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Abstract

Since the contribution of Kydland and Prescott (1977), it is well known that the optimal Ramsey

policy is time inconsistent. In a series of recent contributions, Woodford (2003) proposes a new

methodology to circumvent this problem, namely the timeless perspective solution. However, one

main limitation is that it is not yet empirically implementable. In this paper, we develop a new

methodology to compute initial values of the Lagrange multipliers in order to implement the

timeless-perspective solution. In so doing, we also provide a generalization of the Ramsey and

timeless-perspective problems. We apply our results to a small-open economy model in Canada.

JEL classification: C6, E5, E6
Bank classification: Monetary policy framework

Résumé

Depuis la contribution séminale de Kydland et Prescott (1977), il est établi que la politique

optimale au sens de Ramsey n’est pas cohérente temporellement. Pour solutionner la difficulté,

Woodford (2003) propose de déterminer la politique optimale dans une perspective ahistorique.

Cependant, une limite importante est que cette solution demeure difficile à appliquer. Les auteurs

élaborent une nouvelle méthodologie permettant de calculer le vecteur initial des multiplicateurs

de Lagrange afin de mettre en œuvre la solution préconisée par Woodford. Ce faisant, ils

présentent une généralisation du problème de Ramsey et de la « solution ahistorique ». Les

auteurs appliquent leur méthode à un modèle de petite économie ouverte se prêtant à l’étude de

l’économie canadienne.

Classification JEL : C6, E5, E6
Classification de la Banque : Cadre de la politique monétaire



1 Introduction

Since the seminal contribution of Kydland and Prescott (1977, 1980), it is well

known that the fully unconstrained optimal policy (the Ramsey problem) has the main

drawback of being time inconsistent—without incentives or punitive schemes, the op-

timal policy chosen in the past or the contemporaneous period is no longer optimal if

the social planner can re-optimize at a later date. To mitigate the pervasive effects

of the optimal but time inconsistent Ramsey policy, Woodford (1999, 2003), Giannoni

and Woodford (2002), Benigno and Woodford (2003, 2004a and 2004b) have developed

the concept of optimal policy in a timeless perspective. This solution may be viewed

as representing the continuation of the Ramsey policy an arbitrarily long period after

the initial period when the policy was implemented. However, despite its attractive

feature, one potential pitfall of the timeless-perspective approach is that it is not yet

empirically implementable in the sense that estimates of the Lagrange multipliers of

implementability constraints (namely the behavioral equations of the private sector) at

the initial period are necessary and are obviously non observable. At the same time, for

many practical policy issues, it could be interesting to obtain quantitative and norma-

tive predictions of the timeless-perspective policy in reasonably well-specified models.

The purpose of this paper is to fill this gap in the literature and to provide for the first

time, to our knowledge, a (Bayesian) methodology to estimate the solution suggested by

Woodford (1999). This allows us to compare the outcomes of the Ramsey- and timeless

perspective-based solutions.

Traditionally, the new science of monetary policy (see Clarida, Gali and Gertler,

1999) deals with the problem of optimal policy as follows. At the current period t =

t0, a social planner (say an independent central bank) seeks to determine the path

of the nominal interest rate and maximizes an objective function, which reflects the

social preferences of individual agents, subject to implementability constraints.1 In

this respect, two solutions have been widely studied : the commitment and discretion

outcomes. In the former, as is shown by Kydland and Prescott (1977), the Ramsey (or

commitment) solution is optimal but time-inconsistent. This stems from the fact that,

in the contemporaneous period, the policy maker sets the new policy after that private

agents have formed their expectations, so that it can take advantage of this situation

and has therefore an incentive to re-optimize in the future. From a technical point of
1We assume that the objective function of the central bank cannot be different from those of society,

as in the optimal targeting regimes literature (see Jensen, 2002; and Walsh, 2003).
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view, time-inconsistency comes from the fact that the policymaker, when it re-optimizes

at a later date, resets the Lagrange multipliers to zero, away from the values provided

by running forward the solution function in the first optimization. Note also that the

Ramsey problem is not recursive in the natural state variables. This further complicates

the analysis substantially in the presence of stochastic shocks as in standard DSGE

models. In contrast, the discretionary solution—the central bank re-optimizes at each

period—is time consistent but can lead to extremely undesirable outcomes regarding, for

instance, the conditional or unconditional welfare and the stabilization bias (see Walsh,

2003).

The timeless-perspective solution suggests that the policy maker gives up its first

period advantage and sets the policy instruments in the first period as it will in the future.

The policy maker therefore behaves as if the Ramsey optimal rule had been computed in

the remote past (stationary solution).2 More formally, the timeless perspective solution

is one way of dealing with a recursive Ramsey problem. Indeed, it is possible to formulate

the Ramsey problem recursively by augmenting the set of natural state variables with

a vector of co-state variables, which depends on the problem studied. As is pointed

out by Marcet and Marimon (1998), solving this recursive problem leads to Markovian

policy rules in the augmented set of states and the shocks for t > t0.3 The Ramsey

equilibrium outcome thus depends on the values of the exogenous state variables at

the initial period t0. To deal with this dependence, Woodford (1999, 2003) proceeds

by imposing that the Markovian policy rule, which is optimal from the standpoint of

t ≥ t0 + 1, is also optimal at time t0. In other words, this amounts to endogeneizing

the initial values of the exogenous states. Therefore, the policy maker renounces to the

possibility of setting the Lagrange multipliers to zero in the initial period and sets them

by using the same recurrence as in other periods.

From a practical point of view, this temporal dependence complicates the derivation

of policy implications. In particular, one cannot use directly the methodology proposed

by Söderlind (1999) to estimate the Ramsey solution or discretionary policy rules. A

further difficulty comes from the fact that usually not all variables of a DSGE model

are observed and the shocks almost never. To circumvent these problems, we propose to

proceed in practise as follows. First, we estimate the dynamics of the economy on the
2This is also equivalent to the interpretation that the policy maker restricts the set of admissible

policies among which it must choose the best one.
3This solution was first suggested by Kydland and Prescott (1980).
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period prior to the switch to optimal policy. To do so, we need to specify an empirical

policy rule simply aimed at describing the policy in effect at that time. This first step

allows for computing the optimal policy under commitment and to derive smoothed

values of the unobservable state variables during the pre-period of implementation of

the timeless-perspective solution. Moreover, it permits to recompute an artificial series

for the Lagrange multipliers and thus to obtain initial values of the Lagrange multipliers

at the “announcement” of the timeless-perspective policy. This means that to close the

model, a simple policy rule has to be specified and that its specification should be enough

flexible and robust so that its estimation does not alter significantly the values of the

Lagrange multipliers at the period of announcement of the timeless-perspective policy.

In a second step, the last values of the smoothed state variables and artificial multipliers

provide initial conditions required to compute the timeless-perspective policy after the

end of the estimation period.

The rest of the paper is organized as follows. In section 2, we present the com-

mitment and timeless-perspective solutions in a nonlinear framework. In section 3, our

methodology is explained in the standard linear quadratic case. In section 4, we ap-

ply our results to a small-open economy model in Canada. Section 5 discusses about

the robustness of our results, and especially how to account for model and parameter

uncertainty to implement the timeless-perspective solution. The last section concludes.

2 Ramsey and timeless-perspective policies

In this section, we briefly present the Ramsey- and timeless-perspective solutions. The

standard linear quadratic case is presented in Annex 1.

The Ramsey policymaker’s objective is to maximize the conditional expected private

sector welfare at time t = 1 subject to implementability constraints (namely the be-

havioral equations of the private sector and the dynamics of exogenous shocks). The

dynamics of the economy is defined by

Etf(yt+1, yt, yt−1, ut, εt) = 0 (1)

where y and u are respectively the vector of endogenous variables, of instruments and

ε is a vector of i.i.d shocks. By convention, εt is known at the beginning of the period

t when agents take their decisions and y0 is given. The objective function is defined as

4



the expected discounted sum of utility

E1

∞∑

t=1

βt−1U(yt). (2)

Note that the set of instruments do not appear explicitly in the objective function, but

it is easy to insert them by adding an auxiliary endogenous variables set equal to the

instruments.

To solve the optimal policy problem, we first write the Lagrangian,

L = E1

∞∑

t=1

βt−1 [U(yt)− µtf(yt+1, yt, yt−1, ut, εt)] . (3)

Then, differentiating with respect to yt, ut and µt yields the following first-order condi-

tions:

Et

[
U1(yt)− µ

′
tf2(yt+1, yt, yt−1, ut, εt)− βµ

′
t+1f3(yt+2, yt+1, yt, ut+1, εt+1) (4)

−β−1µ
′
t−1f1(yt, yt−1, yt−2, ut−1, εt−1)

]
= 0

Et

[
µ
′
tf4(yt+1, yt, yt−1, ut, εt)

]
= 0 (5)

Et

[
f(yt+1, yt, yt−1, ut, εt)

]
= 0 (6)

with µ0 = 0 and y0 given.

Specifically, at the initial period, t = 1, there holds

E1

[
U1(y1)− µ

′
1f2(y2, y1, y0, u1, ε1)− βµ

′
2f3(y3, y2, y1, u2, ε2)

]
= 0 (7)

E1

[
µ
′
1f4(y2, y1, y0, u1, ε1)

]
= 0

E1

[
f(y2, y1, y0, u1, ε0)

]
= 0 (8)

since β−1µ
′
0f1(y1, y0, u0, ε0) = 0.

The deterministic steady-state of the Ramsey problem is thus defined by the follow-

ing n-uplet (y∗, u∗, µ∗) so that

U1(y∗)− µ∗
′
f2(y∗, y∗, y∗, u∗, 0)− βµ∗

′
f3(y∗, y∗, y∗, u∗, 0)

−β−1µ∗
′
f1(y∗, y∗, y∗, u∗, 0) = 0

µ∗
′
f4(y∗, y∗, y∗, u∗, 0) = 0

f(y∗, y∗, y∗, u∗, 0) = 0.
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Therefore, for a given vector y∗, one can use the first matrix equation above to obtain

µ∗′ = U1(y∗)A−1(y∗, y∗, y∗, u∗, 0)

where A =
[
f2(y∗, y∗, y∗, u∗, 0)− βf3(y∗, y∗, y∗, u∗, 0)− β−1f1(y∗, y∗, y∗, u∗, 0)

]
. Substi-

tuting this expression in the second equation

U1(y∗)A−1(y∗, y∗, y∗, u∗, 0)f4(y∗, y∗, y∗, u∗, 0) = 0

and using f(y∗, y∗, y∗, u∗, 0) = 0 yield a system that has only y∗ and u∗ as unknowns.

Let denote x̂, the logarithm deviation of the variable x from its steady-state value,

the logarithm approximation of the model around the steady-state of the Ramsey policy

is

Et

[
U11ŷt − µ̂

′
tf
′
2 − βµ̂

′
t+1f3 − β−1µ̂

′
t−1f1 − (µ∗ ⊗ I) [βf31ŷt+2 + β−1f13ŷt−2 +

(f21 + βf32)ŷt+1 + (f23 + β−1f12)ŷt−1 + (f22 + βf33 + β−1f11)ŷt + f24ût +

βf34ût+1 + β−1f14ût−1 + f25ε̂t + βf35ε̂t+1 + β−1f15ε̂t−1]
]

= 0 (9)

Et

[
µ
′
tf4 + µ∗[f41ŷt+1 + f42ŷt + f43ŷt−1 + f44ût + f45ε̂t]

]
= 0 (10)

Et

[
f1ŷt+1 + f2ŷt + f3ŷt−1 + f4ût + f5ε̂t

]
= 0. (11)

where I is an identity matrix of suitable order, and fij indicates a matrix of second order

derivatives corresponding to the ith and the jth argument of the function f , arranged in

the proper manner.4

This system can be interpreted as a new dynamic stochastic equilibrium model aug-

mented by the Lagrange multipliers. In contrast to (1), the dynamics of the optimal

policy problem can be characterized by leads and lags on one additional period.5 More

importantly, the second order partial derivatives of the economy dynamics are part of the
4The Hessians of each f i() function are pilled up one above each other:

fij =

2
666664

∂f1

∂xi∂x′j
∂f2

∂xi∂x′j

. . .
∂fn

∂xi∂x′j

3
777775

Here, xi, (i = 1, . . . , 5), represents one of the 5 vector arguments of the function f().
5This is the case for example if the utility function incorporates internal habit formation.
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first order approximation of the Ramsey problem as long as the steady-state value of the

Lagrange multipliers is different from zero. Indeed, if µ∗ = 0, the following conditions

are exactly the same as those of the linear quadratic stabilization policy problem:

Et[U11ŷt − µ̂
′
tf2 − βµ̂

′
t+1f3 − β−1µ̂

′
t−1f1] = 0 (12)

Et[f1ŷt+1 + f2ŷt + f3ŷt−1 + f4ût + f5ε̂t] = 0 (13)

Et[µ̂
′
tf4] = 0. (14)

If this condition is not fulfilled, the linear quadratic approximation leads to a “spurious”

optimal policy rule in the sense that we neglect some important terms in the objective

function and thus in the derivation of the optimal Ramsey policy. In particular, if one

does not include mechanisms so that, for example, to correct for price or wage mark-ups

(as in Erceg, Levin and Henderson, 2000), the Jacobian matrix of the utility function

with respect to the variables of interest is no longer null—which is a direct consequence

of the previous condition— and the quadratic approximation of the objective function

of the policymaker is no longer valid.6

The general solution takes the form, ∀t ≥ 1,



yt

ut

µt


 = g(yt−1, µt−1, εt) (15)

with µ0 = 0 and y0 given.

From this solution, it is straightforward to see that, if the policy maker re-optimizes

at a later date and thus resets the Lagrange multipliers to zero, the latter are far away

from the values provided by running forward the solution function defined above—the
6The conditions under which the solution to the linear quadratic (LQ) approximation yields a correct

linear approximation to the optimal policy problem are often restrictive. More specifically, standard

conditions of differentiability of the objective function and the constraints are not sufficient. Based on

our framework, it is straightforward to show that the “common” LQ is a correct local characterization

of the optimal policy problem in the following cases: (i) the constraints are exactly linear, (ii) the

Taylor expansion is done around a steady-state at which the gradient vector equals zero (see above),

(iii) the exact first-order conditions for (Ramsey) optimal policy (using the nonlinear specification)

are log-linearized (see King and Woolman, 2004; Khan, King and Woolman, 2003; Schmitt-Grohé and

Uribe, 2004a and 2004b). Note that the latter method is correct as long as we assume small enough

exogenous shocks.
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so-called time-inconsistency problem of the Ramsey policy. In other words, the policy

maker exploits an informational advantage since it knows ex-ante the decisions of the pri-

vate sector before setting its instruments. In this respect, without incentive mechanisms,

the optimal policy is time inconsistent. Meanwhile, in the presence of a commitment-

based technology, one may doubt however, from a practical point of view, whether it

is really desirable for the monetary authority to commit itself, once and for all to a

time-dependent instrument rule. At least, two arguments can be invoked. First, a time-

dependent rule is complex, and thus difficult to explain to the private sector. Second,

the time-dependence makes the rule to privilege a particular time period—the date at

which the policy happens to have been implemented. Hence commitment to the decision

rule may not be optimal today whereas it was optimal from the point of view of society’s

interest at that time.

In the timeless-perspective solution proposed by Woodford (1999, 2003), the policy

maker renounces the possibility of setting the Lagrange multipliers to zero if it re-

optimizes at a later date. As is shown by Marcet and Marinon (1998), it is possible

to formulate the Ramsey problem recursively. For t > 1, the private sector first-order

conditions can be used to define a mapping from policy at time t to the competitive equi-

librium at time t and the shadow prices or the Lagrange multipliers. More specifically,

the Lagrange multipliers can be defined as

µt = gµ(yt−1, µt−1, εt)

This constraint can be included in the policy problem. It embeds the assumption of com-

mitment since today’s decisions are tied to past decisions. Therefore, the policy maker

will select the value of µ that it wants to commit to since future policy makers will be

constrained by the fact that they have to choose the policy that is optimal from the

standpoint of the current period. The problem is that this procedure does not pin down

initial values of the Lagrange multipliers since the policy chosen at time t = 1 depends

on initial conditions and the solution for all future periods depends on these values.

In this respect, adopting a timeless perspective policy means that the dependence on

initial conditions is removed by imposing that the choice of the Lagrange multipliers µ0

is governed by the same Markovian rule from period 1 onwards.
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Therefore, the Lagrangian for the timeless-perspective policy can be written

L = E1

∞∑

t=1

βt−1 [U(yt)− µtf(yt+1, yt, yt−1, ut, εt)]− β−1µ0y1.

for µ0 given.

The first order conditions for t > 2 are the same as those of the optimal Ramsey

problem. For t = 1, there holds

E1

[
U1(y1)− µ

′
1f2(y2, y1, y0, u1, ε1)− β−1µ

′
0f1(y1, y0, u0, ε0)− (16)

βµ
′
2f3(y3, y2, y1, u2, ε2)

]
= 0

E1

[
µ
′
1f4(y2, y1, y0, u1, ε1)

]
= 0

E1

[
f(y2, y1, y0, u1, ε0)

]
= 0 (17)

As we explain before, the time inconsistency of the Ramsey solution may arise because

private agents take certain actions before the policy maker choose the optimal path of

instruments. In particular, the private sector takes its decisions based on expectations of

government policy while the policy maker takes its decisions based on given expectations

of the private sector. This leads to an informational advantage for the policy maker and

the situation can be compared to a traditional Stackelberg game (see Cohen and Michel,

1988). Indeed, by committing to follow a policy at the initial date, which corresponds

to the stationary Markovian policy rule, the policy maker will influence sufficiently

expectations of the private sector. Note that this means that the timeless-perspective

solution is not a commitment free technology.

3 Computing the initial value of the Lagrange multipliers

in a timeless perspective

The first order (log-linearized) conditions of the timeless perspective problem can be

rewritten in a state-space representation as follows,

ŝt = M (Θ) ŝt−1 + P (Θ) η̂t (18)

x̂t = C (Θ) ŝt (19)

where x̂t contains observable variables, and ŝt contains state variables. It includes unob-

servable elements such as conditional expectations, natural variables or shock processes.
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Last, ηt is a vector of i.i.d. variables with zero mean and covariance matrix In.

In order to estimate system, we adopt the strategy proposed, among others, by Smets and

Wouters (2005a and 2005b) and An and Schorfheide (2007), e.g. Bayesian econometrics.7

A Kalman filter is used to estimate the system (18)–(19). The algorithm preliminary

evaluates the number of explosive eigenvalues. Consequently, indeterminate models (that

do not satisfy the Blanchard-Kahn conditions) are directly ruled out during the course

of the estimation. For a given structural model m ∈ M and a set of parameters Θ,

we denote Γ (Θ|m) the prior distribution of Θ and L (
XT |Θ,m

)
the likelihood function

associated to the observable variables XT = {x̂t}T
t=1. Then, the posterior distribution

of the parameter vector is proportional to the product of the likelihood function and the

prior distribution of Θ,

Γ
(
Θ|XT ,m

) ∝ L (
XT |Θ, m

)
Γ (Θ|m) . (20)

This posterior distribution function can be evaluated using a Monte-Carlo Markov Chain

(MCMC) sampling approach (see An and Schorfheide, 2006).

Obviously, the main problem here is that the Lagrange multipliers are not observ-

able. Furthermore, they typically depend on unobservable state variables. Therefore,

we propose to implement the timeless-perspective optimal policy by distinguishing the

pre-period of implementation or period of estimation, [t0, t1] and the “implementation”

period of this policy t = t1 + 1, · · · , T .8 Indeed, as is it common in empirical Bayes

method, we initialize the Lagrange multipliers and some of the state variables by esti-

mating the structural model of the economy. To do so, we need to close the model and

to specify a simple monetary policy rule. This means that this specification must be

enough flexible and robust so that results are not too sensitive to its specification. In

practise, it is possible to control for such an effect by taking into account different simple

monetary policy rules and by measuring uncertainty around parameters.

Next, to capture initial values of the Lagrange multipliers when the timeless-perspective

policy is implemented by the central bank, it is necessary to solve recursively the system
7Note that a FIML approach could be implemented to estimate the optimal policy in a timeless

perspective.
8To some extent, the first period might be compared to a pre-sampling approach in Bayesian econo-

metrics.
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estimated in the pre-period. Therefore, the Lagrange multipliers are set to zero at time

t0, λt0 = 0. The intuition is that if the estimation period is long enough, this initial-

ization will have almost no effect on the value of the Lagrange multipliers at the end

of the pre-period t = t1 (stationary solution), and thus do not matter for the optimal

policy in a timeless-perspective. Then solving the dynamics by standard techniques, it

is straightforward to obtain the Lagrange multipliers at period t = t1. An alternative is

to follow the approach developed by Giannoni and Woodford (2002) in their appendix

and extended by Juillard and Pelgrin (2007).9 In this respect, we have all ingredients to

determine the timeless-perspective recommendation.

To sum up, the proposed algorithm goes as follows:

• Step 1: Estimate the dynamics of the economy on the period prior to the switch

to a timeless-perspective with an empirical policy rule simply aimed at describing

the policy in effect at that time

• Step 2: Use the coefficients of the estimated model to compute optimal policy

under commitment and compute smoothed values of the vector of unobservable

state variables.

• Step 3: Recompute an artificial series for the Lagrange multipliers during the es-

timation period, setting initial values of Lagrange multipliers at the beginning of

estimation period to zero

• Step 4: Compute optimal policy in a timeless-perspective after the end of the

estimation sample. The last values of the Lagrange multipliers computed in the

previous step and smoothed variables provide initial values.

In principle, this algorithm can be extended to the non linear case. As long as we can

estimate the non linear model (see An and Schorfheide, 2006; Fernandez-Villaverde and

Rubio-Ramirez, 2004) and the smoothed values of unobservable variables can be derived,

the proposed algorithm is still valid.
9Both methods yield comparable results. For further details, see Juillard and Pelgrin (2007).

11



4 An application to a small open economy

In this section, we begin by presenting the small open economy DSGE model of Lubik

and Schorfheide (2007). We then explain the Ramsey solution. Finally, we present the

benchmark results.

4.1 A benchmark model

As an application of the methodology proposed in the last section, we consider a small

open economy model for Canada. The model is the same as in Lubik and Schorfheide

(2007).10 For illustration sake, we take the model to be truly linear and we ignore that

it is indeed a linearized version of a model that has a fully micro-founded core.11 Our

results will therefore be an optimal policy for this linear model and not a first order

approximation of the optimal policy in the original nonlinear model.12

The world economy is assumed to consist of two countries: a small home open economy

and a large, approximately closed, foreign economy. The latter is only described by a

set of AR(1) processes (see further) whereas the small-open economy is described by the

following equations. The first equation describes a purely forward-looking pricing rule

π̃t = βπ̃t+1|t + αβEt∆q̃t+1 − α∆q̃t +
κ

τ + α(2− α)(1− τ)
(ỹt − ˜̂yt) (21)

where vt+1|t, for any variable v, denotes Etvt+1, π̃t is the annualized quarterly CPI in-

flation, ˜̂yt = −α(2 − α)1−τ
τ ỹ∗ is potential output in the absence of nominal rigidities

and when technology is non-stationary, ỹ is the aggregate output, y∗t is exogenous world

output and q̃t are the terms of trade, defined as the relative price of exports in terms

of imports. Note that the terms of trade is in first difference since it is assumed that

changes in relative prices affect inflation and thus the real interest rate through the def-

inition of the consumption-based price index. The closed economy version of the model

is obtained by setting α = 0.13

10For further details of small-open versus closed economy in Canada, see Dib (2003).
11It is a generalization of the canonical New-Keynesian model for a closed economy developed by

Rotemberg and Woodford (1997), Goodfriend and King (1997) and others.
12It is important to note that the linear approximation of the optimal policy in a nonlinear model

is not generally equivalent to the optimal policy in a linearized model. See Section 2 and Juillard and

Pelgrin (2007) for further details.
13It can be shown that this equation is obtained from the intertemporal minimization program of the

firm and that the coefficient κ is a function of underlying structural parameters, such as labor supply,

demand elasticities, and parameters measuring the degree of price stickiness.
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The aggregate demand equation is defined as follows:

ỹt = Etỹt+1 −
[
τ + α(2− α)(1− τ)

]
(R̃t − Etπ̃t+1) + ρadAt − (22)

α
[
τ + α(2− α)(1− τ)

]
Et∆q̃t+1 + α(2− α)

1− τ

τ
Et∆ỹ∗t+1

where 0 < α < 1 is the import share, τ−1 the intertemporal substitution elasticity, and

R̃ is the nominal interest rate (policy instrument). Note that the equation also reduces

to its closed economy variant when α = 0. Finally, if τ = 1, the world output does not

matter in the demand equation and the trade balance is identically equal to zero.

The nominal exchange rate fulfills the purchasing power parity condition (PPP)

π̃t = ∆ẽt + (1− α)∆q̃t + π̃∗t (23)

where π̃∗ is a world inflation shock.

The monetary policy authority follows a Taylor-type policy rule that includes some

foreign variables (nominal exchange rate depreciation)

R̃t = ρR̃t−1 + (1− ρ)
[
ψ1π̃t + ψ2(ỹt − ˜̂yt) + ψ3∆ẽt

]
+ εr

t (24)

where εr
t is a monetary policy shock (non systematic component of monetary policy).

Notice that the monetary policy rule does not include any lead terms of inflation or the

domestic output gap. However, as we explain before, we check the robustness of our

results by looking at alternative forms of monetary policy rules and it appears that the

choice of the simple rule for the pre-sampling period does not affect significantly the

results. We assume that the policy coefficients ψ1, ψ2 and ψ3 are non-negative. In order

to match the persistence in nominal interest rates, we include a smoothing term in the

rule.14 Finally, the dynamics of the term of trade is assumed to be described by an

AR(1) process:

∆q̃t = ρq∆q̃t−1 + εq
t (25)

As is pointed out by Lubik and Schorfheide (2007), this specification is not fully consis-

tent with the underlying structural model. However, it can be considered as a “semi-small
14Indeterminacy is essentially driven by ψ1 and ψ3. In particular, it is straightforward to show that

a generalized Taylor principle is given by ψ1 + ψ3 > 1.
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open economy”.

All world variables, ỹ∗t and π̃∗t are assumed to be AR(1) processes and not correlated

together.15

4.2 The Ramsey solution

The monetary policy authority seeks to minimize a standard objective function (subject

to the implementability constraints) which is quadratic in deviations of inflation, the

output gap, and the first-difference of the nominal interest rate—due to smoothing

motive—from their zero target levels16

minRtE1

∞∑

t=1

βt−1 1
2
[
ω1π̃

2
t + ω2x̃

2
t + ω3(R̃t − R̃t−1)2

]
(26)

where ω2/ω1 is the central bank weight on output stabilization relative to inflation sta-

bilization. Note that we do not specify the second-order accurate approximation of the

utility function, but rather an ad hoc objective function. However, for our purpose, it

does not matter since we only consider the linear reduced form model.

The Lagrangian of the optimal Ramsey problem can be summarized as follows:

L = E1

∞∑

t=1

βt−1
{1

2
[
ω1π̃

2
t + ω2x̃

2
t + ω3R̃

2
t

]
(27)

+λ1t

[
π̃t − βπ̃t+1|t − αβEt∆q̃t+1 + α∆q̃t − κ

τ + α(2− α)(1− τ)
(ỹt − ˜̂yt)

]

+λ2t

[
ỹt − Etỹt+1 +

[
τ + α(2− α)(1− τ)

]
(R̃t − Etπ̃t+1) + ρadAt

+α
[
τ + α(2− α)(1− τ)

]
Et∆q̃t+1 − α(2− α)

1− τ

τ
Et∆ỹ∗t+1

]}
.

Using the law of iterated projections and differentiating with respect to xt, πt, Rt and

the Lagrange multipliers, one obtains the first-order conditions. In the case of the time-

less perspective solution, we set additional constraints on initial values of the Lagrange

multipliers.17

15See Svensson (2000), Walsh (1998), Leiteimo and Söderström (2005), Clarida, Gali and Gertler

(2001), and McCallum and Nelson (2000)
16Note that the objective function is not derived from first principles. Under certain regularity

conditions, one alternative would be to use the non-linear dynamics of the economy and derive the

relevant second-order approximation of the utility function. Since our model is only the linear reduced

form model, we leave this issue for further research.
17See Annex 1 for the derivation of the linear quadratic problem.
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4.3 Model estimation and reaction functions

We use observations on real output growth, inflation, nominal interest rates, exchange

rate changes, and terms of trade changes in our empirical analysis. All data are season-

ally adjusted and at quarterly frequencies for the period 1983:1-2004:4. All series are

obtained from the OECD Analytical database (OECD ADB). We choose the same priors

as the original authors.18 Table 1 provides information about the prior distributions.

Prior distributions are assumed to be independent.19

The Bayesian estimates of the structural parameters are given in Table 2.20 In addition

to 90% posterior probability intervals, we report posterior means as point estimates.

The results are consistent with those of Lubik and Schorfheide (2006). Posterior and

prior distributions are displayed in Figures 1 and 2.

Using the posterior mode estimates of the parameters (except the ones from the policy

function!), one obtains the optimal policy as well as the function reaction of the Lagrange

mulipliers:21

R̃t = 0.10R̃t−1 − 0.05λ1,t−1 − 0.01λ2,t−1 − 0.15z̃t−1 − 0.01∆q̃t−1 + 0.08ỹ?
t−1

−0.33εz,t − 0.51εq,t + 0.09εy?,t

and the dynamics for the multipliers:

λ1,t = 0.40R̃t−1 + .41λ1,t−1 + 0.09λ2,t−1 + 0.73z̃t−1 + 0.09∆q̃t−1 − 0.18ỹ?
t−1

+1.63εz,t + 0.26εq,t − 0.20εy?,t

λ2,t = 0.36R̃t−1 − 0.60λ1,t−1 + 0.15λ2,t−1 + 0.64z̃t−1 + 0.14∆q̃t−1 − 0.41ỹ?
t−1

+1.41εz,t + 0.40εq,t − 1.58εy?,t

4.4 Ramsey versus Timeless-perspective policy

To proceed in the spirit of the exercise, we assume that the switch to the optimal (Ram-

sey) policy should take place in the first quarter of 2005. In this context, if monetary
18See further details about the choice of prior distributions in Lubik and Schorfheide (2007).
19We control for indeterminacy by checking that the pre-defined prior volume and the posterior volume

are stable
20Our estimation assumes that the model is stable over the 1983-2004 sample. This might be con-

tradicted by empirical evidence, especially after the implementation of the flexible inflation targeting

regime at the beginning of the 90’s. We leave this complication to future work.
21We discuss later on the choice of the posterior mode against the posterior mean, as well as how to

account for uncertainty of the parameter distributions.
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authorities want to pursue an optimal policy under commitment, they would set the

value of the two multipliers to zero in the fourth quarter of 2004 and proceed from

there. The time inconsistency stems from the possibility they have to reset the multipli-

ers to zero in a future period and their commitment is about not doing it. On the other

hand, if, in order to enhance their credibility, they decide not to take advantage of the

possibility to set the multipliers to zero in the fourth quarter of 2004, they could adopt

an optimal policy in a timeless perspective.

Therefore, as is explained in section 3, our chief task is to reconstruct an artificial series

for the multipliers. We can compute them using the above difference equations provided

we set them to zero before the beginning of the estimation sample, in the fourth quarter

of 1982. This is done by using the smoothed value of the state variables as computed

by the Kalman smoother on the basis of the posterior mode or mean of the parameters.

Finally, we can compute the optimal policy in a timeless-perspective given that the last

values of the smoothed Lagrange multiplier variables (the last quarter, 2004:4) provide

initial values for the Lagrange multipliers at the next period. Given the recursive na-

ture of both the Ramsey policy (optimal policy under commitment) and the timeless

perspective optimal policy, it is now possible to compute the value of the objective func-

tion at any time. It is in particular possible to compute it at the end of the estimation

period—at the time of the potential shift to optimal policy.

Table 3 reports values of the objective function (the welfare loss) for the simple monetary

policy solution, and the Ramsey and timeless-perspective solutions.22 In our benchmark

case, the weights of the objective function are given by µ1 = 1, µ2 = 1, and µ3 = 0.1.23

The second column yields the loss function if the monetary authority would keep fol-

lowing the monetary policy rule estimated for the previous period.24 The third column

represents the value of the objective function if the monetary authority were to follow

the timeless-perspective policy whereas the last column yields the corresponding value
22Other methods to evaluate welfare of alternative policy rules are provided in Benigno and Woodford

(2006).
23We conduct robustness analysis in Section 5.
24Note that this is not the optimal simple monetary rule since we do not optimize the coefficients

of the Taylor-type rule in equation (24) given the loss function. By doing so, the magnitude of the

welfare loss with respect to the commitment solution (and the timeless-perspective solution) would be

less important than the values reported in Table 2. A comparison with optimal simple rules is left as a

future extension of this work.
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of the Ramsey solution (setting the multipliers to zero in the previous period). For

instance, in the last period (2004:4), the loss function equals 57.99 (respectively 58.38)

under commitment (respectively timeless perspective).25

Results show that implementing an optimal policy in a timeless-perspective, based on

estimated model for the Canadian economy, is not so costless with respect to the Ramsey

policy. Furthermore, there are some gains (in this example) for the monetary authority

to consider the timeless-perspective solution rather than to follow the monetary policy

rule estimated at the previous period (henceforth, MPR-based solution). However, the

assumption of arbitrary weights as well as the specification of the preferences are ques-

tionable. Therefore, we gauge the robustness of our conclusions when the relative weights

µ2/µ1 and µ3/µ1 are varied over a predefined grid of weights. More specifically, Table 4

presents the welfare under the optimal Ramsey policy and the timeless-perspective when

one assumes that the preferences of central banks leads to a flexible inflation targeting

(no smoothing of the interest rate) as well as a higher or lesser motive for inflation

stabilization.26 Overall, ceteris paribus, there is not so much difference between the

timeless-perspective solution and the Ramsey solution. In contrast, the difference be-

tween the MPR-based solution and the timeless-perspective outcome depends on the

central bank weight on output stabilization relative to inflation stabilization.

5 Discussion

In this section, we present some robustness checks of our previous results regarding

the choice of priors and the simple monetary policy rule used in the structural model.

Finally, we proceed with a discussion of parameter and/or model uncertainty and how

it can be incorporated into policy exercises based on timeless-perspective solutions.

5.1 Robustness

A first robustness check concerns the estimation of the model and especially the choice

of the prior distributions. At this stage, rather than using the posterior distribution

to capture parameter uncertainty, we ask what are the welfare implications of getting

too informative priors. In this respect, we relax the priors on the policy parameters as

well as the other reduced-form parameters. Following Lubik and Schorfheide (2007), we
25As usual, the loss difference must be interpreted with caution since there is no units per se.
26Other results are available on request.
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impose a uniform prior on the smoothing parameter, ρ, and make the prior on other

parameters more diffuse. This leads to response coefficients of the Taylor rule which are

higher than in the benchmark case. To assess the impact on the timeless-perspective

policy, we look at the estimates of the initial values of the Lagrange multipliers before

implementing the timeless-perspective policy as well as the welfare difference with the

Ramsey policy. Overall, our results are robust and the welfare loss differs only slightly.27

A second robustness check concerns the specification of the monetary policy rule. In

our methodology, since the estimation of the model rests on the specified monetary

policy rule, the initial values of the Lagrange multipliers may critically depend on the

chosen functional form. To some extent, this can be interpreted as a first source of

model uncertainty.28 Numerous studies have shown that simple rules not only perform

well but are more robust to model uncertainty than complicated rules. For example,

Levin et al. (1999) provide evidence that simple rules, which have a high degree of

interest rate smoothing and that responds both to inflation and output gap deviations,

perform nearly as well as more complicated rules in different models of the US econ-

omy.29 In contrast, Côté et al. (2005) argue that simple monetary policy rules are not

robust to model uncertainty in Canada—no single rule performs well in all models. In

this context, we re-estimate the model under alternative monetary policy rules.30 To

do so, we first impose the following restrictions: (i) ψ3 = 0, (ii) ρ = 0, (iii) ρ = 0 and

ψ3 = 0. Results are presented in Table 5. Not surprisingly, the smoothing parameter,

ρ, has much larger effects on welfare than the coefficient of the real exchange rate in the

policy function. Then, we consider the class of forecast-based rules (Batini and Haldane,

1999),

R̃t = ρR̃t−1 + (1− ρ)ψ1Eπ̃t+1 + εr
t

and monetary policy rules with a speed limit effect (Walsh, 2004)31,

R̃t = ρR̃t−1 + (1− ρ)
[
ψ1π̃t + ψ2(ỹt − ˜̂yt) + ψ3∆ẽt + ψ4∆ỹt

]
+ εr

t .

27Results are not reported here but are available on request.
28Another source of uncertainty would be to consider the robustness of simple rules in various models

or the performance of simple rules in different versions of the same model. We leave this issue for further

research.
29For a complete discussion, see the NBER Business Cycles Series, volume 31.
30In all cases, we implicitly assume, for the sake of simplicity, that the target inflation is zero. This

is obviously not the case in Canada where the monetary authority have started implementing a flexible

inflation targeting regime since the beginning of the 90’s.
31The study of super-inertial interest rate rules is left for future research.
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In order to assess the impact on the timeless-perspective policy, we proceed as before

and thus compare the initial values of the timeless-perspective Lagrange multipliers as

well as the welfare difference with the Ramsey policy. Results are presented in Table 6.

Overall, results are fairly robust—the initial values of Lagrange multipliers remain rela-

tively close to the benchmark case—with the exception of forecast-based rules. Moreover,

monetary policy rules with a speed limit effect perform better than the forecast-based

rules in terms of welfare analysis.

5.2 Parameter and model uncertainty

We now address the question of parameter and model uncertainty in the derivation of the

timeless-perspective policy. Our methodology rests on the Bayesian estimation, which

is undertaken in the face of uncertainty about the correct parameter values within a

parametric model, the correct model within a range of possible models (say the space

of models), and the correct space within a collection of space. In particular, until now,

we assume that there is no source of uncertainty either in parameters or in the model

specification. This leads to take (i) the posterior mode (or mean) estimates of the struc-

tural parameters as given when estimating shock series and (ii) the mean estimates of

the structural shocks (using the Kalman filtering technique) as well as the Lagrange

multipliers as given. In this context, allowing for the uncertainty by using the full poste-

rior distribution for the structural parameters, the shocks and the Lagrange multipliers,

would permit to derive for each draw a slightly different timeless-perspective optimal

policy. At the same time, allowing for alternative models would also permit to account

for model uncertainty and slightly different scenarios of the timeless perspective solution.

In what follows, we undertake the first road leaving important issues for future analysis.32

Hence, we assume that there is no model uncertainty and use the posterior distribu-

tion to capture the uncertainty inherent in any given model parameter. In this respect,

each draw of the posterior distribution for the shocks and multipliers can be used to

derive a timeless-perspective solution and then compute the welfare loss. Therefore, we

take 10.000 draws for each posterior distribution and then compute for each the timeless-

perspective solution and the corresponding welfare loss. Results are presented in Table

7 and show that uncertainty matters for the evaluation of the welfare and especially if

one would like to conduct counterfactual exercises in order to compare the performance
32For more details, see Juillard and Pelgrin (2007).
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of the timeless-perspective policy with respect to simple policy rules. At the same time,

confident bands are more conservative as soon as we take draws from the confident bands

of each parameters and results are thus consistent with those of Onatski and Williams

(2003). However, examining this issue in more details is not the scope of this paper and

we leave this issue for future work.

6 Conclusion

The main purpose of this paper was to provide a new methodology in order to compute

initial values of the Lagrange multipliers and thus implement the timeless-perspective so-

lution proposed by Woodford (2003). We proceed as follows. In a first step, we estimate

the dynamics of the economy on the period prior to the switch to a timeless-perspective

with an empirical policy rule simply aimed at describing the policy in effect at that time.

In a second step, we use the coefficients of the estimated model to compute optimal pol-

icy under commitment and compute smoothed values of the vector of unobservable state

variables. In a third step, we recompute an artificial series for the Lagrange multipliers

during the estimation period, setting initial values of Lagrange multipliers at the begin-

ning of estimation period to zero. In the fourth step, we compute the optimal policy in

a timeless-perspective after the end of the estimation sample. The last values of the La-

grange multipliers computed in the previous step and smoothed variables provide initial

values. We use our new approach to estimate and to compare the Ramsey solution and

the timeless-perspective solution in a small open economy model for Canada.

A first key issue is the sensitivity of the results to the choice of the monetary policy

rule in the estimation period and thus the determination of the Lagrange multipliers

before the implementation of the timeless-perspective policy. Following Giannoni and

Woodford (2002), Juillard and Pelgrin (2007) show how to eliminate Lagrange multi-

pliers in certain cases and thus to circumvent this first issue. A second concern is to

account for model and/or parameter uncertainty in our methodology. We propose a first

pass to parameter uncertainty. However, much has to be done and we leave the issue of

uncertainty for future research and extensions of this paper.
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Annex 1: The linear quadratic case

We discuss now the particular case where the objective function is quadratic and the

dynamics are linear. Note that particular care must be taken, when the linear dynamics

are in fact a linear approximation of a nonlinear model (see Benigno and Woodford,

2003). We generalize here the presentation of Woodford (2003).

Let assume that the dynamics of the economy is defined by

A+Etyt+1 + A0yt + A−yt−1 + But + Cet = 0

where, as before yt is the vector of endogenous variables, ut the vector of instruments

and et, a vector of zero–mean shocks uncorrelated with past values.

This can be rewritten as follows

[
A+ 0

] [
Etyt+1

Etut+1

]
+

[
A0 B

] [
yt

ut

]
+

[
A− 0

] [
yt−1

ut−1

]
+ Cet = 0

The intertemporal loss function is

1
2
E1

∞∑

t=1

βt−1z′tWzt

where zt =
(

y′t u′t
)′
, z′tWzt is the instantaneous objective function and W is given

by

W =

(
Wyy Wyu

W ′
yu Wuu

)
.

The Ramsey policy is based on the resolution of the following Lagrangian

L = E1

∞∑

t=1

βt−1
[1
2
(
y′tWyyyt + 2y′tWyuut + u′tWuuut

)

+λ′t (A+Etyt+1 + A0yt + A−yt−1 + But + Cet)
]

or equivalently,

L = E1

∞∑

t=1

βt−1
[1
2
z′tWzt + λ′t

([
A+ 0

]
Etzt+1 +

[
A0 B

]
zt +

[
A− 0

]
zt−1

) ]

The first-order conditions with respect to the predetermined, non-predetermined and

instrument variables are given by (for t > 0):
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∂L

∂y1
= Wyyy1 + Wyuu1 + A′0λ1 + βA′−E1 (λ2)

= 0
∂L

∂yt
= Wyyyt + Wyuut + β−1A′+λt−1 + A′0λt + βA′−Et (λt+1) t = 2, . . .

= 0
∂L

∂ut
= Wuyyt + Wuuut + B′λt t = 1, . . .

= 0
∂L

∂λt
= A+Etyt+1 + A0yt + A−yt−1 + But + Cet

= 0

or equivalently (using the matrix notation)

Wzt + β−1

[
A′+
0′

]
λt−1 +

[
A′0
B′

]
λt + β

[
A′−
0′

]
Etλt+1 = 0

with λ0 = 0, y0 given, and
[

A+ 0
]
Etzt+1 +

[
A0 B

]
zt +

[
A− 0

]
zt−1 + Cet = 0.

Therefore, as we explain before, we obtain a new dynamic stochastic equilibrium model
augmented by the Lagrange multipliers. The first order conditions can be rewritten as
follows




A+ 0 0 0 0 0

0 0 βA′− 0 0 0

0 0 0 0 0 0

0 0 0 I 0 0

0 0 0 0 I 0

0 0 0 0 0 I







Etyt+1

Etut+1

Etλt+1

yt

ut

λt




+




A0 B 0 A− 0 0

Wyy Wyu A′0 0 0 β−1A′+
Wuy Wuu B′ 0 0 0

I 0 0 0 0 0

0 I 0 0 0 0

0 0 I 0 0 0







yt

ut

λt

yt−1

ut−1

λt−1




+




Cet

0

0

0

0

0




= 0

so that

Γ0Yt + Γ1Yt−1 + Γ2ηt = 0

where Yt =
(

Ety
′
t+1 Etu

′
t+1 Etλ

′
t+1 y′t u′t λ′t

)′
and ηt =

(
e′t 0 0 0 0 0

)
.

This is indeed just a larger linear rational expectation model that can be solved by
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usual techniques. For example, using the real, reordered, generalized Schur decomposi-

tion suggested by Klein (1997) and Sims (2002).

In contrast, the timeless perspective solution rests on the following Lagrangian,

L = E1

∞∑

t=1

βt−1
[
z′tWzt + λ′t

([
A+ 0

]
Etzt+1 +

[
A0 B

]
zt +

[
A− 0

]
zt−1

)

+β−1λ′0(z0 − z0)
]

where z0 =
(

y′0 0
)
.

Hence, the first-order conditions are:

Wzt + β−1

[
A′+
0′

]
λt−1 +

[
A′0
B′

]
λt + β

[
A′−
0′

]
Etλt+1 = 0

with λ0 6= 0, y0 given, and
[

A+ 0
]
Etzt+1 +

[
A0 B

]
zt +

[
A− 0

]
zt−1 + Cet = 0.

The resolution is the same as in the Ramsey policy problem. It is important to note,

however, that the initial values of the Lagrange multipliers (of the non-predetermined

variables) are a complex function of the past dynamics of the previous system and the

initial values of the non-predetermined variables, the non-predetermined variables of z0

are chosen so that (i) there are function of the predetermined variables at the initial

period and (ii) there are the solution to the optimization problem with the additional

constraints z0 = z0 for t > 0. In order to estimate the timeless-perspective solution,

the initial values of Lagrange multipliers (of the non-predetermined variables) become

crucial. In particular, the methodology proposed by Söderlind (1999), among others, is

no longer directly applicable.
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Table 1: Priors and posterior mode

Parameters Prior Posterior
Density Mean S.D. Mode S.E.

ψ1 Gamma 1.50 0.50 2.17 0.31
ψ2 Gamma 0.25 0.13 0.14 0.08
ψ3 Gamma 0.25 0.13 0.19 0.06
ρR Beta 0.50 0.20 0.75 0.04
α Beta 0.30 0.10 0.13 0.04
r Gamma 2.50 1.00 2.09 0.91
κ Gamma 0.50 0.25 0.55 0.16
τ Beta 0.50 0.20 0.40 0.06
ρq Beta 0.40 0.20 0.38 0.10
ρz Beta 0.50 0.20 0.47 0.03
ρy? Beta 0.80 0.10 0.90 0.02
ρπ? Beta 0.70 0.15 0.35 0.08
σR InvGamma 1.25 ∞ 0.38 0.04
σq InvGamma 2.51 ∞ 1.17 0.09
σA InvGamma 1.25 ∞ 0.70 0.08
σy? InvGamma 1.25 ∞ 0.87 0.25
σπ? InvGamma 1.88 ∞ 1.71 0.13
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Table 2: Posterior mean and confidence intervals

Parameters Mean Confidence intervals
Density Prior Posterior lower bound upper bound

ψ1 Gamma 1.50 2.354 1.820 2.974
ψ2 Gamma 0.25 0.191 0.062 0.338
ψ3 Gamma 0.25 0.208 0.111 0.320
ρR Beta 0.50 0.738 0.679 0.807
α Beta 0.30 0.151 0.091 0.228
r Gamma 2.50 2.504 0.983 4.066
κ Gamma 0.50 0.661 0.373 0.892
τ Beta 0.50 0.429 0.329 0.514
ρq Beta 0.40 0.380 0.232 0.527
ρz Beta 0.50 0.479 0.424 0.539
ρy? Beta 0.80 0.898 0.859 0.941
ρπ? Beta 0.70 0.348 0.217 0.467
σR InvGamma 1.25 0.404 0.338 0.475
σq InvGamma 2.51 1.191 1.041 1.329
σA InvGamma 1.25 0.711 0.564 0.844
σy? InvGamma 1.25 1.168 0.601 1.567
σπ? InvGamma 1.88 1.747 1.526 1.944

Table 3: Welfare analysis

MPR Timeless Ramsey
2002:3 137.1129 39.4213 39.3871
2002:4 148.5232 48.5585 48.4410
2003:1 141.5273 43.0367 42.8850
2003:2 184.0804 65.9945 65.6551
2003:3 174.5672 60.4436 59.8473
2003:4 174.1757 60.0793 59.6310
2004:1 166.1597 55.4961 55.0981
2004:2 155.1082 46.0195 45.8393
2004:3 167.5169 55.4237 55.2588
2004:4 171.3004 58.3831 57.9918
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Table 4: Alternative specifications of the loss function

MPR Timeless Ramsey MPR Timeless Ramsey
µ1 = 1, µ2 = 1, µ3 = 0.1 µ1 = 1, µ2 = 1, µ3 = 0

2002:3 137.1129 39.4213 39.3871 132.6372 35.4474 35.3534
2002:4 148.5232 48.5585 48.4410 144.2159 44.8281 44.5783
2003:1 141.5273 43.0367 42.8850 137.2102 39.0838 38.8544
2003:2 184.0804 65.9945 65.6551 180.0675 62.5312 62.0423
2003:3 174.5672 60.4436 59.8473 170.5730 56.5075 55.9290
2003:4 174.1757 60.0793 59.6310 170.2322 56.2558 55.8558
2004:1 166.1597 55.4961 55.0981 162.1750 51.4989 51.0866
2004:2 155.1082 46.0195 45.8393 151.0413 41.7793 41.5446
2004:3 167.5169 55.4237 55.2588 163.6731 51.6833 51.4091
2004:4 171.3004 58.3831 57.9918 167.5645 54.7148 54.2502

µ1 = 0.25, µ2 = 1, µ3 = 0.1 µ1 = 0.25, µ2 = 1, µ3 = 0
2002:3 63.5599 37.7245 37.5771 59.0842 34.2570 33.8746
2002:4 72.9280 46.7902 46.4806 68.6207 43.6639 42.8453
2003:1 67.6000 41.4071 41.0468 63.2829 38.1191 37.3412
2003:2 94.1631 64.0047 63.2247 90.1502 61.2217 59.6005
2003:3 87.4702 58.8532 57.6150 83.4760 55.6823 53.7940
2003:4 87.2386 58.4822 57.4345 83.2951 55.2097 53.7597
2004:1 81.9140 54.0043 53.0364 77.9293 50.6148 49.2055
2004:2 72.4927 44.4608 43.9438 68.4258 40.8193 39.9655
2004:3 82.3698 53.7148 53.2117 78.5261 50.5407 49.5549
2004:4 85.4408 56.7381 55.8878 81.7050 53.8026 52.2834

µ1 = 2, µ2 = 1, µ3 = 0.1 µ1 = 2, µ2 = 1, µ3 = 0
2002:3 235.1836 43.9899 43.9815 230.7079 35.7029 35.6561
2002:4 249.3168 53.0419 53.0288 245.0095 45.0603 44.9294
2003: 240.0970 47.4430 47.4016 235.7799 39.2792 39.1606
2003:2 303.9701 70.7667 70.7325 299.9572 62.7949 62.5402
2003:3 290.6964 64.9605 64.7116 286.7023 56.6634 56.3612
2003:4 290.0918 64.5461 64.4435 286.1483 56.4830 56.2797
2004:1 278.4873 59.8916 59.7684 274.5026 51.6791 51.4656
2004:2 265.2622 50.5025 50.4592 261.1953 41.9833 41.8639
2004: 3 281.0463 59.8813 59.8747 277.2025 51.9216 51.7815
2004: 4 285.7798 62.7055 62.5954 282.0439 54.8888 54.6458
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Table 5: Restrictions on the monetary policy rule

MPR Timeless Ramsey MPR Timeless Ramsey MPR Timeless Ramsey
ψ3 = 0 ρ = 0 ρ = 0 and ψ3 = 0

µ1 = 1, µ2 = 1, µ3 = 0.1
2002:3 157.6513 43.4373 43.4276 142.8404 49.7218 49.6613 168.2971 52.4383 52.3286
2002:4 170.8226 52.7046 52.6560 151.5820 57.3238 57.3117 181.7785 62.4856 62.4680
2003:1 159.0465 43.2789 43.1932 140.1260 50.9136 50.9041 158.6541 50.1795 50.1540
2003:2 193.5289 61.4235 61.3475 195.7092 84.9234 84.9111 204.5408 77.1364 77.1250
2003:3 191.1069 61.9896 61.6981 184.2269 77.2045 77.1322 203.1520 78.0949 78.0744
2003:4 186.1819 59.4116 59.1946 184.8293 76.4684 76.4632 197.3977 74.9532 74.9499
2004:1 183.2146 59.4389 59.2104 172.0051 68.9089 68.9008 191.9586 73.5009 73.4977
2004:2 170.6470 50.6045 50.4794 156.6011 59.2370 59.2215 175.9647 65.2398 65.2237
2004:3 178.4584 56.0751 56.0117 166.0624 66.3362 66.3127 179.4974 67.9756 67.9481
2004:4 178.3622 56.5608 56.3877 171.6509 71.1609 71.1520 177.4604 68.3540 68.3496

µ1 = 0.25, µ2 = 1, µ3 = 0.1
2002:3 69.6656 39.4217 39.2482 79.5004 47.1028 47.0638 88.0866 49.9721 49.8933
2002:4 79.4749 48.5873 48.2328 87.0988 54.7667 54.7598 98.6631 60.0723 60.0648
2003:1 69.8637 39.3442 39.0052 79.5613 48.4030 48.3986 84.1064 47.7622 47.7485
2003:2 90.8104 57.1138 56.5765 119.7100 82.4844 82.3399 115.5227 74.7826 74.7576
2003:3 90.7194 57.9387 56.9495 110.3897 74.8478 74.6151 115.6083 75.7925 75.6922
2003:4 87.6004 55.4839 54.5926 110.0415 74.0986 74.0055 111.6943 72.6553 72.6257
2004:1 87.1536 55.5858 54.6577 100.8059 66.5338 66.4680 109.0848 71.2037 71.1709
2004:2 77.9507 46.7535 46.1661 89.7414 56.7754 56.7716 98.8618 62.8980 62.8940
2004:3 83.5360 52.1258 51.6111 97.3505 63.9738 63.9685 101.6352 65.7071 65.7025
2004:4 83.8119 52.7084 51.9963 102.4081 68.9136 68.8492 101.4051 66.1669 66.1512

µ1 = 0.25, µ2 = 1, µ3 = 0
2002:3 65.5229 36.0588 35.6126 65.3104 43.9441 43.8948 73.8306 46.9418 46.8989
2002:4 75.4873 45.5600 44.6244 73.4777 51.8720 51.7324 85.0334 57.3365 57.1872
2003:1 65.8091 36.0126 35.2396 66.0518 45.4407 45.3563 69.8198 44.7424 44.6887
2003:2 87.0618 54.2316 52.9516 105.5296 80.0990 79.6402 101.9176 72.4001 72.1203
2003:3 86.9557 54.9160 53.1071 96.7174 72.0874 71.7550 102.2630 73.1727 72.9076
2003:4 83.8664 52.2458 50.8962 96.5328 71.4812 71.2288 98.5661 70.0516 69.8775
2004:1 83.3971 52.3112 50.8078 87.4847 63.7099 63.5028 96.0669 68.4803 68.2913
2004:2 74.1106 43.2087 42.2093 76.1089 53.6359 53.5504 85.7365 59.9236 59.8299
2004:3 79.8580 48.9033 47.9245 84.2839 61.2294 61.0717 88.9377 62.9775 62.8496
2004:4 80.2237 49.6946 48.3289 89.6452 66.3840 66.1363 88.9803 63.6099 63.4412

31



Table 6: Alternative specifications of the monetary policy rule

MPR Timeless Ramsey MPR Timeless Ramsey MPR Timeless Ramsey
µ1 = 1, µ2 = 1, µ3 = 0.1 µ1 = 0.25, µ2 = 1, µ3 = 0.1 µ1 = 0.25, µ2 = 1, µ3 = 0

Forecast-based rule
2002:3 157.6513 43.4373 43.4276 142.8404 49.7218 49.6613 168.2971 52.4383 52.3286
2002:4 170.8226 52.7046 52.6560 151.5820 57.3238 57.3117 181.7785 62.4856 62.4680
2003:1 159.0465 43.2789 43.1932 140.1260 50.9136 50.9041 158.6541 50.1795 50.1540
2003:2 193.5289 61.4235 61.3475 195.7092 84.9234 84.9111 204.5408 77.1364 77.1250
2003:3 191.1069 61.9896 61.6981 184.2269 77.2045 77.1322 203.1520 78.0949 78.0744
2003:4 186.1819 59.4116 59.1946 184.8293 76.4684 76.4632 197.3977 74.9532 74.9499
2004:1 183.2146 59.4389 59.2104 172.0051 68.9089 68.9008 191.9586 73.5009 73.4977
2004:2 170.6470 50.6045 50.4794 156.6011 59.2370 59.2215 175.9647 65.2398 65.2237
2004:3 178.4584 56.0751 56.0117 166.0624 66.3362 66.3127 179.4974 67.9756 67.9481
2004:4 178.3622 56.5608 56.3877 171.6509 71.1609 71.1520 177.4604 68.3540 68.3496

Speed limit rule
2002:3 137.4146 40.4915 40.4800 62.4427 36.5607 36.3715 58.0493 33.3488 32.9142
2002:4 148.2259 49.2018 49.1480 71.3647 45.2275 44.8520 67.1457 42.3407 41.4384
2003:1 142.1537 44.1524 44.0458 66.6931 40.3586 39.9306 62.4662 37.3261 36.4505
2003:2 184.5763 67.1059 66.9290 92.8987 62.7162 61.8034 88.9781 60.1675 58.4004
2003:3 173.9868 60.9081 60.4296 85.6145 57.0566 55.6623 81.7066 54.1625 52.0751
2003:4 174.4525 60.9326 60.6243 85.8803 57.1095 55.9110 82.0225 54.0823 52.4603
2004:1 165.7538 55.8834 55.5829 80.1342 52.2275 51.1238 76.2294 49.0978 47.5278
2004:2 155.2998 46.5950 46.4670 71.0315 42.8538 42.2479 67.0386 39.4882 38.5235
2004:3 168.1372 56.3015 56.2252 81.1886 52.3901 51.7883 77.4214 49.4507 48.3538
2004:4 171.8549 59.1668 58.8994 84.2066 55.3639 54.3796 80.5498 52.6870 50.9961

Table 7: Welfare analysis of the timeless-perspective policy under uncertainty

Lower bound Timeless Upper bound
2002:3 36.1607 39.4213 43.5384
2002:4 43.1532 48.5585 54.3410
2003:1 37.1661 43.0367 48.1950
2003:2 59.1704 65.9945 71.1465
2003:3 58.4372 60.4436 64.1583
2003:4 56.8750 60.0793 65.2251
2004:1 49.1681 55.4961 59.2781
2004:2 41.2941 46.0195 50.0028
2004:3 50.0420 55.4237 59.7613
2004:4 53.0045 58.3831 64.1568
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Figure 1: Prior and Posterior Distributions
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Figure 2: Prior and Posterior Distributions
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