

the light circle into an ellipse. In the limit of a weak grating

and the quasistatic approximation, dispersion is represented

by two intersecting cones appearing as intersecting circles in

an isofrequency plot. However when retardation is brought

into play the light circle and surface plasmons hybridize and

a gap opens at the intersection of the cones. All states within

the light cone have finite radiative lifetimes.

V. CONCLUSIONS

We have demonstrated a methodology for making accurate

quasianalytic calculations for an arbitrary 1D metasurface.

The theory has been tested against COMSOL simulations. The

theory is based on conformal mapping interpreted though

transformation optics theory, linking the theory to many ap-

proximate results obtained in the quasistatic approximation.

Our analytic calculations are typically one or two orders of

magnitude faster than the numerical codes. Detailed deriva-

tions for the two examples given above are presented in the

Supplemental Material.
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