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Abstract

The use of mobile devices is often limited by the battery lifetime.
Some devices have the option to connect an extra battery, or to use
smart battery-packs with multiple cells to extend the lifetime. In these
cases, scheduling the batteries or battery cells over the load to exploit
the recovery properties of the batteries helps to extend the overall sys-
tems lifetime. Straightforward scheduling schemes, like round robin or
choosing the best battery available, already provide a big improvement
compared to a sequential discharge of the batteries. In this paper we
compare these scheduling schemes with the optimal scheduling scheme
produced with two different modeling approaches: an approach based
on a priced-timed automaton model (implemented and evaluated in
Uppaal Cora), as well as an analytical approach (partly formulated
as non-linear optimization problem) for a slightly adapted schedul-
ing problem. We show that in some cases the results of the simple
scheduling schemes (round robin, and best-first) are close to optimal.
However, the optimal schedules, computed according to both methods,
also clearly show that in a variety of scenarios, the simple schedules
are far from optimal.

1 Introduction

Many autonomous devices mostly rely on batteries as power supply. The
capacity of batteries is finite and, together with the current drawn from



them, determines the time during which the device can be used. The battery
is at the end of its lifetime when it can not deliver the desired current when
it is needed.

To extend the usability of such devices, frequently several batteries are
provided. Mostly these batteries are used in sequential order, the next one
when the previous one has reached the end of its lifetime. Whereas this
clearly is an effective approach to prolong device lifetimes, it is not an effi-
cient one. Efficiency, however, is very desirable: batteries are usually heavy,
compared to the devices they power, and their number should thus be kept
small. Furthermore, as we will see below, using multiple batteries in a non-
sequential way, the available energy as stored in the battery is used more
effectively, and less ”unused battery capacity” is thrown away.

The question to be answered is whether it is possible to use batteries
in a more clever way than just sequentially, i.e., whether there are better
schedules for battery use. A reason why this might be the case is given by
the two inherent properties of batteries, the so-called rate-capacity effect and
the recovery effect. The first property is the phenomenon that a battery
delivers in total a smaller charge during its lifetime when it is discharged
with a high current, compared to a lower one. The second property is the
phenomenon that a battery, when not used or only with a low current, can
recover and procure some additional charge. These two effects are captured
quite precisely in a simple mathematical model, the Kinetic Battery Model
(KiBaM) of Manwell and McGowan [12, 13, 14]. In particular, if the recovery
effect can be exploited to draw more charge from a battery, compared to the
purely sequential case, the lifetime of the powered device is increased.

Battery scheduling can, for example, be benefitial in wireless sensor net-
works. Although each sensor, in general, is powered by only one battery, the
entire network is powered by many. Often there are several routes from a
sensor node to the data sink to send the collected data through the network.
To keep all the sensors powered as long as possible, battery-aware routing
has to be done, i.e., the decission on which sensor has to forward the data
has to be based on the status of the sensor’s batteries. Switching from one
route to the other will give the batteries time to recover and thus give a
longer lifetime to the sensor network as a whole. In this way, the routing
problem is turned into a battery scheduling problem.

This paper investigates methods to find schedules for the use of batteries
for a given load function which maximise the lifetime of the device. Two dif-
ferent approaches are followed, which both are based on the KiBaM. First, a



discretised version of the KiBaM, together with a predefined load is modelled
as linearly priced timed automata (LPTA)[3, 4]. Then, the model-checker Up-
paal Cora [1] is used to derive schedules that maximize the system lifetime.
Second, the KiBaM is investigated analytically, using, among others, non-
linear optimization techniques, to solve the scheduling problem.

Both approaches yield excellent results. The LPTA approach, on one
hand, provides schedules in a fully algorithmic way which come very close to
the optimal lifetime, when scheduling moments are predefined (e.g., at load
changes). The analytic approach, on the other hand, shows that battery
scheduling is actually trivial when the moments when batteries are switched
can be chosen freely. The system lifetime is not influenced by the schedule,
but actually by the number of switching points that are allowed: the more,
the better. A further result is that the optimal system lifetime for M batteries
and a given load function can be expressed analytically, i.e., there is a natural
upper bound on the system lifetime which can not be exceeded by even more
clever scheduling.

Structure of the paper. In Section 2 we introduce the necessary prelimi-
naries of the kinetic battery model and of linearly-priced timed automata. In
Section 3 we describe how we derive battery schedules from an LPTA model.
In Section 4 we compare the obtained optimal with some deterministic sched-
ules. In Section 5 we show optimal schedules can be obtained analytically.
In Section 6 we discuss the LPTA and the analytic approach. In Section 7
we discuss related work and conclude in Section 8.

2 Preliminaries

2.1 Kinetic battery model

The battery model we use is the Kinetic Battery Model (KiBaM) [12, 13, 14],
which describes two essential non-linear properties, the rate-capacity effect
and the recovery effect [10]. The former is the effect that less charge can be
drawn from a battery when the discharge current is increased. The latter is
the effect that a nearly discharged battery can recover in a period with no
or low current and make some more charge available again.

In the KiBaM the battery charge is distributed over the available-charge
well (ACW) and the bound-charge well (BCW) (cf. Figure 1). A fraction
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Figure 1: KiBaM

y1(0) = ¢- C of the initial total capacity C' is put in the ACW, and a fraction
y2(0) = (1 —¢) - C' in the BCW. The ACW supplies electrons directly to
the load i (t), whereas the BCW supplies electrons only to the ACW. The
charge flows from the BCW to the ACW through a “valve”, where the
flow rate depends on a conductance parameter, k, and the height difference
ho(t) — hi(t) between the two wells, where the heights of the two wells are
given by: hy(t) = yl—gt) and hs(t) = yf—_(i) The change of the charge in both
wells is then described by the following system of differential equations:

{ n(t) = —i(t)+k(ho(t) — ha(t)), (1)
Ya(t) = =k (ha(t) = ha(t)).

The battery is considered empty at time ¢ € R.y when there is no charge left
in the available charge well, i.e., y;(t) = 0.

A coordinate transform, applied to Eq. (1), makes the handling of the
KiBaM easier. Obviously, the height difference §(t) = ho(t)—hy(t) plays a
major role, which becomes one of the coordinates after the transformation.
The other is the total charge v(¢) = y1(t)+y2(t). The transformed differential
equations become:

{s(t) = D s, -
y(it) = —i(t),

where k' = (1fc)c. The initial conditions change to 6 (0) = 0 and 7 (0) = C.

The condition for the battery to be empty is v(t) = (1 — ¢)d(¢).




2.2 Discretization of the KiBaM

In this section a discretized version of the KiBaM is introduced, called
dKiBaM. In the dKiBaM, the discharge and recovery processes governing the
KiBaM are separated. Time is discretized in time steps of size T'. Within a
time step the discharge current is assumed to be constant. For a constant
current I, the total charge decreases linearly. The total charge is discretized
in N parts of size I' = C'//N. It takes I'/ (I - T') time units to decrease the
total charge with one charge unit at rate I. At the same time, the discharge
with current [ will increase the height difference with I'/c. This will be the
step size of the discretization of the height difference. Once some charge
is drawn from the ACW charge will start to flow from the BCW to the
ACW . This is a non-linear process, described by the second part of the first
equation in (2), 8(t) = —k'8(t). The solution to this differential equation is
5(t) = 0(to)e **. If at time point to, (o) = m - I'/c, the time ¢ needed to
decrease the height difference by one unit is

- —%m (%”) (3)

The number of time steps needed to decrease the height difference by one unit
is obtained by dividing this time by 7" and rounding to the nearest integer.

2.3 Linearly Priced Timed Automata

The basic ingredients of Linearly Priced Timed Automata (LPTA) [3, 4]
are locations, switches, clocks, guards, and invariants. Figure 2 depicts a
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Figure 2: Model of lamp

simple LPTA, which models the behavior of a lamp. Location off is the
starting location. While the switch from off to low (abbreviated off— low) is
executed (triggered by the environment over channel press), clock y is reset
to 0. Clocks are real-valued variables which are used to measure time: clock



values increase linearly with rate 1 as time progresses. Clocks are used to
express enabling- and urgency-conditions for transitions depending on time.
The switch low— bright is executed when triggered by the environment, again
over channel press. This transition is guarded by expression y < 5, i.e., only
if clock y < 5, this switch can be executed. Thus, if the environment triggers
channel press a second time within 5 time units since the first, the lamp
switches to brighter light. Locations low and bright are both annotated with
the invariant y < 10, which means that both locations can only be occupied
as long as y < 10 holds. During this time, the location must be vacated via
low — off or bright — off. Since both switches have guard y == 10, this will
happen precisely at the time when clock y reaches value 10.

Switching on a lamp and letting it burn uses energy, which defines costs.
To account for these costs, LPTA have a global cost variable cost which
can be explicitly increased while executing a switch (as is done with switch
off—low), or which is increased implicitly as time progresses. For the latter,
locations can be annotated with cost rates. In locations low and bright we
have the extra “invariants” cost’ == 10 and cost’ == 20, respectively, which
indicate that the energy consumption is 10 and 20 units per time unit in
the respective locations. When staying in these locations, cost is implicitly
increasing with time, with rate 10 and 20, respectively.

2.4 Schedule generation using LPTA

Uppaal Cora [1] is a model checker for LPTA, i.e., a tool to check whether
the modeled LPTA has certain properties which are expressed as logic for-
mulae in a fragment of the timed computation tree logic [2]. An important
problem to solve for LPTA to make model checking feasible is minimum-
cost reachability, i.e., given an LPTA and a target state (where a state is
a combination of a location and additional information about the clocks),
determine the minimal cost of all paths leading from the initial location to
the target state [4], while meeting a certain time bound. In [3, 4] it has
been shown independently that this problem is effectively computable. This
very important result allows to use LPTA for schedule generation as follows.
LPTA models can be nondeterministic. A model checker like Uppaal Cora
can find paths—starting in the initial location—through the state space of
a timed automaton to target states and compute the minimal cost to do so.
These paths resolve nondeterministic choices on the way to the target. The
idea of schedule generation with model checkers is to model the system to be



scheduled (which is thus a combination of resources and load), but to leave
the scheduling decisions open, i.e., nondeterministic. If a certain schedul-
ing objective can be formulated as a state property of this system, then the
model checker can be employed to find such a state and the path leading to
it; the determined path is a schedule. Finding the cheapest path to the target
state yields an optimal schedule.

3 LPTA battery scheduling model

The behavior of batteries, as described by the dKiBaM, can be modeled using
LPTA. The problem to generate schedules which maximise the life-time of
a system using more than one battery can also be solved using the cost-
minimal reachability algorithms as implemented in Uppaal Cora. The cost to
be minimized is the total charge left in the batteries at the time when none
of them can be used anymore, i.e., when all ACW are empty.

3.1 Basic battery model

The discharge and recovery behavior of the dKiBaM is modeled essentially by
two LPTA, one, DC, modeling the discharge process, the other one, RC, the
recovery process. A simplified, abstract version of these automata is shown
in Figures3 and 4. Every battery is identified by the respective local variable
id. Both automata operate on global integer arrays. The array ~[id] keeps
track of the total charge in battery id, and d[id] of the height difference of
the wells.

The discharge automaton in Figure 3 starts in location [, and waits for a
signal on channel go_on. Once this arrives (i.e., the battery is scheduled for
use), with the switch from [y to [y, clock x is set to 0. In a globally available,
pre-computed array epoch[j], which is part of the load description, the time
required to deplete the battery by one charge unit is stored. Once clock =
has reached value epoch[j], the self-loop transition of [; is executed, which
decreases v[id]| by I[j], the number of charge units drawn in epoch j, and
increases the height-difference §[id] by the same amount. The global epoch
counter j is increased, and z reset to 0.

The recovery automaton in Figure 4 works autonomously, and depends
on the value of §[id]. Starting in location dy, the switch to d; is taken once
d[id] > 0. Then the self-loop is executed until 0[id] is equal to 1. With
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Figure 3: Discharge automaton DC
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Figure 4: Recovery automaton RC

the transition back to dy the height difference is set to 0 again. Important
in this automaton is the timing. The time it takes to decrease the height
difference by one unit depends on the height difference itself. Those times
are pre-computed and kept in the array rec_time: the value rec_time[d[id]]
is the time it takes to decrease d[id] by one. The selfloop of d; is, hence,
executed every rec_time[d[id]] time-units, upon which d[id] is decreased by
one.

Two more automata, which are not described here, have to be defined
to complete the model: one to describe the load applied to the battery, the
other to describe the scheduler, which makes the non-deterministic choice
between the still-available batteries. The total system S with M batteries is
then the parallel composition of the automata,

S = (DCY||RCY) || ---|| (DCB||RCE) || Load || Scheduler,

where the indices 1,..., B serve also as the id parameter. A detailed de-
scription of the Uppaal Cora model can be found in [11].



3.2 Battery scheduling

The scheduling decisions in the LPTA model are kept non-deterministic, in
order to allow Uppaal Cora to make the optimal decisions. If several automata
components are replicated to model M batteries, the nondeterminism lies in
the M discharge automata (Figure 3), which all wait for a signal on channel
go_on to start. Only one can actually consume the signal, once it it is sent by
the Scheduler automaton. Which one this is, is decided nondeterministically.

The optimality criterion of a schedule is the length of the lifetime of the
system: the longer, the better. This criterion has to be translated into a cost
function that can be minimized by Uppaal Cora. The cost that is incurred is
the charge in the bound charge well of the batteries that is still available, but
can not be used anymore because the available charge has once been emptied.
At the end of a run, this remaining charge is added to the cost-variable, and
the run is evaluated based on that.

3.3 Complexity

The complexity of finding the optimal schedule clearly depends exponentially
on the number of scheduling decisions that have to be made, where the
number of batteries (M) is the base. At every scheduling point one can
choose between all M batteries. The number of scheduling points depends
on the battery’s capacity and the load applied.

Between the scheduling points the model behaves fully deterministically.
The number of states in between two scheduling points will depend on the
granularity of the discretization. The maximum number of state changes
that can be made due to discharging is N = C'/T", when all charge units are
drained one at a time. The maximum number of state changes due to recovery
is not so easy to define. However, it will be proportional to 1/A. Since in
the model A = I'/¢, the maximum number of states will be proportional to
(1/T)%. The discretization of time will not influence the maximum number
of states. Introducing smaller time steps will only increase the number of
time steps it takes to change states.



test sequential round robin best-of-two TA-KiBaM

load lifetime  difference lifetime lifetime  difference lifetime  difference
(min) % (min) (min) % (min) %
CL_250 9.12 -21.4 11.6 11.6 0 12.04 3.79
CL_500 4.10 -9.5 4.53 4.53 0 4.58 1.1
CL.alt 5.48 -10.2 6.10 6.12 0.3 6.48 6.2
1Ls_250 22.80 -41.5 38.96 38.96 0 40.80 4.7
1Ls_500 8.60 -17.9 10.48 10.48 0 10.48 0
ILs_alt 12.38 -3.4 12.82 16.30 27.2 16.91 31.9
11.£_250 45.84 -39.7 76.00 76.00 0 78.96 3.9
1L¢_500 12.94 -18.9 15.96 15.96 0 18.68 17.0

Table 1: System lifetime computed for all test loads according to the four
scheduling schemes. Next to the values of the lifetimes, the difference relative
to the round robin scheme are given.

4 Scheduling results TA-KiBaM

4.1 Test loads

We use the multiple battery priced-timed automaton model to find the sched-
ule that gives the longest lifetime for a system of two batteries on a set of test
loads. We use two batteries with capacity 5.5 Amin (Ampere-minute). The
battery parameters are: ¢ = 0.166 and &' = 0.122 min~! [10], corresponding
to the lithium-ion battery used in the Itsy pocket computer, which was also
simulated by Rakhmatov et al. [15, 16]. In [11], the TA-KiBaM model has
been validated for the same batteries.

The time step size is set to 0.01 min. The total charge is discretized in
steps of size 0.01 Amin. This leads to the discretization step size of the height
difference of 0.01/¢ = 0.06 Amin.

The Itsy pocket computer operates with currents up to 700 mA. In the
test loads we used two types of jobs, a low current job (250 mA) and a high
current job (500 mA). With these jobs, eight different test loads have been
created:

e three continuous loads (CL) with no idle periods between the jobs: one
load with only low current jobs (CL_250), one with only high current
jobs (CL_500), and one alternating between a low current job and a
high current job (CL_alt).

e three intermitted loads with short idle periods of one minute between
the jobs (ILs) : one with only low current jobs (ILs_250), one with only
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high current jobs (ILs_500), one alternating between a low current job
and a high current job (ILs_alt).

e two intermitted loads with long idle periods of two minutes between
the jobs (ILf): one with only low current jobs (IL/_250) and one with
only high current jobs (IL¢_500).

Next to computing the maximum lifetime, we used the TA-KiBaM to
compute the lifetime using three deterministic scheduling schemes:

e Sequential scheduling. The batteries are used sequentially, i.e., the
second battery is only chosen when the first one is empty.

e Round robin scheduling. For every new job a new battery is chosen.
The batteries are chosen in a fixed order.

e Best-of-two scheduling. At the start of a job, the status of the batteries
is checked. The battery with the most charge in the ACW is chosen
to supply the charge for the job. Note that this requires the possibility
to “measure” the charge in the ACW, a feature that is mostly absent
in practice.

The scheduling decisions for the given load functions are made at the
beginning of new jobs (except at time 0), which in the case of the CL loads
are equidistant points in time, and for the other loads whenever the load
changes. The computed lifetimes are given in Table 1, along with the relative
difference to the lifetime using the round robin scheduling. For the test loads,
one can see the order in performance of the different scheduling schemes. One
can easily show, using the Uppaal Cora model, that the sequential scheduling
is actually the worst possible way to schedule the batteries. For the test loads
the round robin and best-of-two scheme differ only for alternating jobs. These
cases are clearly very bad for the round robin scheme, since the heavy load is
always put onto the same battery. This battery will get empty very fast, and
then only one battery is left to handle all of the remaining load, leaving this
battery with less idle time to recover. The best-of-two scheme balances the
load better over the two batteries, which leads to a longer lifetime, especially
in the ILs_alt case. In the other cases the best-of-two scheme behaves exactly
like the round robin scheme. Although the round robin and best-of-two
schedulers perform close to the TA-KiBaM scheduler in most cases, for some
loads the schedules lead to significantly shorter lifetimes. The TA-KiBaM
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scheduler yields lifetime improvements up to 32%. Of course, it has to be
noted, that the TA-KiBaM scheduler is not practically useable, since one
needs to to know the exact load function in advance.
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Figure 5: The schedules and the total and available charge in the batteries
for the best-of-two (a) and the optimal (b) schedule for the ILs_alt load.

Besides the system lifetimes, the Uppaal Cora evaluation of the TA-KiBaM
also provides the actual schedules which lead to these lifetimes, as well as the
evolution of the charge in the battery. Figure 5 shows the evolution of the

total and available charge in the two batteries (left y-axis) for both the best-
of-two scheduler (Figure 5(a) and the TA-KiBaM scheduler (Figure 5(b)), in

12



the IL1_alt case. In the figure, also the two schedules (right y-axis) are shown.
When a battery is chosen, one can see the total and available charge decrease
due to the load. The slope of the curves is proportional to the discharge
current. When a battery is not used, one clearly observes the recovery effect.
Note that, when the batteries are empty, still a relatively large amount of
charge remains in the battery (approximately 3.9 Amin per battery). Due
to the high complexity of finding the TA-KiBaM schedule, it is possible to
model only a limited total battery capacity. The used discharge currents are
relatively high for the battery’s capacity, and will drain the available charge
well fast. Therefore, there will be little time for the bound charge to become
available, and a large fraction will remain unused. When the battery capacity
is increased this fraction will be smaller. Using the deterministic scheduling
scheme, we can compute the results for larger capacities. For example, with
a ten times larger capacity, the fraction of charge left behind in the batteries
will be less than 10% in the case of best-of-two scheduling.

When we look at the two schedules in Figure 5, we see that the best-of-
two schedule acts like a round robin scheduler that switches batteries after
the high current jobs. The TA-KiBaM schedule seems to behave randomly,
no direct relation between the state of the batteries and the schedule can
be made. The TA-KiBaM schedule does depend strongly on the size of the
batteries and their parameters, as well as on the load that is applied.

4.2 Towards random loads

The test loads presented in the previous section are very regular. The dis-
charge current switches after fixed time periods. However, most realistic
loads are not regular and have discharge and idle periods of random length.
As a first step towards more realistic loads we introduce discharge periods
of random length. The load profile we use is still an on-off load, where the
discharge current switches between 250 mA and 0 mA. All off-periods last
one minute. However, the lengths of the on-periods are chosen from a uni-
form distribution on [%mfm, %m’m] The scheduling decision is made at the
start of each on-period. To see how the different scheduling schemes perform
for this random load, 500 load traces have been generated. For each of these
traces the system lifetime under the four scheduling schemes has been com-
puted for two batteries with 5 Amin capacity. Since the loads are random,
the result is now an empirical distribution. The results are shown in Figure
6. Like with the test loads, the sequential scheduler results in much shorter

13



lifetimes than the other schedulers, and is far from optimal. On average the
TA-KiBaM scheduler outperforms the sequential scheduling scheme by 70%.
The results of the round robin scheduler and the best-of-two scheduler lie
close to each other, although the latter performs slightly better. The sched-
ules of TA-KiBaM outperform round robin and best-of-two by 10% and 8%,
respectively.

031

. . -
[ ]TA-KiBaM
best—of-two|
0.251 I round robin |
I sequential

0.2r

fraction

15 20 25 30 35 40 45
time (min)

Figure 6: Lifetime distributions of the four scheduling schemes for 500 ran-
dom loads.

5 Nonuniform scheduler generation

The LPTA approach described in Section 3 was based on the assumption
that a scheduling decision must be made at predefined points in time. Even
with this restriction, schedule generation for realistic battery capacities is not
feasible due to an exponential growth of the time needed to assess all possible
schedules. In this section we investigate a slightly more general scheduling
problem, which differs in two points. First, the question is not only to choose
the optimal among available batteries, but also when to do this; second, a
battery can be reused after its ACW has been completely drained and some
recover period afterwards. The chosen approach to tackle this scheduling
problem is analytic.
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Figure 7: Control function u(t) and the available charges y%l)(t) and y%z) (t).

5.1 Identical batteries

Consider M identical batteries with parameters ¢, k, and C'. A switching
mechanism is a collection of M functions [u®, ..., u®)] with ul?(t) : Rso —
{0,1}, j € {1,...,M}. uY)(t) = 1 iff battery j is selected at time ¢. Note
that Z]Ail u(t) =1, for t > 0.

When a battery is selected, a charge is drawn from it with current i(¢).
Given the switching mechanism [u(l) CuM )] , the available and bound charges
of all M batteries can be expressed using the system of ODEs in Eq. (1):

i) = =i +k (h0) - 1),

yéj)(t) - _k (hgj)(t) _ hg”@)) ’ (4)

where yﬁj ) is the available charge and yéj ) is the bound charge in battery j.
Here we take again the initial conditions y%j)(O) = c-C and yé])(O) = (1—¢)-C,

; (4)
where C'is the total initial battery charge. Similar as before, h(lj )(t) = Lc(t)

: )
and h{)(t) = y{—_(ct)

Example 1 Figure 7 depicts the available charge of two batteries, where
the switching functions ) (¢) := u(t) and u®(t) ;= 1 — u(t) are defined in
terms of the piecewise constant control function u. Note that in the interval
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of time [tg, t1), the first battery is selected and therefore the available charge
decreases, while the available charge of the second battery remains constant.
When in the interval of time [¢;,¢2) the second battery is selected, the avail-

able charge y?) (t) decreases, while y%l)(t) increases due to the recovery effect.

Given M batteries with identical parameters k, ¢ and C, and a switching
mechanism [u() ... u®)], the total available charge §;(t) = Z]]\il y (1) and

bound charge 7,(t) = Zj\il yéj ) (t) at time ¢ is given by the following theorem:

Theorem 1 The total available charge ¢;(¢) and the total bound charge
U2(t) is given by the following system of ODEs:

{ () =—i(t)+k(ha(t) — ha(t)), 5)
h(t) = —k(ha(t) — hu(t)),

where hy(t) = ng(t), ho(t) = yf—f? and the initial conditions are ¢,(0) = M-c-C

and 92(0) = M - (1—¢) - C.

Proof: By adding up Equations (4) for all j = 1,..., M, and the fact that
Zj]‘/il u)(t) =1 for all t > 0.

Theorem 1 shows that the total remaining available charge of M batteries
at any time ¢ is equal to the total charge of a single battery B with initial
capacity M-C', and parameters k£ and c¢. More remarkable is the fact that
the total remaining charge of all M batteries does not depend on the control
functions [u(l) couM )] at all. This surprising result will be pivotal in the
following investigation.

For a constant load function i(¢) = L with L > 0, the solution to Eq. (5)
can be derived as

L(1— ,

() = —cLt + eMc — 219 (1 ek t) (6)
k/

and

inlt) = ~(1- 1t + (-0 + 207D (1w

where k' = c(1li - The available charge 71(t) from Eq. (6) is monotonously

decreasing due to the fact that d%—t(t) < 0. Also notice that lim;_, 71(t) =

—o0. There exists therefore a time point ¢; > 0 where g (¢;) = 0, and for all
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T > ty, 1(ty + 7) < 0. One could say that ¢; is the maximum total lifetime
achieved by M batteries under any switching mechanism [u ... u*)]. The
maximum total lifetime ¢4 can be expressed analytically as follows:

MC 1 1 l—c _mow  1-c
tfiﬁf*@(“‘a*w<iiel‘+fn @)
where W is the Lambert W function.

Theorem 1 proves that it is rather simple to obtain the optimal lifetime
of M batteries: the problem can be reduced to finding the maximum total
lifetime of a single battery B with M-fold initial capacity, and otherwise
identical parameters k£ and c.

Unbalanced case. Eq. (6) describes the evolution of 3; and g for the
special case of a initial height difference of 0 between ACW and BCW, and
initial charge MC. The equations can be generalized to the unbalanced
case, where the total charge is distributed over ACW and BCW with a
non-negative height difference. This is defined by the following equations:

Yi(Th, o Lot) = —cLt +c(ih +72) + (1—=)j1 — ¢ - o )e ¥
_(1—];)L(1 —— 8)
Yo, o Lt) = —(1—c)Lt + (1—¢)(f1 + T2) + (clz — (1=)jy)e
(1—c)L

+ 7 (1—671{%),

where y; (91, U2, L, t) is the charge in the ACW after ¢ time units have passed,

1 is the charge in the ACW, 95 is the charge in the BCW (both at time 0), L

is the constant current applied, ¢ the time and k' = c(1li 3 The initial total

charge is thus ; + g2, and the initial height difference & — % which, for
the equations to be valid, we assume to be nonnegative. It is straightforward
to verify that g;(t) (Eq. (6)) equals y;(cMC, (1—c)MC, L,t) for i = 1,2, and
that y;(y1, Y2, L, t + ') = yi(yy, U5, L, ') with §; = y;(41, 92, L, 1), for i = 1,2.

For the unbalanced case, the total remaining lifetime for a constant load
can be expressed as

_ ity l-c

Ly (L= 0@k + 1) =k’ _mgmoig))
k! cL
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where again W is the Lambert W function, and other parameters as before.

5.2 Greedy scheduler algorithm

Theorem 1 suggests that to reason about the scheduling of batteries is un-
necessary, since any switching mechanism would do. However, this is only
true under certain unrealistic assumptions. Again we consider M batteries
controlled by a piecewise constant switching mechanism [u® ... u)]. The

theorem does not take into account that for all batteries yij )(t) > 0 must
hold at all time. Furthermore, the condition ¢;(t;) = 0 with ¢; being the
maximum lifetime of B for given load i(t) indicates that for each individ-

ual battery j, y%j)(tf) = 0, i.e., the ACW of the M batteries must all be
empty at this precise point in time. The total charge left in the batteries is
MC — Lty, i.e., there must be several batteries ¢/ € I C {1,..., M} such

that yéi,)(t) > 0. The batteries i" € I thus still have potential for recovery at
time ty. The discrete switching functions u") must then have the property
to switch faster and faster between batteries as ¢ approaches ¢y, in order to

ensure that ), ; y%i/)(tf) = 0 and no battery has time to recover from its
BCW: in the time interval [0, ;] thus an infinite number of switching points
must occur.

In practice, it is unrealistic to assume an infinite number of switching
points. In the following, we thus consider only a finite number N of switches
and investigate how to place them in the interval [0,¢;]. The time line is
thus divided into N+1 pieces, such that for all ¢t € [ty,tprq1), 0 < £ < N,
ul)(t) = 1, if the j'th battery is selected in the interval [t;, e 1). to = 0 is
not considered a switching point. The total lifetime in this setting is defined
as the time ¢y, which is the time when the available charge of the battery
chosen last at time ¢ty reaches 0. Note that ty.; is also not a switch, and
the uV)(t) are constant for ¢ > ty.

Constant load. Initially we consider that the load function i(t) is constant,
ie., i(t) = L, for all t € Ry.

Therefore, for the j’th battery and ¢ > 1 the available and bound charge
can be computed recursively as follows, using Eq. (8):

yij)(tz) = y1(§17§2aﬂ§j)Late—tzfl)a
yéj)(tz) = y1(§17§2aﬂ§])Late—tzfl)a (10)
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Total lifetime

o 2 4 6 8 10 12 14 16 18

N switches
Figure 8: Dependence of the total lifetime regarding the number of switches
for three constant load functions and two batteries.
where g1 = yi’ (t,_1) and 5o = y5” (tr—1), 1 (to) = ¢+ C, 9’ (to) = (1—¢) - C,
to = 0 and uV)(t) = @) € {0,1}, for all t € [to_y, t,).

Scheduling problem: Given M batteries with parameters k, ¢
and N +1 switches, the scheduling problem is to find all switching
time points ¢, and '&EJ), 0<?¢<N,je{l,...,M}, such that
yﬁj )(tg) > 0, and the total lifetime tn11 is mazimized.

The problem is thus now to find a good schedule for a given number of
switching points N + 1. However, Theorem 1 already indicates that it is not
the schedule that is relevant. As it turns out, more important is the number
of switching points that is allowed, which is clearly indicated by Figure 8.
There, the x-axis represents the number of switching points, the y-axis the
optimal lifetime that can be achieved with the number of switches. We see
three curves for different constant load functions. The number of batteries
is M = 2. We see clearly that for L = 0.1 A, the total lifetime is nearing
asymptotically a constant, which is actually the optimal lifetime ¢¢. For the
higher loads, the same phenomenon can be observed.

We are now in a position to define a family of schedules for any number
of identical batteries M.

Definition 1 (Greedy schedule generation)

e Find all time points ¢y, ¢ € N, such that t) <t <--- <ty <ty < ...
such that for n € N it holds: yij)(tn.MH) =0, and
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° u(j)(t) = ag)Mﬂ =1, forallte [tn.M+j_1, tnnitj)-

Informally the greedy scheduler (GS) works as follows: initially the first bat-
tery is drained until y%l)(tl) = 0, then we switch to the second battery and so
on. When the M’th battery is drained at time point ¢y, i.e., yfj)(tM) =0 we
switch back to the first battery and the scheduler algorithm continues from
there on. This scheduler behaves like the sequential scheduler in Section 4
with the improvement that the batteries are allowed to be reused after being
emptied. Note that in general the number of switching points ¢, is still in-
finite. This can be mended by just using the first N points of the schedule,
if N is given in advance, or stop switching once the condition ¢, — ¢, < ¢,
€ € Ry for some ¢ € N, holds. Then we set NV = ¢+ 1. In this case the total
lifetime will be ty1.

Piecewise constant loads. Assume a piecewise constant load function

which is defined by right-open, left-closed intervals I1 = [0, Dy), Iy = [Dy, D3), . ..

with interval width dy, ds, ... (see Figure 9 for an initial piece) and constant
currents Ly, Lo, . .. on the respective intervals. The switching points t,, £ € N,
are defined precisiely as in the constant case (cf. Definition 1). However, the
question is, how to compute these points effectively? This can be done in
an iterative manner, using Eq. (8) and Eq. (9). Assume switching points
to,...,ty_1 already given and battery j chosen as the next battery at time
te—1. Assume also that ¢, € I, = [Dy—1, D). Let 41,72 be the available
charge of battery j at time t,_;.

A
i(t) Ly Ls
NI B
Ly
- L L3 - —
dy i d - ds - dy - ds :
Dl D2 D3 D4 D5

Figure 9: Example of a piecewise constant load function i(t).

1. If t4(G1, 52, Lm) > Doy st 55 = yn (i1, G2s Lin, Do — te—1) for n = 1,2.

Otherwise, set ty = t¢(y1, Y2, Ly,) and terminate.
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2. compute the values g,(}), e ,gﬁf) for n = 1,2 and v > 1, using the

boundary points of intervals I,,11, ..., Iy, Where v is determined by
the condition ¢ f(gﬁv), B Linss) < Do Then set t; = t f(gﬁv), B Lonso)
and terminate.

The switching points t,, £ € N can be computed successively using this
scheme, starting with 5 = 0.

Note that there is in fact no proof that an infinite schedule generated
by the GS algorithm would actually approach the maximal lifetime. This
is an open problem, subject to further investigation. However, experimental
results show that the proposed scheme comes very close to the optimal life-
time, which also for piecewise constant loads is determined by the ODE in
Theorem 1.

5.3 Alternative solution

Besides the schedules generated by the GS algorithm, we can generate sched-
ules by specifying the scheduling problem as an optimization problem. To
do so, we need to pick an objective function, i.e., the function which needs
to be maximized, and a set of constraints.

The objective function is defined as Zé\io(t@+1 —ty), i.e., the total lifetime
tyi1- The set of constraints will represent the available charge at time points
te, 1 < ¢ < N+ 1. Using Eq. (8), we define more formally the optimization
problem as follows:

maximize 5o (ter1 — o)
subject to yij)(tg)zo, te{0,...,N+1},5€{1,...,M}.

Here we assume the load function i(¢) is constant. Also, as for the GS
algorithm, we take u()(t) = afjﬁ’MH =1, for all t € [tpartj—1,tnn4y), for
n € N.

The above optimization problem is a nonlinear programming problem due
to the fact that the set of constraints are nonlinear functions. It is important
to note that by Wisel%/ choosing the set of constraints, i.e., consider only the
set of constraints y? (t¢) > 0 such that t, is the time point when the j’th
battery is discharging, the above nonlinear programming problem becomes
a convex optimization problem. Note that this will hold as soon as the

load function is constant. As the optimization problem is convex any local
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test GS algorithm TA-KiBaM

load lifetime lifetime
(min) (min)
CL_250 12.16 12.04
CL_500 4.53 4.58
CL_alt 6.45 6.48
ILs_250 44.77 40.80
ILs_500 10.80 10.48
ILs_alt 16.93 16.91
IL¢_250 84.90 78.96
1L/_500 21.86 18.68

Table 2: System lifetime for the test loads using the greedy schedules and the
TA-KiBaM schedules. For the highlighted loads the greedy schedule leads to
a significantly longer lifetime.

minimum is also a global one. Convex optimization problems can be solved
efficiently, for instance by using interior-point method algorithms [7].

5.4 Greedy schedule algorithm results

The system lifetime for the test loads introduced in Section 4.1 has also been
computed using the GS approach. The results are given in Table 2. For
most of the test loads the results are close to the lifetimes obtained by the
TA-KiBaM scheduler. However, for three of the loads the schedules obtained
from the GS approach result in a significantly longer lifetime. This difference
is due to the fact that the TA-KiBaM scheduler can only switch batteries
at fixed points in time, while in the GS schedule batteries may be switched
at any time. The limitation in switching options may result in one of the
batteries being emptied sooner, and thus giving a shorter system lifetime.

Besides that the schedules of the GS approach lead to longer lifetimes,
the GS approach has one major benefit compared to the TA-KiBaM. Where
the TA-KiBaM cannot handle batteries with large capacity due to the ex-
ponential growth of the state space, the GS approach can cope with larger
batteries.
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6 Discussion

In this section we compare the TA-KiBaM and the analytic approaches.
The TA-KiBaM produces schedules for given load functions and predefined
scheduling points. At these scheduling points a switch between batteries can
occur, but does not have to. In the considered scenarios, decision points are
predefined and coincide in the non-constant cases with the times where the
load changes. While this choice was made to keep the schedule generation
within reasonable time and memory-bounds, it is of course straightforward to
define more or different scheduling points. The more there are, the better the
resulting schedules should approximate the results of the greedy scheduler.

In the case of batteries with identical parameters, Theorem 1 suggests
that proactive scheduling as done with the TA-KiBaM is hardly necessary:
as long as the internal state of a battery is accessible or reasonably well
predictable, the greedy scheduler can be easily implemented, and optimal
usage of a battery achieved. The situation changes however, when batteries
with different parameters are considered (as is done for example in [18]). In
that case Theorem 1 does not hold anymore. However, an adapted version
of the TA-KiBaM can then still be used to derive schedules.

A related question is whether Theorem 1 does not in fact suggest to aban-
don scheduling altogether, at least if identical batteries are involved: since
two batteries with identical parameters behave apparently like one battery
with the same parameters and double capacity, one could conjecture that
it is possible to just put two identical batteries in parallel and drain them
as one big battery. However, this conjecture needs to be validated, i.e., it
requires experimental evidence that two batteries indeed behave as one bat-
tery with the same KiBaM parameters when put in parallel. In particular,
voltage, which is abstracted away in the KiBaM, becomes an issue. Even for
two batteries of the same type a difference in the potential of the batteries
can occur. Then a current will flow between the batteries, resulting in loss
of capacity and possibly damage to the batteries. Using batteries in parallel
requires extra electronic circuitry which consumes some power and decreases
efficiency. Scheduling could reduce the power consumption, and at the same
time approach the optimal lifetime.

There are also situations where scheduling is preferable over putting bat-
teries in parallel, for example, routing in a sensor network, as described in
Section 1
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7 Related work

Optimal scheduling of batteries has attracted quite some attention in the
literature. We consider here the main approaches.

In [8], Chiasserini and Rao use a discrete-time Markov battery model to
compare three different scheduling schemes in a multiple battery system. In
the model, the recovery of the battery is considered as a random process.
Also the load applied is stochastic. The complexity of the used model limits
the battery capacity to very small batteries. The three schedulers that are
considered are the round robin and best-of-two scheduler, which are also used
here, and a random scheduler. The schedulers are compared for different job
arrival rates. The results show that the best-of-two scheduler outperforms
the other two. However, the model does not allow for any optimization with
respect to battery schedule.

Also in [6] the analysis is limited to deterministic schedulers. Benini et
al. consider sequential scheduling, round robin scheduling and various types
of best-of-two scheduling, where either the output voltage or the time that a
battery has been unused determines which battery is to be scheduled. The
different scheduling schemes are applied to several battery configurations
containing up to four batteries. The loads that have been used are sim-
ple continuous and intermitted loads and two real-life example load profiles.
Which scheduler performs best depends on the applied load. However, Benini
et al. do show that for round robin scheduling the system lifetime increases
when the switching frequency is increased.

A completely different battery scheduling approach is taken in [18]. In-
stead of using two identical batteries, Wu et al. use two batteries with dif-
ferent discharge characteristics. The first battery has a high capacity and
performs well at low discharge currents, whereas the second has a lower
capacity but performs better at high discharge currents. The scheduling de-
cision is taken with respect to the level of the discharge current. In this way
both batteries are used only for currents where they perform the best. Wu et
al. show that this way of scheduling may lead to a 30% lifetime improvement
compared to using only one type of battery.

In all this work the battery scheduling is limited to deterministic schedul-
ing schemes. All show that battery scheduling gives longer system lifetime
than when the batteries are used sequentially. However, they do not indicate
whether longer lifetime could be possible by using smarter scheduling. In [17],
Sarkar and Adamou propose an algorithm for computing an optimal schedul-
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ing scheme based on the stochastic battery model of Chiasserini and Rao.
To do this they translate the problem to a stochastic shortest path problem.
The optimal solution can only be computed for small batteries. However,
they do show that best-of-two scheduling performs close to optimal.

8 Conclusions

In this paper we provide two different approaches to maximize system life-
time by battery scheduling. The first approach models a discretized version
of the KiBaM using linearly priced-timed automata. In this approach the
scheduling decision is made at predefined points in time, e.g., at load changes.
With model checking techniques the best possible battery schedule is found,
up to an error due to the discretization.

In the second approach, an analytical analysis of the KiBaM is made. The
main result is that the actual schedule is not important when one can change
between batteries at arbitrary points in time. Based on this conclusion, we
propose a greedy scheduler algorithm that only switches batteries when the
one used is perceived as empty.

The results show that both approaches lead to significant longer lifetimes
compared to simply using the batteries sequentially. With the greedy algo-
rithm it is possible to do computations for larger and more batteries, which
is not possible with the TA-KiBaM. However, the TA-KiBaM allows for ex-
tra limitations on the time of scheduling, and the model checking techniques
ensure that the best possible schedule will be found.

The modeled battery is a lithium-ion battery. This type is used in most
handheld mobile devices. It would be interesting to see whether battery
scheduling would also beneficial for other battery types, e.g., those that are
used in big systems like electric cars.
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