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Abstract We present a general framework for computing parameters of dynamic

networks which are modelled as a sequence G = (G1, G2, . . . , Gδ) of static graphs

such that Gi = (V,Ei) represents the network topology at time i and changes be-

tween consecutive static graphs are arbitrary. The framework operates at a high level,

manipulating the graphs in the sequence as atomic elements with two types of op-

erations: a composition operation and a test operation. The framework allows us to

compute different parameters of dynamic graphs using a common high-level strategy

by using composition and test operations that are specific to the parameter. The re-

sulting algorithms are optimal in the sense that they use only O(δ) composition and

test operations, where δ is the length of the sequence. We illustrate our framework

with three minimization problems, bounded realization of the footprint, temporal di-

ameter, and round trip temporal diameter, and with T-interval connectivity which

is a maximization problem. We prove that the problems are in NC by presenting

polylogarithmic-time parallel versions of the algorithms. Finally, we show that the

algorithms can operate online with amortized complexity Θ(1) composition and test

operations for each graph in the sequence.
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1 Introduction

Dynamic networks consist of entities making contact over time with one another.

The types of dynamics resulting from these interactions are varied in scale and na-

ture. For instance, some of these networks remain connected at all times [24]; others

are always disconnected [19] but still offer some kind of connectivity over time and

space (temporal connectivity); others are recurrently connected, periodic, etc. All of

these contexts can be represented as properties of dynamic graphs (also called time-

varying graphs, evolving graphs, or temporal graphs). A number of such classes were

identified in recent literature and organized into a hierarchy in [12]. Each of these

classes corresponds to specific properties which play a role either in the complexity

or in the feasibility of distributed problems. For example, it was shown in [11] that

if the edges are recurrent (i.e. if an edge appears once, then it will reappear infinitely

often), denoted class R, then this property guarantees the feasibility of a certain type

of optimal broadcast with termination detection called foremost broadcast (the time

of delivery of the message at each node is minimized). However, it is not sufficient to

satisfy other measures of optimality, such as shortest broadcast (the number of hops

for the message to reach each node is minimized), or fastest broadcast (the time for

the completion of the broadcast is minimized). Strengthening the property to require

a bound on the reappearance time (class B) makes it possible to achieve shortest

broadcast, and the even stronger property of having periodic edges (class P) enables

fastest broadcast. These three classes have been shown to play roles in a variety of

problems (see e.g. [1,16,25]). Another important class, which is less constrained (and

thus more general), is the class of all graphs with recurrent temporal connectivity (i.e.

all nodes can recurrently reach each other through temporal paths called journeys),

corresponding to class C5 in the hierarchy of [12]. This property is very general, and

it is used (implicitly or explicitly) in a number of recent studies addressing distributed

problems in highly-dynamic environments [5–7,15]. Interestingly, this property was

considered more than three decades ago by Awerbuch and Even [2].

Given a dynamic graph, a natural question to ask is to which of the classes this

graph belongs, or which related properties it satisfies. These questions are interest-

ing in several respects. Firstly, most of the known classes correspond to necessary

or sufficient conditions for given distributed problems or algorithms (broadcast, elec-

tion, spanning trees, token forwarding, etc.). Thus, being able to classify a graph in

the hierarchy is useful for determining which problems can be solved on that graph.

Furthermore, it is useful for choosing a good algorithm in settings where some prop-

erties are guaranteed (as in the above example with classes R,B, and P). Hence,

when targeting a given scenario from the real world, an algorithm designer may first

record some topological traces from the target environment and then test which useful

properties are satisfied.

A growing amount of research is focusing on testing properties (or computing

structures) in dynamic graphs. A seminal example is the computation of foremost,
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shortest, and fastest journeys [8]. The algorithm for foremost journeys in [8] is a

temporal adaptation of Dijkstra’s algorithm. Such an algorithm can be used to test

membership in a number of dynamic graph classes [9] that are characterized by the

existence of journeys including the class of temporally connected networks. Other

algorithms for testing temporal connectivity include [3] and [28], both of which com-

pute reachability graphs (transitive closure of journeys), the second being more gen-

eral than the first, but also more costly. The algorithm in [3] is closer in spirit to the

work in this paper in that the considered model is a sequence of graphs processed one

after the other.

One of the four metrics that we consider in this paper, temporal diameter (i.e.,

how long it takes in the worst case to communicate through journeys), is a general-

ization of temporal connectivity. Godard and Mazauric [18] showed that computing

the temporal diameter is hard when the sequence of static graphs is unknown but each

graph is required to be sampled from a given family of graphs, with various levels of

(in)approximability depending on restrictions of the family. In contrast, each of our

algorithms processes a known sequence of static graphs and has a tractable complex-

ity for the considered metrics. Other examples of work related to the general problem

of testing properties of dynamic graphs include enumerating maximal cliques [27]

and treewidth-based algorithms [22].

In this paper, we present a general framework for computing parameters of dy-

namic networks which are modelled as a sequence G = (G1, G2, . . . , Gδ) of static

graphs such that Gi = (V,Ei) represents the network topology at time i and changes

between consecutive static graphs are arbitrary. The framework operates at a high

level, manipulating the graphs in the sequence as atomic elements with two types of

operations: a composition operation and a test operation. The framework allows us

to compute different parameters of dynamic graphs using a common high-level strat-

egy by using composition and test operations that are specific to the parameter. The

resulting algorithms are optimal in the sense that they use only O(δ) composition

and test operations, where δ is the length of the sequence. The technique is based on

a walk in a composition hierarchy, the elements of which are graphs that represent

the compositions of various subsequences of G. The composition operation defines a

composition hierarchy in which the walk is performed, and the test operation is used

by the algorithm to construct the walk. We investigate both the maximization and

minimization of graph parameters and illustrate our framework with four instantia-

tions of the operations: one solves a maximization problem (T -interval connectivity)

and three instantiations solve minimization problems concerning temporal properties

of recognized importance.

The maximization problem we study is the class of dynamic graphs which are

T -interval connected. T -interval connectivity [21] was shown to play a role in sev-

eral distributed problems, such as determining the size of a network or computing a

function of the initial inputs of the nodes. T -interval connectivity (Class C10 in [12])

generalizes the class of dynamic graphs that are connected at all times [24] (Class C9
in [12]). The definition of T -interval connectivity is closely related to a representation

of a network as a sequence of graphs G = (G1, G2, . . . , Gδ) which correspond to the

state of the topology at increasing times (also called untimed evolving graphs [8]).

Informally, T -interval connectivity requires that, for every T consecutive graphs in
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G, there exists a common connected spanning subgraph. We consider the maximiza-

tion problem of finding the largest T such that a given dynamic graph G is T -interval

connected. We also address the related decision problem of testing if G is T -interval

connected for a given T .

The first minimization problem that we consider is the class of dynamic graphs

with time-bounded reappearance of edges. A graph has time-bounded edge reappear-

ance with bound b if the time between two appearances of the same edge in the graph

G is at most b. This property, together with the knowledge of n (the number of nodes)

and b, allows the feasibility of shortest broadcast with termination detection [10]. We

consider the problem of finding the smallest bound b such that G has time-bounded

edge reappearance, i.e. the smallest b such that every edge that appears in the dynamic

graph G appears at least once in every subsequence of length b of G.

Then, we look at the class of dynamic graphs with temporal connectivity in which

a journey (temporal path) exists from any node to all other nodes. In this class of

graphs, any node can perform a broadcast to all other nodes and can collect informa-

tion from all other nodes. The concept of temporal connectivity is relatively old and

dates back at least to the article [2]. We consider the minimization problem of finding

the temporal diameter of a given dynamic graph G, i.e. the shortest duration in which

there exist journeys (temporal paths) from any node to all other nodes.

The third minimization problem concerns the class of dynamic graphs with

round-trip temporal connectivity meaning that back-and-forth journeys exist between

every pair of nodes. This class characterizes an important property of distributed so-

lutions for information collection problems that require termination detection [12].

We investigate the problem of computing the round trip temporal diameter of a given

graph G, i.e. the shortest duration in which there exist back-and-forth journeys be-

tween every pair of nodes.

The paper is organized as follows. Section 2 contains definitions and some basic

results including observations about the structure of the problems and simple upper

and lower bounds on the numbers of composition and test operations. The general

framework and its properties are presented in Section 3. The framework is applied to

solve four problems in Section 4. Finally, Section 5 discusses parallel versions of the

algorithms and establishes that the problems are in NC (solvable in polylogarithmic-

time on a parallel machine).

2 Definitions and Observations

Let G be a dynamic network modelled as a sequence G = {G1, G2, . . . , Gδ} of static

graphs such that Gi = (V,Ei) represents the network topology at time i. We assume

that the changes between two consecutive graphs in the sequence are arbitrary. The

parameter δ is called the length or lifetime of the dynamic graph G. Observe that V is

invariant; only the set of edges varies.

Let P be a boolean predicate (hereafter called property) defined on a consecutive

subsequence {Gi, Gi+1, . . . , Gj} ⊆ G.
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Definition 1 The maximization problem on G with respect to P is the problem of

finding the largest k such that ∀i ∈ [1, δ − k + 1], {Gi, Gi+1, . . . , Gi+k−1} satisfies

property P (in other words, any subsequence of G of length k satisfies P ).

Definition 2 The minimization problem on G with respect to P is the problem of

finding the smallest k such that ∀i ∈ [1, δ−k+1], {Gi, Gi+1, . . . , Gi+k−1} satisfies

property P .

Definition 3 The decision problem on G with respect to P and a fixed value k is

the problem of deciding whether {Gi, Gi+1, . . . , Gi+k−1} satisfies property P , ∀i ∈
[1, δ − k + 1].

We will use a general framework for computing parameters of dynamic graphs.

The static graphs in the sequence are manipulated as atomic elements with two types

of operations: a composition operation and a test operation. Algorithms to compute

specific parameters are obtained by using appropriate composition and test operations

in the framework. The strategy is based on a walk in a composition hierarchy of

elements which are computed on demand using the composition operation. The test

operation is used to determine which elements of the hierarchy are computed during

construction of the walk. In this paper, we will focus mainly on maximization and

minimization problems. Algorithms for decision problems are easily derived from

the related optimization algorithms. Unless otherwise stated, the edges of the static

graphs are undirected. However, given appropriate composition and test operations,

exactly the same framework can be applied to directed static graphs, and the static

graphs in two of the examples in Section 4 are directed.

Definition 4 (Composition operation) A composition operation ◦ is a binary oper-

ation that maps two graphs G′ and G′′ with the same vertex set into another graph

G′◦G′′. A composition operation ◦ is associative if (G′◦G′′)◦G′′′ = G′◦(G′′◦G′′′)
for all graphs G′, G′′, G′′′. Given an associative composition operation ◦ and a sub-

sequence {Gi, Gi+1, . . . , Gj}, i ≤ j of a dynamic graph, we use G(i,j) to denote the

graph Gi ◦Gi+1 ◦ . . . ◦Gj .

Definition 5 (Test operation) A test operation with respect to a property P maps a

graph G(i,j), i ≤ j, into {true, false} such that test(G(i,j)) = true iff the sequence

{Gi, Gi+1, . . . , Gj} satisfies property P .

Definition 6 (Composition hierarchy) The elements of a composition hierarchy

H for a dynamic graph G = {G1, G2, . . . , Gδ} and associative composition oper-

ation ◦ are graphs G(i,j), i ≤ j, arranged into rows G1,G2, . . . ,Gδ where Gk =

{G(1,k), G(2,k+1), . . . , G(δ−k+1,δ)}. We use Gk[i] to denote the i th element of row

Gk, that is Gk[i] = G(i,i+k−1). The first row G1 = {G(1,1), G(2,2), . . . , G(δ,δ)} of H
corresponds to the static graphs of the sequence G (or to simple transformations of

these graphs); that is, G(i,i) corresponds to Gi.

Note that each graph G(i,i+k−1) in a hierarchy can be computed as G(i,i) ◦
G(i+1,i+k−1), and that G(i,j) ◦G(i′,j′) = Gi ◦Gi+1 ◦ . . .◦Gj ◦Gi′ ◦Gi′+1 ◦ . . .◦Gj′ ,

i ≤ j and i′ ≤ j′. An example of a hierarchy for which the composition operation
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is graph intersection is shown in Figure 1. Other examples of composition operations

used in this paper are the union of graphs and the concatenation of transitive closures

(see Section 4).

G1

G2

G3

G4

G(1,1) G(2,2) G(3,3) G(4,4) G(5,5) G(6,6) G(7,7) G(8,8)

G(1,2) G(2,3) G(3,4) G(4,5) G(5,6) G(6,7) G(7,8)

G(1,3) G(2,4) G(3,5) G(4,6) G(5,7) G(6,8)

G(1,4) G(2,5) G(3,6) G(4,7) G(5,8)

Fig. 1: First four rows of a composition hierarchy of intersection graphs.

Observation 1 A maximization (resp. minimization) problem with respect to a prop-

erty P is the problem of finding the highest (lowest) row Gk in which all elements

{G(1,k), G(2,k+1), . . . , G(δ−k+1,δ)} satisfy property P .

Our framework requires the composition and test operations to meet certain con-

ditions.

Observation 2 (Requirements) For a maximization or a minimization problem with

respect to some property P to be solvable within our framework, the following con-

ditions must hold on the test and composition operations:

(1) test(G(i,j)) = true iff {Gi, Gi+1, . . . , Gj−1, Gj} satisfies P ;

(2) The composition operation ◦ is associative, that is

(G(i,j) ◦G(i′,j′)) ◦G(i′′,j′′) = G(i,j) ◦ (G(i′,j′) ◦G(i′′,j′′)).

Only for maximization problems:

(3′) If test(G(i,j)) = true then test(G(i′,j′)) = true for all i′ ≥ i and j′ ≤ j.

Only for minimization problems:

(3′′) If test(G(i,j)) = true then test(G(i′,j′)) = true for all i′ ≤ i and j′ ≥ j.

General Framework. One advantage of using our general framework is that the

high-level logic of the algorithms becomes elegant and simple, and we can solve

problems by focusing only on the composition and test operations. In most cases, the
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operations are highly generic and thus could benefit from dedicated circuits (e.g. sim-

ilar to what has been done for all-pairs shortest-paths computations with FPGAs [4])

or optimized code. Our approach is suitable for dynamic graphs in which the details

of changes between successive graphs in a sequence are arbitrary. If more structural

information about the evolution of the dynamic graphs were known, for example, if

it were known that the number of changes between each pair of consecutive static

graphs is bounded by a constant, then algorithms could benefit from the use of so-

phisticated data structures and a lower-level approach than ours might be more ap-

propriate.

Naive Upper Bound. It is not hard to show that any problem that can be solved us-

ing the framework can be solved using O(δ2) composition and test operations based

on a naive strategy. A naive algorithm computes all of the rows of the composition

hierarchy H using the fact that each element G(i,j) can be obtained from the com-

position of two elements below it in H, i.e. G(i,j) = G(i,i) ◦ G(i+1,j). For instance,

G(3,6) = G(3,3) ∩ G(4,6) in Figure 1. Since there are O(δ2) elements in H, the total

number of composition operations is O(δ2). Furthermore, at most one test operation

is needed for each element in H.

Lemma 1 (Lower bound) A total of δ composition and test operations are neces-

sary to solve a problem using the framework.

Proof (by contradiction) Let A be an algorithm that uses only composition and test

operations and that solves a problem with respect to a property P with less than δ

operations. Then, for any dynamic graph G of length δ, at least one element in G1

is never accessed by A using either a composition or a test operation. Suppose that

A solves the problem for G without accessing G1[i]. Let G′ be a dynamic graph that

is identical to G except graph Gi is replaced by a graph G′

i such that one of the

corresponding elements G1[i] and G1[i]
′

satisfies property P and the other does not.

Since G1[i]
′

is never accessed, the executions of A on G and G′ are identical and A
can return an incorrect result for G′. ⊓⊔

3 Generic algorithm

We now introduce a strategy that uses the generic composition and test operations

defined in Section 2. This generic algorithm will be instantiated in Section 4 to solve

three specific minimization problems and one maximization problem by substituting

appropriate composition and test operations for the generic operations. Examples of

composition operations used in this paper are the intersection of graphs, the union

of graphs, and the concatenation of transitive closures. Examples of test operations

used in this paper are the connectivity test of a graph and the equality to footprint of

a dynamic graph.

The strategy relies on the concept of ladder. Informally, a ladder “climbs” a se-

quence of elements in a composition hierarchy starting from the first row of the hier-

archy.
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Gk[i]lℓ

Gir−i[i]

Gk−ir+i[ir] lr

iℓ ir

Fig. 2: Composition based on left and right ladders.

Definition 7 The right ladder of length l at index i in the first row of a hierarchy H,

denoted Rl[i], is the sequence of elements {Gk[i], k = 1, 2, . . . , l}. The left ladder

of length l at index i, denoted Ll[i], is the sequence {Gk[i− k + 1], k = 1, 2, . . . , l}.

Lemma 2 A ladder of length l can be computed using l − 1 binary compositions.

Proof Consider a right ladder Rl[i]. For any k ∈ [2, l] it holds that Gk[i] = Gk−1[i] ◦
G1[i+ k − 1]. Indeed, by definition, Gk−1[i] = G1[i]◦G1[i+ 1]◦ . . .◦G1[i+ k − 2].
The ladder can thus be built bottom-up using a single new composition in each row

(in particular, the composition of the previous element in the ladder and one of the

elements in the first row of the hierarchy).

Consider a left ladder Ll[i]. For any k ∈ [2, l] it holds that Gk[i− k + 1] =
G1[i− k + 1] ◦ Gk−1[i− k + 2]. Indeed, by definition, Gk−1[i− k + 2] =
G1[i− k + 2] ◦ G1[i− k + 3] ◦ . . . ◦ G1[i]. The ladder can thus be built bottom-up

using a single new composition in each row. ⊓⊔

Lemma 3 Given a left ladder Llℓ [iℓ] of length lℓ at index iℓ and a right ladder

Rlr [ir] of length lr at index ir = iℓ +1 in a composition hierarchy H. For any index

i and row k in H such that ir − lℓ ≤ i < ir and ir − i < k ≤ ir − i+ lr, Gk[i] can be

computed by a single composition operation, namely Gk[i] = Gir−i[i] ◦ Gk−ir+i[ir].

Informally, the constraints ir − lℓ ≤ i < ir and ir − i < k ≤ ir − i + lr in

Lemma 3 define a rectangle of elements in the hierarchy delimited by two ladders,

and two lines each of which is parallel to one of the ladders, as shown in Figure 2. The

elements Gk[i] defined by the constraints, shown in light grey in the figure, include all

elements that are strictly inside the rectangle, and all elements on the parallel lines,

but elements on the two ladders (dark grey) are excluded.

Proof (of Lemma 3) By definition, Gk[i] = G1[i]◦G1[i+ 1]◦ . . .◦G1[i+ k − 1] and

Gir−i[i] = G1[i]◦G1[i+ 1]◦ . . .◦G1[ir − 1] and Gk−ir+i[ir] = G1[ir]◦G
1[ir + 1]◦

. . . ◦ G1[i+ k − 1]. It follows that Gk[i] = Gir−i[i] ◦ Gk−ir+i[ir]. By definition,

Gir−i[i] ∈ Llℓ [iℓ] and Gk−ir+i[ir] ∈ Rlr [ir], so only a single binary composition is

needed. ⊓⊔

Generic algorithm. We describe the algorithm with reference to Figures 3a and 3b

which show examples of executions of the algorithm in the maximization case and the



Computing Parameters of Sequence-based Dynamic Graphs 9

minimization case respectively (see Algorithm 1 for details). The algorithm takes as

input a dynamic graph G, a boolean problem type problem ∈ {min,max}, a com-

position operation ◦ which is used by the function compute to compute elements

of the hierarchy, and a test operation test. It starts by computing the first element

G1[1] of the hierarchy H and then traverses H from left to right, computing a new

adjacent element at each step. If Gi[j] is the most recently computed element, then

the next element can be the element Gi[j + 1] with the next index in the same row, or

the element Gi+1[j] with the same index in the row above, or the element Gi−1[j + 1]
with the next index in the row below, depending on problem and the result of the

test operation on the current element. We will call this traversal process a walk. The

elements on the walks in Figure 3 are the red/dark elements and the elements that are

crossed out.

×
×

×
×
×

(a)

G1
G2
..
.

×
×
×

×
×

×
×

(b)

Fig. 3: Examples of execution of the algorithm in (a) the maximization case (b) the

minimization case.

In the maximization case, the walk starts at the element G1[1] and builds a right

ladder incrementally until the test is negative (first loop, lines 3-10 of Algorithm 1).

If Gδ[1] is reached and test(Gδ[1]) = true , then the execution terminates returning

δ. Otherwise, suppose that test(Gk[1]) = true and test(Gk+1[1]) = false for some

k. Then k is an upper bound on the maximization parameter of G and the walk drops

down a row from Gk+1[1] to Gk[2] which is the next element in row k that needs to

be tested. The walk proceeds rightward on the current row of H, computing a new

element in the row at each step while the test is positive. However, every time that

the test is negative, the walk drops down one row in H. Conceptually, the dropping

down operation from a node Gk[i] visits two nodes (curved line in Figure 3a, line 21

of Algorithm 1). First the walk drops down to Gk−1[i] and then it moves right to

Gk−1[i+ 1]. Necessarily test(Gk−1[i]) = true because test(Gk[i− 1]) = true ,

and Gk−1[i] is not needed for later compositions, so neither a composition nor a

test operation is needed here. If the walk eventually reaches the rightmost element

Gk[δ − k + 1] of some row k and test(Gk[δ − k + 1]) = true , then the algorithm

terminates returning k (line 15 of Algorithm 1). Otherwise the walk will terminate at

an element G1[i] that does not satisfy the test. In this case, the algorithm returns ⊥
indicating that the dynamic graph G does not have the property.
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In the minimization case, the walk starts at the element G1[1] and goes up one row

in H when a test is negative and right in the same row when a test is positive. If the

walk reaches the right side of H at an element Gk[δ−k+1] and test(Gk[δ−k+1]) =
true , then the algorithm terminates and returns k. If the test is negative, it terminates

and returns k+1 (by Observation 2, requirement (3′′), line 24 of Algorithm 1). Note

that Gk+1[δ − k] is the last element on the walk in this case but it is not necessary

to compute or test this element. If the walk reaches Gδ[1] and the test is negative,

then the algorithm returns ⊥ to indicate that the dynamic graph G does not have the

property.

Input: G, problem ∈ {min,max}, composition operation ◦, test operation test

1 i← 1 // current index in the row

2 k ← 1 // current row

3 if problem=max then

4 compute(Gk[i])

5 while test(Gk[i]) do

6 if k = δ then

7 return k

8 else

9 k ++; compute(Gk[i])

10 k −−; i++

11 while 1 ≤ k ≤ δ do

12 compute(Gk[i])

13 if test(Gk[i]) then

14 if i = δ − k + 1 then

15 return k

16 else

17 i++

18 else

19 switch problem do

20 case max do

21 k −−; i++
22 case min do

23 if i = δ − k + 1 and k 6= δ then

24 return k + 1
25 else

26 k ++

27 return ⊥

Algorithm 1: Generic algorithm for maximization and minimization problems

Computing elements of the hierarchy (function compute). The elements of the

hierarchy that are on the walk (red/dark elements in Figure 3) are computed using

ladders (grey elements in Figure 3) as follows. When the walk moves right in H and

the next element of the walk to be computed is between a left ladder and a right ladder,

then it is computed using one element of each ladder by Lemma 3 (e.g. G7[4] =
G5[4] ◦ G2[9] in Figure 3a and G5[6] = G2[6] ◦ G3[8] in Figure 3b). An element of a

walk that is not between two ladders will be on a ladder and is computed as a ladder
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element using Lemma 2 as described below. This is the case for all elements on the

first right ladder (e.g. elements G1[1],G2[1], . . . ,G8[1] in Figure 3a, and elements

G1[3],G2[3],G3[3],G4[3] in Figure 3b), and the top element of each left ladder (e.g.

element G5[9] in Figure 3a, and element G4[4] in Figure 3b).

Ladders provide useful shortcuts in the construction of a walk and are the basis

of the efficiency of the algorithms. An element of a ladder (in grey in Figure 3, or

red/dark if it is also an element of the walk), are computed, according to Lemma

2, by incrementally composing an element G(i,j) with an adjacent bottom element

G(i−1,i−1) (left ladder) or G(j+1,j+1) (right ladder). Suppose that Gk[i] is the first

element of the walk to be computed where no element Gk′

[i] with k′ < k has been

computed. This results in the construction of the first left ladder Lk[k + i− 1] of

length k ending at Gk[i] (G7[2] in Figure 3a, G4[4] in Figure 3b). Differently from

left ladders, right ladders are constructed gradually as the walk proceeds. Each time

that the walk moves right to a new index, the current right ladder is incremented (a

new element is added to the ladder) and the new top element of this right ladder

is used immediately to compute the element at the current index in the walk (using

Lemma 3). This continues until the walk crosses the current right ladder at an element

Gk[i] (G6[8] in Figure 3b), at which time a left ladder Lk[k + i− 1] is built to be used

to compute the next elements on the walk.

Note that when the walk goes up in the minimization case, it is sometimes pos-

sible to compute the next composition without incrementing the current right lad-

der. For example, in Figure 3b, G5[6] could be constructed by composing G4[6] and

G1[10]. However, we continue to increment the right ladder because it could be use-

ful later if the walk moves right. For example, in Figure 3b, G3[8] is not needed to

compute G5[6], but G4[8] is needed to compute G5[7].

This generic algorithm has an important property concerning disjoint sequences

that is required for some optimization problems. We prove it here for use in Section 4

(see Oberservation 5 for details). Note that this property is guaranteed by the algo-

rithm, in any execution, but is not required to solve any maximization or minimization

problem.

Lemma 4 (Disjoint sequences property) If the algorithm performs a composition

of two elements G(i,j) and G(i′,j′) of a hierarchy, then the corresponding sequences

{Gi, Gi+1, . . . , Gj} and {Gi′ , Gi′+1, . . . , Gj′} are disjoint and consecutive. That is,

in any execution, G(i,j′) = G(i,j) ◦G(i′,j′) ⇒ j = i′ − 1.

Proof According to the algorithm, each element of the hierarchy is computed from

either an element of a left ladder and an element of a right ladder, or an element of a

ladder and an element in the first row of the hierarchy. In both cases the two sequences

covered by the two elements used in the computation are disjoint and consecutive, so

in any execution, G(i,j′) = G(i,j) ◦G(i′,j′) ⇒ j = i′ − 1. ⊓⊔

Theorem 1 The generic algorithm returns the correct value.

Proof If the algorithm returns ⊥ for a maximization problem on a dynamic graph

G with respect to a property P , then the walk terminated at some element G1[i] of
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the hierarchy H that does not satisfy the test operation. Thus there is no k ≥ 1 such

that all subsequences of G of length k satisfy P . If the algorithm returns ⊥ for a

minimization problem then the element Gδ[1] does not satisfy the test operation and

there is no k ≥ 1 such that all subsequences of G of length k satisfy P .

Now suppose that the algorithm returns a value different from ⊥, and let Gk[δ −
k+ 1] be the last element of H that is computed before the algorithm terminates. We

claim that if test(Gk[δ − k + 1]) = true , then ∀i ∈ [1, δ − k], test(Gk[i]) = true

(i.e. all elements in row Gk satisfy the test operation).

First consider the case of a maximization problem. If an element Gk[i] is on the

walk computed by the algorithm, then the algorithm tests it directly. Otherwise, Gk[i]
must be below the walk (because the walk never goes up in H after the first right

ladder) and there is some element Gk′

[i′] with i′ ≤ i and k′ ≥ k on the walk that

satisfies the test operation. Then Gk[i] satisfies the test operation by requirement (3′)
of Observation 2.

If the problem is a minimization problem and test(Gk[δ−k+1]) = true , then any

element Gk[i] on the walk computed by the algorithm is tested directly. Otherwise, if

Gk[i] is not on the walk, then it must be above the walk (because the walk never goes

down in H) and there is some element Gk′

[i′] with i′ ≥ i and k′ ≤ k on the walk

that satisfies the test operation. Then Gk[i] satisfies the test operation by requirement

(3′′) of Observation 2. If test(Gk[δ − k + 1]) = false , then the algorithm correctly

returns k + 1. This is also guaranteed by requirement (3′′) of Observation 2: the

ascending walk ensures that there exists a graph Gk′

[δ − k], k′ < k, that satisfies the

test operation. ⊓⊔

Theorem 2 The generic algorithm has a cost of Θ(δ) composition and test opera-

tions.

Proof The ranges of the indices covered by the left ladders that are constructed by

the algorithm are disjoint, so their total length is O(δ). With the computation of each

new element in a right ladder, the walk moves closer to the right side of the hierarchy,

so the total length of the right ladders is also O(δ). According to Lemmas 2 and 3,

any element can be computed using a single composition operation based on ladders.

The number of elements on the walk is also O(δ). In the minimization case, the

walk moves either right or up in the hierarchy after each static graph is received,

so there are δ elements on the walk if the last element satisfies the test and δ + 1
elements otherwise. In the maximization case, each time that the walk moves up

(during construction of the first right ladder) or right corresponds to the reception of

a new static graph. When the walk goes down, it does not correspond to the reception

of a new static graph, but the number of times that this happens is no greater than

the height of the first right ladder. Thus, the total number of elements computed is

O(δ). Only elements on the walk are tested. This establishes that the algorithm has

a cost of O(δ) composition and test operations which matches the lower bound of

Lemma 1. ⊓⊔

Online algorithm. The generic algorithm can be adapted to an online setting in

which the sequence of graphs G1, G2, G3, . . . of a dynamic graph G is processed as

the graphs are received and the algorithm can determine the value of the parameter
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based on the sequence of graphs received so far. The only difference from the offline

algorithm is that the online algorithm can report a sequence of values of the parameter

as the graphs are received.

Theorem 3 The online generic algorithm has an amortized cost of Θ(1) composition

and test operations per graph received.

Proof At no time during the execution of the algorithm does the number of composi-

tions performed to build left ladders exceed the number of static graphs received and

the same is true for right ladders. The number of elements on the walk that are not on

ladders never exceeds the number of graphs received, and each can be computed with

one composition by Lemma 3. Only elements on the walk are tested. In summary, the

amortized cost is O(1) composition and test operations for each graph received. By

arguments similar to the proof of Lemma 1, each graph received must be examined,

so the amortized cost is optimal. ⊓⊔

Decision problems. Recall from Definition 3 that the decision problem on G with re-

spect to P and a fixed value k is the problem of deciding if {Gi, Gi+1, . . . , Gi+k−1}
has property P , ∀i ∈ [1, δ − k + 1]. A generic algorithm for decision problems can

compute the elements in row Gk of the hierarchy H for G and verify that all of them

satisfy property P . We describe an efficient implementation of a generic decision

algorithm based on some of the same techniques that we used for the generic opti-

mization algorithm. The algorithm is the same for decision problems associated with

both maximization and minimization problems.

The decision algorithm computes the elements in row Gk of H from left to

right, starting at Gk[1]. Each element is tested immediately after it is computed

and if test(Gk[i]) = false for some Gk[i], the algorithm returns false and ter-

minates. If the walk reaches the rightmost element Gk[δ − k + 1] in row Gk and

test(Gk[δ − k + 1]) = true , then the algorithm returns true . An efficient im-

plementation of the walk using ladders is simpler than for the optimization ver-

sion. The algorithm starts by building a left ladder Lk[k] after the first k graphs

{G1, G2, . . . , Gk} in the sequence are received and then element Gk[1] is tested.

Then a right ladder Rk−1[k + 1] is constructed one element at a time as the graphs

{Gk+1, Gk+2, . . . , G2k−1} are received and each element of the ladder is used imme-

diately to compute the next element on row Gk which is then tested. If more elements

on row Gk need to be tested, then left and right ladders are alternately constructed un-

til either an element does not satisfy property P , in which case the algorithm returns

false and terminates, or the rightmost element Gk[δ − k + 1] in row Gk is reached

and test(Gk[δ − k + 1]) = true , in which case the algorithm returns true and termi-

nates. Two examples are shown in Figure 4.

Proofs that the generic decision algorithm returns the correct answer and that

it has cost Θ(δ) composition and test operations follow by similar arguments to the

proofs of Theorems 1 and 2. An online decision algorithm cannot report any values of

the parameter until the first k graphs G1, G2, G3, . . . , Gk have been received. There-

after, the amortized cost is Θ(1) composition and test operations per graph received

by similar arguments to the proof of Theorem 3.
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Gk

Gk

Fig. 4: Examples of the execution of the algorithm for decision problems.

4 Applications of the Framework

In this section, we apply the general framework by solving one maximization

problem: INTERVAL-CONNECTIVITY and three minimization problems: BOUNDED-

REALIZATION-OF-THE-FOOTPRINT, TEMPORAL-DIAMETER, and ROUND-TRIP-

TEMPORAL-DIAMETER. We define each problem within the framework and provide

the corresponding operations for composition and test.

4.1 T-interval Connectivity (maximization)

A dynamic graph G is T -interval connected if for any t ∈ [1, δ − T + 1] all graphs

in {Gt, Gt+1, . . . , Gt+T−1} share a common connected spanning subgraph. We con-

sider the problem INTERVAL-CONNECTIVITY of finding the largest T for which the

dynamic graph G is T -interval connected.

Composition and test operations. By using the intersection of two elements as the

composition operation (starting with G(i,i) = Gi, 1 ≤ i ≤ δ), a hierarchy with

intersection graphs as elements (Figure 1) can be used to solve INTERVAL-CONNEC-

TIVITY which is the problem of finding the highest row GT in which every element

GT [i], i ∈ [1, δ − T + 1], is connected. So, the composition operation is intersection

and the test operation is connectivity test.

Observation 3 (Cost of the operations) Using a sorted adjacency list in which

the neighbours of each node are sorted, a binary intersection of two elements

G(i,j) and G(i′,j′) can be computed in linear time in the number of edges:

O(min(|E(G(i,j))|, |E(G(i′,j′))|)). Testing the connectivity of an element can also

be done in linear time - O(|E(G(i,j))|) - by building a depth-first search tree from

an arbitrary root node and testing whether all nodes are reachable from the root

node. If the elements have directed edges, then Tarjan’s algorithm for strongly con-

nected components [26] can be used. Hence, both the intersection operation and the

connectivity testing operation have similar costs.
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4.2 Bounded Realization of the Footprint (minimization)

The footprint G of a dynamic graph G is the graph that contains all of the edges

that appear at least once, that is G = ∪{G1, G2, . . . , Gδ}. We consider the prob-

lem BOUNDED-REALIZATION-OF-THE-FOOTPRINT of finding the shortest duration

b such that in any window of length b, every edge of G appears at least once. The

problem can be solved by finding the lowest row Gb in which every element Gb[i],
i ∈ [1, δ − b+ 1], equals the footprint G.

Composition and test operations. Finding these operations is straightforward. By

taking the union of two elements as the composition operation (starting with G(i,i) =

Gi, 1 ≤ i ≤ δ), it follows that the lowest row Gb in which all elements equal the

footprint determines, by definition, that the answer is b. So, the composition operation

is union and the test operation is equality to footprint.

Observation 4 (Cost of the operations) Using an adjacency matrix representation

(for both the undirected and directed cases), the union operation and the equality test

can be performed in O(|V |2) time, by traversing the two involved adjacency matrices

element by element.

4.3 Temporal Diameter (minimization)

A dynamic graph might never be connected at one time, and yet offer a form of

connectivity over time based on journeys (temporal paths). Informally, a journey is a

path whose edges are crossed at non-decreasing (or increasing) times, with possible

pauses at intermediate nodes. The edges need not be all present simultaneously. If at

most one edge can be crossed in each static graph (i.e. the crossing times are strictly

increasing), then we refer to the journey as being strict. Formally, journeys can be

defined in various ways, depending on the graph formalism used. In sequence-based

models like dynamic graphs, it is defined as follows.

Definition 8 (Journey) A journey from u to v in G, denoted u  v, is a sequence

of edges e1, e2, . . . , ep connecting u to v through intermediate vertices and a corre-

sponding sequence of non-decreasing indices t1, t2, . . . , tp such that ei ∈ E(Gti). In

a strict journey, the sequence t1, t2, . . . , tp is strictly increasing. The departure time of

u v is departure(u, v) = t1 and the arrival time of u v is arrival(u, v) = tp.

For both non-strict and strict journeys, one can define the concept of temporal

diameter (at time t) as the smallest d such that for all nodes u and v, a journey

u v exists in the sequence {Gt, Gt+1, ..., Gt+d−1}. We consider here the problem

TEMPORAL-DIAMETER of finding the smallest d such that the temporal diameter of

G is less than or equal to d at every time t ≤ δ−d+1. In other words, any subsequence

of G of length d is temporally connected. Several solutions exist for this and similar

problems (see e.g. [28]), which operate at a lower level of abstraction. Here, we show

how the problem fits elegantly within our proposed framework. More specifically, we

consider the case of non-strict journeys, which is slightly more difficult and contains

the case of strict journeys as a subproblem.
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Definition 9 (Transitive closure) The transitive closure of the dynamic graph G is

the static directed graph G∗ = (V,E∗) such that (u, v) ∈ E∗ ⇔ ∃u v.

The composition hierarchy built here is one of transitive closures of journeys.

Figure 5 shows an example. For this problem, each bottom element G(i,i) is not equal

to Gi; instead, it is similar to a “classical” transitive closure of Gi. The graph G(i,i)

is built on the same vertex set as Gi and there is a directed edge from u to v in G(i,i)

if and only if a journey u  v exists in Gi. The elements G(i,i), 1 ≤ i ≤ δ, are

computed gradually as the algorithm progresses. Then, the answer is the smallest d

such that every element in row Gd of the hierarchy is a complete directed graph (i.e.

every subsequence of G of length d is temporally connected). Note that the static

graphs in Figure 5 are directed. The algorithm is similar for undirected static graphs

except each undirected edge in a static graph is treated as a pair of directed edges

when the elements G(i,i), 1 ≤ i ≤ δ, are computed.

G1

G

G2

G3

G4

G1 G2 G3 G4 G5 G6 G7 G8

G(1,1) G(2,2) G(3,3) G(4,4) G(5,5) G(6,6) G(7,7) G(8,8)

G(1,2) G(2,3) G(3,4) G(4,5) G(5,6) G(6,7) G(7,8)

G(1,3) G(2,4) G(3,5) G(4,6) G(5,7) G(6,8)

G(1,4) G(2,5) G(3,6) G(4,7) G(5,8)

Fig. 5: Example of a transitive closure hierarchy for a given dynamic graph G of

length δ = 8.

Composition and test operations. The composition hierarchy is built using con-

catenation of transitive closures, cat(G(i,j), G(i′,j′)). It is defined as follows. First

compute the union of both elements, then add an additional edge (u, v) if there ex-

ists a node w such that (u,w) ∈ E(G(i,j)) and (w, v) ∈ E(G(i′,j′)). See Figure 6

for an example. Then, the test operation consists of determining if an element of the

hierarchy (transitive closure) is a complete directed graph.

Observation 5 The concatenation operation presented above decides whether a

journey exists in a sequence {Gi, Gi+1, ..., Gj′} from existing journeys in two

sequences {Gi, Gi+1, ..., Gj} and {Gi′ , Gi′+1, ..., Gj′} using the computation of

extra-edges. In order for the concatenation operation to be consistent (the existence

of an edge (journey) in G(i,j) and an edge in G(i′,j′) implies the existence of a new
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cat

G(i,j) G(i′,j′)

=

G(i,j) ∪G(i′,j′)

∪

G(i,j)→(i′,j′)

=

Fig. 6: Example of concatenation of transitive closures. Edges in G(i,j)→(i′,j′) are

added after the union.

Fig. 7: Example of a potentially incorrect computation of the transitive closure G(4,13)

from G(4,8) and G(6,13).

edge in G(i,j′)), the two used sequences {Gi, Gi+1, ..., Gj} and {Gi′ , Gi′+1, ..., Gj′}
must neither overlap nor be separated, we should have j = i′ − 1 or j = i′.

Otherwise, the computation of a transitive closure does not always allow a cor-

rect result. Figure 7 shows an example where the concatenation of two transi-

tive closures of journeys G(4,8) and G(6,13) of the two sequences {G4, G5, ..., G8}
and {G6, G7, ..., G13} does not always give a correct transitive closure of journeys

G(4,13) of the sequence {G4, G5, ..., G13}. Assume that only one node w exists such

that (u,w) ∈ E(G(4,8)) and (w, v) ∈ E(G(6,13)) and that (u,w) corresponds to a

journey u  w whose arrival = 8 and (w, v) represents the existence of a journey

w  v with departure = 6. In this case the concatenation operation adds an edge

(u, v) to G(4,13) even if no journey is implied by the existence of the two latter ones.

Actually, the concatenation operation computes in this case the transitive closure of

journeys in the sequence {G4, G5, ..., G8, G6, G7, ..., G13}. With the restriction that

i′ = j + 1 (disjoint sequences property, Lemma 4), any computed transitive closure

G(i,j) corresponds to the right sequence {Gi, Gi+1, ..., Gj}.

Lemma 5 Any computed transitive closure is correct: ∀i, j, i ≤ j ≤ δ,G(i,j) =
Gi ◦Gi+1 ◦ ... ◦Gj .

Proof According to the disjoint sequences property (Lemma 4) guaranteed by the

algorithm, in any execution, G(i,j′) = cat(G(i,j), G(i′,j′)) ⇒ j = i′ − 1. So, any

computed transitive closure is correct. ⊓⊔

Observation 6 (Cost of the operations) The union of two transitive closures G(i,j)

and G(i′,j′) can be computed in time O(max(|E(G(i,j))|, |E(G(i′,j′))|)) using an ad-
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jacency list data structure, by merging for each node the two lists of neighbours. The

cost of the concatenation operation is dominated by the computation of the additional

edges which costs O(|E(G(i,j))| · |V |), by adding for each (u,w) ∈ E(G(i,j)) and

each (w, v) ∈ E(G(i′,j′)) the edge (u, v) to the adjaceny list of the concatenation.

(This is done by traversing the edges (u,w) in G(i,j) and traversing the neighbours

of w in the adjacency list of G(i′,j′).) The completeness test of a transitive closure

G(i,j) can be done in constant time by checking the number of edges |E(G(i,j))| (and

by maintaining this number during the construction of the transitive closure graphs).

4.4 Round-Trip Temporal Diameter (minimization)

We address here the more complex property of round-trip temporal connectivity

defined by the existence of a back-and-forth journey from any node to all other

nodes. The round-trip temporal diameter of a graph G at time t is the smallest d

such that, for every pair of nodes u, v, there is a journey u  v in the sequence

{Gt, Gt+1, ..., Gt+d−1} and a journey v  u in {Gt, Gt+1, ..., Gt+d−1} which starts

after the arrival of the journey u v. This does not mean that there is simply a suc-

cession of two temporally connected sequences. A back-and-forth journey from a

node u to a node v can finish before a back-and-forth journey from a node u′ to a

node v′ starts. Also, the time intervals of the two back-and-forth journeys can over-

lap. We consider the problem ROUND-TRIP-TEMPORAL-DIAMETER of finding the

smallest d such that the round-trip temporal diameter of G is less than or equal to d at

any time t ≤ δ−d+1. For this problem, we consider the case of non-strict journeys.

Definition 10 (Round trip transitive closure) A round trip transitive closure G(i,j)

is the static directed graph where (u, v) ∈ G(i,j) iff at least one journey u  v

exists in the sequence {Gi, Gi+1, . . . , Gj}. Each directed edge (u, v) ∈ E(G(i,j))
is labelled with two times: arrival(u, v,G(i,j)) is the earliest arrival of any jour-

ney in the sequence and departure(u, v,G(i,j)) is the latest departure of any jour-

ney in the sequence. Labels on the same edge may or may not be the arrival

and departure times of the same journey. Note that arrival(u, v,G(i,i)) = i and

departure(u, v,G(i,i)) = i.

The composition hierarchy built for this problem is one of round trip transi-

tive closures of journeys. Figure 8 shows an example of a round trip transitive clo-

sure hierarchy of a dynamic graph G of length δ = 3. Labels arr and dep on an

edge u
arr,dep

−−−−−−−−−−→v (labels on the destination/head end) represent respectively

arrival(u, v,G(i,j)) and departure(u, v,G(i,j)). As for TEMPORAL-DIAMETER,

each bottom element G(i,i) is similar to a “classical” transitive closure of Gi. The

graph G(i,i) is built on the same vertex set as Gi and there is a directed edge from

u to v in G(i,i) if and only if a journey u  v exists in Gi. The labels on the edges

of G(i,i) are “i, i”, which correspond to the arrival and departure times of the corre-

sponding journey(s). Then, the answer is the smallest d such that every element in

row Gd of the hierarchy is a complete directed graph (i.e. every subsequence of G of

length d is round-trip temporally connected), where for every edge (u, v) in the graph
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arrival(u, v,G(i,j)) ≤ departure(v, u,G(i,j)). The static graphs in Figure 8 are di-

rected. As for TEMPORAL-DIAMETER, the algorithm is similar for undirected static

graphs except each undirected edge in a static graph is treated as a pair of directed

edges when the elements G(i,i), 1 ≤ i ≤ δ, are computed.

G

G1

G2

G3

G1 G2 G3

G(1,1)

1, 1

1, 1

1
,
1

1,
1

1, 1

1
,
1

G(2,2)

2
,
2

2, 2

2
,
2

2,
2

2, 2

2, 2

2
,
2

2,
2

2, 2

G(3,3)

3
,
3

3,
3

3, 3

3
,
3

3, 3

3, 3

G(1,2)

2, 2
1, 2

1
,
2

2,
2

1,
2

2, 2

1
,
1

2
,
2

1, 1

1, 1

2
,
2 2, 2

G(2,3)

2, 2
2, 3

2
,
3

2,
2

2,
3

2, 2

2
,
3

3, 3

3, 3

2
,
2 2, 2

G(1,3)

2, 2
1, 3

1
,
3

2,
2

1,
3

2, 2

1
,
2

2
,
3

1, 3

1, 3

2
,
2 2, 2

Fig. 8: Example of a round trip transitive closure hierarchy of a dynamic graph G of

length δ = 3. (Arrival and departure times are on the head ends of the arrows.)

Composition operation. The composition operation in this case is the concatena-

tion of round trip transitive closures rtcat(G(i,j), G(i′,j′)) with the restriction that

i′ = j+1 (disjoint sequences property, Lemma 4). A composition is computed as fol-

lows. First, compute the graph G∪	 = G(i,j)∪
	G(i′,j′) from the union graph G(i,j)∪

G(i′,j′). For each edge (u, v) ∈ G(i,j) ∪ G(i′,j′) such that (u, v) ∈ G(i,j) ∩ G(i′,j′),

set arrival(u, v,G∪	) = min(arrival(u, v,G(i,j)), arrival(u, v,G(i′,j′))) and

departure(u, v,G∪	) = max(departure(u, v,G(i,j)), departure(u, v,G(i′,j′)) in
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G∪	. If (u, v) ∈ G(i,j) or (u, v) ∈ G(i′,j′), but not both, then label the edge in

G∪	 with its arrival and departure times. A graph of extra edges G(i,j)→(i′,j′) is then

computed as follows: (u, v) ∈ G(i,j)→(i′,j′) iff there exists a non-empty set of nodes

extra = {w : (u,w) ∈ E(G(i,j)) and (w, v) ∈ E(G(i′,j′))}. The labels on an

extra edge are arrival(u, v,G(i,j)→(i′,j′)) = minw∈extra{arrival(w, v,G(i′,j′))}
and departure(u, v,G(i,j)→(i′,j′)) = maxw∈extra{departure(u,w,G(i,j))}. Fi-

nally, the round trip transitive closure rtcat(G(i,j), G(i′,j′)) = G∪	∪	G(i,j)→(i′,j′).

Figure 9 shows an example of an rtcat composition operation. Also, in Figure 8, in

the label (1,2) on the rightmost edge of G(1,3), the arrival time 1 comes from the

corresponding edge in G(1,2), but the departure time 2 comes from extra edges.

Test operation. The test operation used for this problem is the round trip com-

pleteness test, that is, test if the graph is complete and if arrival(u, v,G(i,j)) ≤
departure(v, u,G(i,j)) for every edge (u, v) in the graph.

Observation 7 (Cost of the operations) As for the concatenation operation for

TEMPORAL-DIAMETER, the concatenation of two round trip transitive closures

G(i,j) and G(i′,j′) can be computed in time O(|E(G(i,j))| · |V |) using an adcan-

cency list data structure. The completeness test can be done in time O(|E(G(i,j))|)
by verifying the condition on the arrival and departure times for each pair of edges

(u, v), (v, u) (and by maintaining these times for each edge of the computed transitive

closure graphs).

rtcat

G(1,5)

3
,
5

2
,
4

2, 4

G(6,7)

7, 6

7
,
7 6

,
7

6, 6

6
,
7

7
,
7

=

G(1,5) ∪
	 G(6,7)

7, 6

2, 4

7
,
7 3

,
7

6, 6

2
,
7

7
,
7

∪	

G(1,5)→(6,7)

6
,
4

6, 5

6
,
4

7
,
4

7
,
5

=

G(1,7)

7, 6

2, 4

6
,
7

3
,
7

2
,
7

7
,
7

6, 6

6, 5

6
,
4

7
,
4

7
,
5

Fig. 9: Example of round trip transitive closures concatenation. (Arrival and depar-

ture times are on the head ends of the arrows.)

5 Parallel Algorithms

In this section, we present a row-based strategy that uses O(δ log δ) composition and

test operations for problems that have a hereditary structure. While it is less efficient

than the algorithms presented in previous sections, it has the advantage that it can be

parallelized. This allows us to show that problems solvable with this strategy are in

NC, i.e. parallelizable on a PRAM with a polylogarithmic running time [17,20].

Definition 11 (Hereditary property) A maximization, minimization, or decision

problem is hereditary if it can be solved using a composition hierarchy of elements

and a composition operation ◦ such that G(i,j) ◦ G(i′,j′) = G(i,j′) for all 1 ≤ i ≤
i′ ≤ j ≤ j′ ≤ δ.
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BOUNDED-REALIZATION-OF-THE-FOOTPRINT and T -INTERVAL-

CONNECTIVITY are examples of hereditary problems. The general idea of the

row-based strategy is to compute only some of the rows of the composition hierarchy

based on the following lemma.

Lemma 6 If some row Gk is already computed, then any row Gℓ for k+ 1 ≤ ℓ ≤ 2k
can be computed with O(δ) composition operations.

Proof Assume that row Gk is already computed and that one wants to compute

row Gℓ for some k + 1 ≤ ℓ ≤ 2k. Note that row Gℓ consists of the entries

Gℓ[1], . . . ,Gℓ[δ − ℓ+ 1]. Now, observe that for any 1 ≤ i ≤ δ − ℓ + 1, Gℓ[i] =
Gk[i] ◦Gk[i+ ℓ− k]. Hence, δ− ℓ+1 = O(δ) composition operations are sufficient

to compute all of the entries of row Gℓ. ⊓⊔

Maximization and minimization algorithms. For the maximization problem on G

with respect to a property P , we incrementally compute rows G2i (“power rows”)

for i = 1, 2, . . . until we find a row that contains an element that does not satisfy

P (thus, a test operation is performed after each composition). By Lemma 6, each

of these rows can be computed using O(δ) composition operations. Suppose that

row G2j+1

is the first power row that contains an element that does not satisfy P ,

and that G2j is the row computed before G2j+1

. Next, we do a binary search among

the rows between G2j and G2j+1

to find the highest row Gk such that all elements

on this row satisfy P . The computation of each of these rows is based on row G2j

and uses O(δ) composition operations by Lemma 6. Overall, we compute at most

2⌈log2 k⌉ = O(log δ) rows using O(δ log δ) composition operations and the same

number of test operations.

For the minimization case, we follow the same principle. This time, we incre-

mentally compute rows G2i while each row contains an element that does not satisfy

P . Suppose that row G2j+1

is the first power row such that all elements on this row

satisfy P . Then, we do a binary search among the rows between G2j and G2j+1

to

find the lowest row Gk such that all elements on this row satisfy P . See Figure 10 for

illustrations of these algorithms.

Decision problems. An algorithm for a decision problem on G with respect to a

property P and a fixed value k returns true if all elements in row Gk satisfy P and

false otherwise. Using Lemma 6, for a given k, we can incrementally compute rows

G2i for all i from 1 to ⌈log2 k⌉ − 1 without computing the intermediate rows. Then,

we compute row Gk directly from row G2⌈log2 k⌉−1

(again using Lemma 6). This way,

we compute ⌈log2 k⌉ = O(log δ) rows using O(δ log δ) composition operations,

after which we perform O(δ) test operations.

Now we establish that these problems are in NC by showing that the row-based

algorithms are efficiently parallelizable.

Lemma 7 If some row Gk is already computed, then any row between Gk+1 and G2k

can be computed in O(1) time on an EREW PRAM with O(δ) processors.
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Proof Assume that row Gk is already computed, and that one wants to compute row

Gℓ, consisting of the entries Gℓ[1], . . . ,Gℓ[δ − ℓ+ 1], for some k + 1 ≤ ℓ ≤ 2k.

Since Gℓ[i] = Gk[i] ◦ Gk[i+ ℓ− k], 1 ≤ i ≤ δ − ℓ + 1, the computation of row Gℓ

can be implemented on an EREW PRAM with δ− ℓ+1 processors in two rounds as

follows. Let Pi, 1 ≤ i ≤ δ− ℓ+1, be the processor dedicated to computing Gℓ[i]. In

the first round Pi reads Gk[i], and in the second round Pi reads Gk[i+ ℓ− k]. This

guarantees that each Pi has exclusive access to the entries of row Gk that it needs for

its computation. Hence, row Gℓ can be computed in O(1) time on an EREW PRAM

using O(δ) processors. ⊓⊔

Parallel maximization and minimization algorithms for an EREW PRAM.

The sequential algorithm for maximization and minimization problems computes

O(log δ) rows of the composition hierarchy. By Lemma 7, each of these rows can

be computed in O(1) time on an EREW PRAM with O(δ) processors. Therefore,

all of the rows (and hence all necessary compositions) can be computed in O(log δ)
time with O(δ) processors. After the computation of each row, it must be determined

whether or not all of the elements in the row satisfy property P . The O(δ) test

operations for a row can be done in O(1) time with O(δ) processors. Then, the

processors can establish whether or not all elements in the row satisfy P by

computing the logical AND of the results of the O(δ) tests in time O(log δ) on a

EREW PRAM with O(δ) processors using standard techniques (see [17,20]). The

total time is O(log2 δ) on an EREW PRAM with O(δ) processors.

Parallel decision algorithms for an EREW PRAM. The sequential algorithm

for decision problems computes O(log δ) rows of the composition hierarchy. By

Lemma 7, each of these rows can be computed in O(1) time on an EREW PRAM

with O(δ) processors. Differently from maximization and minimization problems,

tests are only required for one row Gk. This can be done in O(log δ) time using the

same techniques as the maximization and minimization algorithms. The total time is

O(log δ) on an EREW PRAM with O(δ) processors.

6 Conclusions

In this paper, we presented a general framework for computing parameters of dy-

namic networks which are modelled as a sequence G = (G1, G2, . . . , Gδ) of static

graphs. We studied three minimization problems (bounded realization of the foot-

print, temporal diameter, and round trip temporal diameter), and one maximization

problem (T-interval connectivity). We proposed algorithms for these problems within

the same framework.

In our study, we focused on algorithms that use only composition and test oper-

ations. This approach is suitable for a high-level study of these problems when the

details of changes between successive graphs in a sequence are arbitrary. If the evo-

lution of the dynamic graph is constrained in some ways (e.g., bounded number of

changes between graphs), then one could benefit from the use of more sophisticated

data structures to reduce the complexity of the algorithms.
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×

×
k

×

×

×
×

k

Fig. 10: Examples of the row-based algorithm; maximization case on the left and

minimization case on the right.

A natural extension of our investigation would be a similar study for other classes

and properties of dynamic networks, as identified in [12].
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