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Abstract

Given r numbers S1eevesS algorithms are in-
vestigated for finding all possible combinations of these
nunbers which sum to M . This problem is a particular
instance of the 0-1 unidimensional knapsack problem.
All of the usual algorithms for this problem are investi-
gated both in terms of asymptotic computing times and
storage requirements, as well as average computing times,
We develop a technique which improves all of the dynamic
rrogramming mothoda by a square root factor. Using this
improvement a variety of new heuristics and improved data
structurcs are incorporated for decreasing the average
. behavior of these methods. The resulting algorithms are
then compared on a wide set of data. It is then shown how
these improvements can be applied to various versions of the

knapsack problem.
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Computing Partitions with Applications

to the Knapsack Problem

E. Horowitz and S. Sahni

Introduction

Given r numbers Byrecess, Ve wish to find all
possible combinations of these nurbers which sum to M .
This rather simply stated problem is at the root of several
interesting problems in number thecory, operations research
and polynomial factorization. 1In the first case it is
closely related to the classical nunber theory study of
determining partitions. Phrased in our terrinnlojgy, detcr;
mining partitions of M would irply that 5y = i and
LI M. S0 horo wo aro concerned with a more genceral problem
than partitions. 1In [3], p. 273 Hardy and wWright provide
gencrating functions but no good corputational scheme for
generating such partitions. If we restrict the 5 and M
to be integers and include an additional set of numbers P
then we have an integer programming form of what is usuzlly
referred to as the knapsack problem. In {ts sirplest fcr=
one wishes to find the most desirable set of quantitica a
hikeor should pack in his knapaack given a measure of the
donirahbllity of ocach item (p1 or profit) aubjcct to §ts
weight (311 and the maximum weight that the %knapsack can
hold (M) . The partition problem is shown to be a cpecial

case of thoe 0-1 unidimensional knapsack problem and ft will
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be shown how a method for saspceding up the partition problem
can be more generally used to speed up the knapsack problem,
In {13], Bradley shows how a class of problems can be re-
duced to knapsack problems., Thus, a more efficient method
for knapsack solving algorithms is extremely useful. An im-
plementation of this mothod has a wide variety of applica-
tions. 1In one reported case, [7] the motivation arose from
capital budgeting problems in which {investment projects are
to be selected subject to expenditure limitations in several
time periods. After solving our oriqginal partition problem
we will show how our new techniques can be incorporated into
an efficient knapsack algorithm, A survey of algorithms for
the different variations of the knapsack problem is given in
[5]. Much of the early work in the knapsack problem was done
by Cilmore and Gomory, see(l)] and [2]). Finally in [4] our
original rotivation for the partition problem arose as a
subalgorithm for polynomial factorization where M is the de~
gree of the given polynomial and the 8;'s are suspected de-
grees of its irreducible factors.

. At the moment all known methods for the partition
and knapsack problems take exponential time. In [9] and [10]
it is shown that both the 0-1 knapsack problem and the problem
of findingy one partition are p-complete, i.e. if one could
find a polynomial time bounded alqgorithm for either of these
problens then one would have polynomial algorithms for a wide
variety of problems for which there is no known polynomial

algorithm., Specifically this would lead to polynomial algo-
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gorithms for the traveling salesman problem, multicommodity
networks flows, simulation of polynomial time bounded non-
deterministic Turing machines by deterministic ones, etc.
A moro complote list of p-completo problems can bo found in
(9] and [10]). 1In vicw of this thecoretical result, it is
clear that finding a polynomial algorithm for the 0-1 knap-
sack or partition problem would be difficult (if there exists
such an algorithm). It is therefore of interest to obtain
subexéonential algorithms and to investigate the use of
heuristics in an effort to improve the computing times for
these problems. This is precisely the sort of development
that this paper takes, first giving methods with reduced asymp-
totic bounds and then refining these algorithms with heuristics
special data structures and testing.

In Section 2 we will precisely formulate the problem
using the convenient concept of multisets. In Section 3
we will summarize the various algorithms that have been pro-
posed, present our own refinements and then analyze the re-
sulting computing times and storage requirements. A new
technique which substantially reduces the worst case asymptotic
computing time will be given. Also we will examine the same
algorithm using different data representations on the computer.
Then in Section 4 empirical studies will be examined so as to
determine the best overall algorithm. Finally in Section §
it will be shown how these new techniques can be easily incor-
porated into the 0-1 knapsack problem so as to maintain the
same advantages of efficiency. An appendix contains the

listings of the final programs that were developed.

-



2. Problem Definition
We begin with the mathematical formulation of our

problem.

Pefinition 1 A multiset S is a collection of clements

81' denoted by S w (31) .

Definttion 2 A sct S 13 a multisct whose elements satisfy

s, ¥ s, it 1/ .

Definition 3 The cardinality of a multiset S , denoted

by |S}] , is defined to be the number of elements in

S. Ir |S| =r, then S will often be written as S, .

Definition 4 An M-partition of a multiset sr - (51""”r)
of cardinality r is an r-tuple
§ = (61.82, ceny Gr) » Where
61 € (0,1) 1 £1¢<r
and eee(l)

1 "
.8, =
ge1 3 1

'Without loan of generality we shall reatrict ournolveo to
the casc where the 8, arec positive integers.



Example
s1 = {1,9,1,5,4} 48 a multiset but not a set.
§2 = {1,9,5) 4s both a sct and a multiset.
|s1] = 5 ana [s2| = 3
§ = 11010 4is a 15-partition of Sl.
The 15-partitions of 61 are 11010 and 01110,

Definition 5 An algorithm will be sajid to enumerzie

[y
-
b+

the M-partitions of Sr 1£f it generate:

r-tuples & satisfying (1) and ro other ¢'s .

Lemma 1 There ¢xist multiscets and an M for whizh the
number of M-partitions is exponential irn the car-

dinality of the multiset.

Proof Consider Sr = (1,1, ..., 1), r even

and M = r/2 . Then the number of r-tuples ¢  whiczh

satisfy (1) is

r r - re
W = Gr2) = =5

Using Stirling's approximation for r! we get

(’—')r 4]
r! R !;F””""Y .
;e E Gy /T
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Cure. Any alygoeitlm which enumeratles the M-partitions of a

multiset Sr must have a worst case computing time

that is exponential in p .

Lezm1 2 The maximum number of distinct sums obtainable from

, a multiset Sr 18 2V . This number 4s in fact

tal !

achieved by ctome Sr .

Prost (1) @ only 2 distinct r-tuples & for which
L 8, €(0,1) ,1c1¢r

(11) ter s, = (29,24, ... ,27Y)

Each of the &'s 1in (1) 13 now the binary repre-
sentation of the sum, [6121 and so represents a

distinct sum from tho other &8's .

3. The Algorithms

We shall now look at srveral classical algorithms
for enumerating M-partitions., Starting with the simple
enumeration and branch and bound type algorithms 1(a) and
(b), we shall go to the dynamic programming type algorithms
2!&), 3(a) and 4(a). We shall then show that by "splitting”
the rmltiset S§ we can obtain algorithms that have a worst
case coumputing time a square root of that for the dynamic
programming algorithms. This is represented in the algo-
rithrms 2(b), 3(b) and 4(b). Improvements in the averago

‘behavior of the algorithms are obtained through the use of



hourfstics, 1In section 4 empirical rosults are qlven to
allow for comparing the usofulnesas of the heurfstics used,
The empirical results will show that the new alqorithms
aro significantly botter than the ones without splitting

ovor a wide range of input data.

Definition 6 Unlon (U Sx‘lw Srz 18 a multiset such
that x esrltg S”z with n occurrences {ff the
number of occurrences of x 1in srl plus the nun-

ber of occurrences in Srz is n.

Definition 7 Ordcered Union @ » Srlg Sr2 is a multiset
such that x esrllﬂ Srz under the same conditions
as definition 6 and in addition the elements of

-+
Sr w Sr are ordered.
1 2

Example If S, = {(1,2,1} and Sg = (1,2,2,3})

then s; (&) s, = s, = {1,2,1,1,2,2,3}
If 53 = {1,3,5) and s‘ = {2,3,4,4}
-

then 83 ty S4 - S7 - {1,2,3,3,4,4,5) .

Algorithm 1(a)

Here we generate all 2°¥ possible 6's and deter-

mine which ones satisfy equation (1)

1) ([Initialize] LI (0, «eep 0); Do atep () 2F - time
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2) (find new § ) 8 « &+1; (binary addition)

I ] 843, = M then output
leicr

§ = (613 sy ar)

Storage required: 0O(r).

Computation time: 0(r2F).

As we shall sece from the cmpirical studies in Section
4 this method works extremecly slowly for even small values
of r . So despite the fact that its storage requirements
are linecar in the cardinality of the input set, its rcal
effectiveness is severly limited because of time. We note
that this algorithm could be somewhat spceded up through the
use of hcuristics as explained in (11). However, we noxt
give a backtracking or branch and bound algorithm 1l(b),
below, that is conafdorably superior to 1(a) and so we shall
not concern ourselves further variations of 1l(a). ’

Now we give a rocursive algorithm which maintains
the linear storage requirement and reduces the bound on the
computation time from r2¥ to 2F + This method is well=-
known and is perhaps the one most commonly employed for
solving knapsack problems, A nonrccursive version without
heurinstics can he found {n nnvkonhnvh,.lﬂ), pPp. 25-27,
In the version we give hero we have added several heuristics
in steps (1) and (2). These do not change the order of the
method, but do aid considerably in improving its averall
perfomance,  Simflar hourist{es have hoen uned by Wolingartnor

and Ness in (7).



Algorithm 1(b) PARTS(s, i, rem,8) [Backtracking or
Branch and Bound] -

The generation of certain &°'s 4s aborted by
using heuristics in steps (1) and (2). It is acssuxed
that the clements of s: - (51, cece ‘t) are initially
ordcreé (sl S8y <, cees £ l:) .'(The choice of
ordering is somewhat arbitrary. Had we ordered the ll'l
in dccreasing order then we would not have becen akle to
use the hcuristic of step 2 below.) -

The specific heuristics used are:
1) Step 1 1If the partial sum (s) plus the total sum

left (rem) is not enough to reach M then abort;

(2) Step 2 1f the partial sum (s) added to the next
number 8y exceeds M then abort as all other
’1" arc at lcast as large as this one (because
s is ordered).

Let
8 = the prescent partial sum;
i = index of the next 8; to be procecsed;

rem = the remaining sum, o

$+1<3<r

¢ = thosctof § such that ] s, ==
j€8
“The algorithm 4s xccursive and 4s dnitinlly 4invoked as

PARTS(0, 1, ] s;, NULL).
1<i<r



1) [Tcat houristics]) If = ¢ rom < M then rotura
1f & + rem = M then output & U{i,1+1,...x)
return,
2) (Try next ] 1£. 8 ¢+ a; > M then roturn,
If & + s, =M then output L U &
I L < r GO 70 step ¢
else roturn.,
3) [Recursion]) If § < r then CALL PARTS (s + 8y

i +1, rem - 8, i V 8); else return.
4) [Recursion} CALL PARTS (s, i + 1, rem =~ 8y0 8);
S) [all done) return.

Storage required: O(r)

Corputatisa time: o0(2%)

For each partition, this algorithm produces an
r-tuple 4 ., Thus an additional time of rQ 1is required
to print all the partitions, where Q is the total number
of partitions. Though this method is much better than l(a)
in terms cf the time recquirements, let us now look at even
faster methods,

In the next algorithm we compute the sums obtainable
from all possible sub-multisets of S . Along with each sum
is xept an encoding of the indices used to obtain that sum.

Multiple copies of sums are rotajined,
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Algorithm 2(a) S, = (al. vesy ar)
A 48 a multinot of 2-tuplos (°1' az) whoto

a, is a partial sum,

a, is an encoding of the J's such that

(313-1 € ay)
! 27t
The encoding uscd is a, = .
(jl'j € .1)
1) [Initlalize] § « 0, A+ {(0, 0)), IC + 1,

Do step 2 for 1«1, ..., r .

2) A+« AW {A+ (si. IC)); IC « IC + IC;

Note: ,In step 2 only those (a,, a,) for which a., < M
L === 1 2 1

.;ri: retajned., 1f a; - M, a, is output.

v'(Strictly speaking we shall have to output docode

(ay)).

Storage required: 0(2%)
Computation time: O(max{2¥,rqQ))
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To seo how algorithm 2a worka, consider finding all
the 8 partitions of Sy = {1,3,4})

value of i A
0 {(0,0))
1 {(0,0),(1,2%)
2 (0,0,1,2%,(3,21),(4,2% + 21))
3 {(0,0),¢1,2%,¢3,21),(4,2° + 2y, (4,29,
(5,29 + 2%, (7,21 + 2%))

and the vector (111) is output corresponding to the partition
(1 + 3 +4).

We note that while implementing the encoding scheme,
above, onc would use bit strings to represent the second com-
ponent of the 2-tuples of A, with the jth bit net to 1 {ff 'j
was used in obtaining the corresponding sum. This has the

advantage that no decoding is nceded at the end to obtain the .

partition.

Theorem 3.1 In the worst case the computing time for
algorithm (2a) is o(max(2T¥,rQ}) and its storage re-

quirements are o(2%) .

Froof Let |A| = k when 4 = . Then the cardinality of
A for 1«3 +1 18 < Jk. Tho time taken for
atep 2 when 4 = J 48 k and for § =1, k = 1.
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r=l

Therefore the total time s < | 2% = 0(27) and the
=]

decode time per partition is 0(r).

Though algorithm 2(a) has a much worse storaze require-
mont than 1(b), it actually remains fairly competitive with
1(b) in terms of time., HMHowever, it is possible to mare a
significant improvement in method 2 by splitting the irput
into 2 sots ag will Le done in algorithm 2(L). The proce=-
dure of "splitting"™ is that rather than generate ail pos-
sible sums for the given multiset S, of cardinality r, we
conuider two smaller multisets T and U such that the union
of the two gives S.. Algorithm 2(a) is now ap;jlicd to boun
T and U . However now the multiset of obtainabie sums {s
maintained {n incrcarning order in terms of the firot corme
ponent of the 2-tuples. It is now possible to corbine the
results of the two applications of mcthod 2(a) to T and U
to obtain all M-partitions, and in such a way that the en-
tire process requires only a square root of the tire and
space required (in the worst case) £f 2(a) were dircctly

used on St.
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The nultiset Sr is divided into two sub-multisets

T, U such thatd

IT] =t = lx-/a] » T = (85, oeey 3./2)
U] e u=p =t ,ue (8o ap10 tove 8)

As Iin 2a, A and B are multisets of 2-tuples. However

now A and B are kept ordered, i.e. if (a.1 » 8y YE A
1 2

and (ajl, aJZ) € A then ail < aJl implies 1 < Ja

and scimilarly for & .

1) 31«0, A« ((0, 0)}, IC « 1
Do step 2 ¢t times for 4 +« 1, ..., t ;

2) Ao-AE(A+(t.1, I1C)}; IC « IC + IC

3) 1‘0.8‘((030)).IC“1

Do step 4 pr -t times for 1+t 41, .00, I}

8) BeB (b +(u, 10)}, IC = IC + IC;
$) Plck off pairs (a, , a; )€ A
1 2

(bjl. bjz) € B

such that (a +4 b, )=NM.,
L o

Then output partition (aiz, bJZ) .

1Lr/ZJ = largest integer < r/2
r;/§7 = smallest integor > r/2
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As an cxamplo for 2b consider

8y = (1,2,4,8) , M= 124
then T = (1,2}

U= (4,8)

A= ((0,00,(2,2),(2,21),(3,2° + 21))

B = ((0,0),04,2%,(8,21),(12,2° + 21))
A search of A and B shows that the only M-partition
of 5, is 0111,

Storage required: 0(2r}/5l)

Proof The multisets A and B cannot become larger than

this by lemma 2.

Computation time: O(max(zl}/sl.rQ)) where Q 13 the numter

of partitions.

Proof Since in steps 2 and 4, A and B are crdered and
hence A + (tx, IC) and B + (“1’ IC) are orde}cd
the merging necessary to keep A@(A + (ti, IC)}
and B@(U + (ui, IC)} ordered can be done in time
proportional to |A] and [B] respectively.
Thercfore from algorithm 2(a) the time for steps
1 -4 i

(2% + 2% = o2 [,

Step 5 requires time O(max(zr/z,ra)) . To
see this consider the algorithm below which realizes

this step:



Theorem

Proof

=12~

Lk .

Let |A] = a, B! ﬁ'S. A= ((ai, pi) l<i<a},
B = {(b,, q,) 1cigb) where p,, q, contain

encodings of all combinations of elements that

sum to 8y, bi'. Then
1) 4 «1;J «0b;

2) DO WHILE (1 <-a and J'> 1); -

If a, + bJ'< m then 1 « 1+1; go to (L)

If a, ¢ bJ >m then J « J=1; go to (L)
Output all combinations of Py qJ; 1 « 141
L:END

3) end. ;

Thus the time required i1s O(max{a, b, rQ)}) . Now
a,b < 2[%/21 80 the time for step 5 is © .
O(max(z(}/é1. rQ}) and similarly for the entire
algorithm.

3.2 Algorithm 2(b) enumerates all the M-partitions of

S, -

Let & = (61. cees 8/00 ‘r/?#l’ esey ‘r) be an

M-partition of S,. &= (61. ey 6r/2)'

§ = (& ceep 8.} ¢ Then I 8,8, <M and
r/2+1* ¢t tr 1<15r/2 173



r/2+l<i<r

Since all partitions < M of ects T e (31' cees 2o,
and y = (’r/241’ ceay sr) are produced ty sters

2 and 4, then for any M-partition 6 of ¢ there
must exist o & frum A and ¢ frem B zuzh that
§ = Tyd . Therefore we must ehow that in zten £
every possible cozbination of & € A and £€ Z:f = %]
and § 18 an M-partition, ic fourd. by he presi.uz
proof, the a, and bj are ordecred and suipcze

they are distinct. Assoclated with each ¢ is the

set of & : a, . Similerly for in

i 8,6, =
1eyers2 43
It is sufficicent to show that 1f we arc lockirg a*

a,, bJ then every other ¢ associated with 3,
k < 4 such that &UZ 41s an M-partiticn &

- " . b
L G.lEZL

W

.

(-1

'S

.
-

Tt

becn output. If a, + bJ Zm then & <a, 1Iin
a, + bj < m and hence there are no previcus M-pzr-

titions. 1If &1 + bJ >m then by the aboeve sigu-

rithm either for all

ak. ak+b.‘<m or

dk : a, + bJ = m . In this casec all combirnatlicns ¢f
Pqe Qg = (8, §) arc cutput. Thus all previcus

M-partitions have been found and algorithm 2(%)

producens them nll.
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The improvement in computing timn exhibited by
Algorithm 2(b), naturally, leads to the question of
whethor further improvements can be achieved by divide-
ing the original sct into more than two parts. If we
divide the multiset fnto k parts then all the partial.
sums can be computed in O(k 2r/k) time. However,
there appears to be no way of combining the results
of the k-parts in time less than O(2r/2) to get the
partitions. For example if we chose k = 4 then we
would obtain four lists of partial sums of maximum length
2:/4 each, To obhtain a partition of M wec would choose
ore element from list 1,say xy and then determine all
partitions of M - x from the remaining three lists,
Such a process requires more than 0(2{/2) time.
Alternatively we could combine pairs of lists obtaining
two lists of size O(Zrlz))but this just reduces .to method

2b,

We have previously noted that a polynomially bounded
algorithm for the partition problem would have important con-‘
sejuences on the exiastence of polynomially bounded algorithms
for rany other problems. Though the splitting technique can-
not be iterated and further with a subsequent improvement it
can be successfully applied to other p-complete problems. Thus,
o(z"2> algorithms can be given for problems such as 1) finding

an exact cover of a graph; 2) finding the hitting sct of a

graph,
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Now we study an entirely different approach to this problem
which avoids the gencration of all partitions as in 2(a)
and 2(b). Instead it first produces r acte

s(l). cey s(") 00 that s“) containn all posaidle
combinations of Bys coes By o Then a retracing pro-

cedure 1s used to find those combinations which give M
in s(”)

Definition 8 The sumset of S, » denoted by S(r) is

the sot of all sums I s, where JC(1, ..., r) .
ja

Definition 9 Ordcred Union on Sets srusr is a set such
1 2
-
that xesrlL) Sx,2 implies either x& S,_1 or

x& Sr and the elements are ordered.
2

Examplo S, = {1,1,2,2)
The sumsets are:

s = (o)
s o (o,1)

s w (0,1,2)
(3.

g4

- (0,1,2,3,4}
- {0,1,2,3,4,5,6)
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Algorithm 3(a) (Muaser (%))

This works in essentially two stages

a) compute the sumsets of the sets,

S1 = (sl, ey 31) l<i<r .

v) Where M appears in S(r) generate all
partitions creuating M by using the sumsctis

S(l). eees s(r-l)

Generate sumsets

1. 509 ¢

2. For J =1, ..., r s s(J‘l’Cj(sJ'l+(sJ))
Generation of partitions, using s‘j! This {8 a
recursive procedure G(J, n, J) 3initially

invoked as G(l, M, NULL).

3. If n= 0, output J , Return.

. 1t n-n, € 9D canl 6(3-1, neng, (U

5. 1f nesY1Y call G(y-1, n, J). Exit.

This algorithm differs from 2a chiefly in the
scheme used for obtaining the indices that sum to a particular
number (binary encoding in the case of 2a and trace back
invelving search in 3a), It should ba clear that the binary

cncoding schemo would be superior whon the numbor of parti-

tions is large.,



Theorem

Proof

Proof
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Algorithm 3(a) enumerates the M-partitions of S .

See (4] p. 33.

Storage requirements: O(min(Z’, r¥})

1t s8] a i then 13UV o ok

T r
Thercfore the total gpace = ] 2° «0(2")
0

Note however that the marximum cum in ary of the
s 45 M (or- Is, 1f no heuristics are usel).
So we get another bound on the clorage L.c. (r7;

Thuns the storage required in 0(min(2r. rv})

Computation time:
Steps 1 and 2: o(min{2%, rM}))

Steps 3 through 5: o(rza) N Q = nunbter of parsitic:
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Alusoedintm 30y
This ia espantially 3(a) with S, split 1into two

parts as in 2(b). The worst case storage space 1s now

r/2

O(min(2 , M)

and the computation tinme 1as

r/2

o(zax{27/2, r2q1)

There are two strateqgies that can be employed for
irplementing method 3. Musser's implementation of algorithm
3(a) usecs bit strings. The scts s(i) arce bit strings in
which the jth bit is a 1 iff j has a partition from
the first 1 elements of the multiset., Such an implementa-
tion has a space requirement of O(r M) and also an asymptotic
computing time bound of O(r M) . This implementation is good

when M is8 guarantecd to be small., However, the following

exarmple illustrates the drawbacks of this technique for large M.

Exarnle: S = (1, 10°, 10%) , M = 10% + 10°

The storage nccded to handle this problem by the bit

string technique is about 3 x 106

bits (carcful programming
could reduce this to around 106 bits). The computing time
would be around 105 basic operations, However the imple-
mentation sugqgested by 3(a) needs only 8 machine words and
about 8 units of time. Thus the dependency of the bit approach
on the magnitude of the number can soverely cffecct its gencral

usefulness.
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. Naturally, if wo were writing an algorithm for qener
use we would avoid bit strings. The maximum storage gain t
can bo oxpocted, for small M , through tho usec of bit stri
is only a factor of & whera f equals the numh;r of hits
word in the machine. Finally, it is often the case that tt
numbor of combinations which are gencrated is considerably
less than 2¥ ., This will be reflected in our implerentati
by a decrcaso in storage nceds whereas the bit approach is
still dependent upon the magnitude of the number.
Now wo prosent the last pair of algorithms. Later

we shall see that their asymptotic bounds will be at least
as good as all of the previously described methods and

actual tests indicate that they are far superior.

Algorithma U(n), U(b)

These arc the same as 2(a) and 2(b) respectively

with the exceptlon that A and B are now sets raither tha

multisets., Eliminating multiple occurrences of the i

sum at each stage easlly overcomes the extra beokkeepins
needed. Thus, encodings of all possible vectors resulting
in a sum in A or B are kept in an auxiliary array wih
only 1 pointer; a pointer to the first partition of that su
As for algorithms 2(a) and 2(b) the worst case storage and
computing time bounds remain the same. However, in the
next section we shall examine the extent to which these

algorithms are an improvement.

Storage required: 0(?r}/é1)
Computing time: O(max(zr}/é]. rQ})
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Table 1 summarizes the upper dbounds on the computing
time and the storage requirements of algorithms 1 through 4,

Estimates of the storage constants involved are also given.
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§. Emptrical Fesalns

Algorithms 1 through 4 were programmed and tested exten=
sively to determine thelir average relative performance as
opposed to the theouretically obtailned 'worst case' computing
time and storaye rejuiremcents. The progrums were written in
PC2TPAN G and tested on an IBM 360/65.

Tests were performed using the following data sets for

S = (sl, cees ar) and M :

I. 31'1 liiiﬂ

M = R, 2K, 3R, R(R+1)/4

1I1. 3 " randoum aumbers in (1,100}
Let m = mix (ﬂi)

M= a, 2m, 3m, 281/3, 231/2
I1I1. a‘ & prandom numbers in (1,1000)
M =g, 2n, 3nm, 231/3. fsilz

It should be nnted that bLecause of the heuristics

uced, the time to compute M-partitions for M= | ¢
li¢r i

13 essentlally zero for algorithms 1(b), 2(a), 2(b), 4(a)
and 4{t). Tre computing timeg recported for the cases where

the were random numbers is the mean of times obtained for

3¢
5 such tests.



=20~

The computing times are reported in Tables Il (L),
(11), and (111).

Despite tho simplicity of 1(a) and the fact that it re-
Quires only lincar storage, this method is far too slow for
oven small values of r . As the 3 tables show, un r of
15 took more than 21 seconds and higher values of r were
subsequently much worse. Method 1(b) is a considerable
improvement over 1(a), retaining the linear storage feature
while 1ts performance 1s superior to 1{(a) by a factor of
10 or more. The combination of the heuristics helps to
account for 1ts dramatic improvement over 1(a). In the cases
2(a) versus 2(b), 3(a) versus3 (b) and 4(a) versus 4(b) the
(b) version with the multiscts split was always superior.
Thus let us compare 2(b), 3(b) and 4(db).

E*aﬁiﬁi;g all tﬁr;e iablés we see thaé métﬁod Z(Q) w;s
faster than 3(b) in almost all circumstances showing the
superiority of the binary cencoding scheme. However, the
ratio of improvement is not a constant but varies consider-
ably with the input data. For instance in Table II (ii)
method 2(b) is 10 times faster than 3(b) for M = max . but
both methods are about equal for M = sum/2 . 1In any case
method 2(b) is overall the more efficient, but its rcal dif-
ficulty is in storage. Note that in Table II (i) method
21b) runs out of storage on all the data sets whercas 3(b)
is able to continue. Therefore method 2(b) was modified to
produce method 4(b) by changing the multisets into scots.

Not only did this 1mprovemeht allow 4(b) to continue for nuch

groater r but also decrcased the computing time, so that
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4(b) is at least as good and often better than 2(b).
The empirical results also show that 4(b) is consider-
ably better than 3(b) even in cases where there are
only a polynomial number of partitions,

Finally then wo aro left with algorithms 1(b) and 4(b).
Looking at the tables we see that the computing time becomes
prohibitive much earlier in 1l(b) than in 4(b). In fact for
r = 60, the maximum r that was tested, 4(b) was able to
obtain the answers in 1.4 seconds and nceded no more than
30K words. So despite the fact that 2¥/2 is an upper bound
on the number of partitions which may exist, empirical tests
indicate that this limit is often not achicved. (Note that
Lerma 1 in Scction 2 shows when this limit will bo reached,)
Therefore an outright "best mothod" would probably be 4(b)
although mcthod 1(b) has the virtue of guaranteed linear

storayo,



Table II (i)

Sequential Nusbers; Times in nillisecqnda

** means > 30K words reguired
¢ means exceeded time limit
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Teble II (112)

Randorm Numters (1-1009)

% means > 30 K words reguired.

Times in mil;iseconds;

* means exceeded
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The Xnapsack Problem

The general knapsack problem may be stated as the
following integer optimization problem: let P; be the pro=
fits or returns gained by including project 1i; sj the amount
of resourca required for project i; M the total amount of re-
source that can be allocated; and §; the fraction of project

i that is accepted. Then we wish to solve:

max Z pids

1<i<r

E 8161 <M

1<i<r
where 83 is a non-negative integer. If we restrict §i to be

subject to

tho inteqor 0 or 1 this is called tho 0/1 knapsack problem.

In this paper we shall be concerned only with this form of the
problem. In particular we shall consider applying tha meth-

ods of the previous sections for computing partitions to pro-

duce more efficient knapsack methods. 1In terms of the knap-

sack problem we may formulate the partition problem as

max - “LG:L

1<i<r
subjeoct to ———oa——
Z l161 <M
l<i<r
51 = 0,1

Clearly, there is a partition of M in S ={83,...,6,)} {ff

max :27__ 8{84=M, If wo want all the partitions then wo
1<i<r
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look for all & for which :E::’161 attains its maximum of M.
Thus we see that the partitions problem discussed earlier is
really a very important instance of the 0/1 knapzack przblem
Let us briefly examine the new complications pro-
duced by the knapsack. We now have a profit associated nct
only with each s§ ., but subsecquently with each partial sun
If we adopt algorithm 4(b), then at each iteraticn fcr ever:
multiple occurrence of a partial sum we nced cnly retain the
one partition which yields the maximum profit. At least thi
eliminates having to kecep multiple copies of either the par-
tial sums or the profits. But in algorithnm 3(b) the ar;rcac
of gencrating the sumsets and then tracing back to find ol
existing partitions now seems more attractive. Since thecre
is only onec solution in the knapsack problem we can entir-ly
climinate the overhead of maintaining all posuible partitiorn
as we generate sums (as in 4(b)) and instcad usc 3(b) wi.cre
wo need only trace bhack once, Furthermore, fn crder to az-
sure that the splitting proccdure takes no longer than 0(2:/
we must now kecp not only the sums but their sssociated pre¢

r

in increasing order. This can clearly be done, for suproze

o
that for somc i we have sums aj < ag.y but profits p; < z,,
Then we can reject the pair (°£0)' p“l) as not yieldirg 2

maximum profit, FPor,evary further posafbla corbination of 2
§42<§ <r which would he added to Ay qiving a rum < M can
ag well be added to &y yiclding a greater profist. Therelfere
the method we first suggest is an adaptation of algorithm 3|

the dynamic proqgramming approach where we fnftially rplit ¢

sot of woiqghtn and profitn, This mrthod §a nine giseng
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Alyoed%hm Poap (1) {aplitting]

Step 1 Divide the multiset S, of weights, into two multisets

T and U as in 2(b). Let the associated profit sets be PT and PU

recpantively,

Set F,(i) = o o<i<M
and Go(i) = o o<i<m
Step 2 Compute Fy (x) = max(Fy_; (x),Fy_3(x-t,) + PTk)
12kz |e/2)

Ok (x) = max(G, _;(x),Gk=1(x-u,) + PU)
1<ker-|r/2}
Step 3 {find an optimal solution)
Search Flf/aj and Gr-\[/Zl in a manner similar to
algorithn 2(b) to find an optimal pair x,y such that x+y<M and

Fiz/2] (x)4G. u./al (y) is a maximum,

wWhile actually implementing Step 2 we do not compute
P and G for all x€{0,M) but only at those points x for which
ticre is an x - partition in the weights currently considered
in Fg{x) is computecd only at thosec x which can be reprcscented

as the sum of a sub-nultiset of the weights t.t2.t, and t,4.
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IL follows fummadlately from the pruvioun sections that
this algorithm has a worst case computing timo and storage re-
quirement of o(min{2*/2,rM)). We note that previous dynamic prc
gramming algorithms for the knapsack problem, see {2,5,6,and 7)
roquiro O(min{2¥,rM}) time and space. Thus for large M our al-
gorithm again roprosmonts a square root impiovement,

For a thorough comparison we now consider the best br:
and bound proccdure that has been proposed, algorithm 1(b) as ag
plied to the knapsack problem. We include the heuristic as give
by Kolesasar in {12}, who suqgests snolving a simple lincar pro-
gramming problem at each stage of the branch. while he had con-
sidcrablo success comparing 1(b) with his hcuristic to method 1o
he did not compare it with any dynamic programming alqorithr=,
Asymptotically KNAP(l) is superior to algorithm 1(b), but we wil
also test these 2 methods extensively to determine more precieel
their expected behavior. We now present the branch and bound al

gorithm 1(b) with Kolesasar's heuristic for the Knapsack probler
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Algorithm Knap(2) [Branch and Bound}

8 = the present partial sum
P = profit assoclated with this sum
i » index of next s to he processod
= st of j such that 5%% §y=8
= maxinum profit obtainable

$

r .
4 = set of J that yield this profit
w

==
jea 83
1) {Initiali =) Oxder the s; in decreasing order
of pi/s‘.

Set Pyp, W,8,4,8 = 0
and i = ]
2) [Test Heuristic) Solve the corresponding linear program

=
max:z = por o opydy

r
subjoct to:g}I? akﬁk:M
o< <1 lf.kir
IFP2>2Z + p GO TO(S)

3) [Put in next item that fits)
Check for first k for which 8p <M
If none, sct 61,...,6t = 0, GO_TO(4)
Set M = M-Sy, p=p + Pys 8 = 8 + 5.,
§1e8 410000 Skal =0, & = 1
i=k+1. Ifi <rgoto (2) else go to (4)
4) [Save ncw solution) 4 » ¢ + 1

IFP>p go to (5)

-

HEE P = p, A= S, W=, g0 to (5)
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$) {[Packtrack)
Find largest k<i for which ak-1.
1f no such k we are done with optimal solution &.

ELEE M=Mta, , p=p-pk, 8=8-6,, 8§, =0, {rkel, o to (2).

The lincar program of step (2) 4s simply solved by sct-

L
ting &, 6“1,...%-1i LI (n-{ s,‘)/s‘M where ¢ is the lar-
gest index for which } 8, £ M (lb 1=r then just use &;,...{ =1

with .z-f Py as the sdlution}
i
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We note that Algorithm KNAP(2) takes 0(r2F) in computing
time and so asymitotically FNAP(1l) I8 certalinly superidr. We will
now test theso 2 algorithms empirically on 2 variations of the 0/1
knapsack problem: a) finding a sinqgle solution with maximuin pro-
fit; and b) finding the optimal solution with maximum profit and
minimum weight. We noto that a 3rd variation, namecly finding all
solutions is essentially equivalent to (b).

For both variations a variety of data sots were constructed
to reflect the several degrees of freedom which are possible, i.e.
we can choone the weightn, tho profitn, and the nize of the knapsack,
Cata set I consists of random weight, 8{, and random profits pj.Data
scts II (a) and II(b) consist of random weights, 8y and profits Py
guch that

10, 4f 12652100  II(a)

Py = 8¢ ¢+
100 , if 1<s5;<1000 1II(b)

Tw.4s as the weights increase the profits are accordingly increased.,
Tata sets III(a) and IXI(b) are conntructed by choosing random pro-
fits, pj and then choosing the weights s; such that

10 if l<p;<lo0

8; = p +
i 100 if 1<p;<1000

Thus correspondingly greater profits have greater weights. Finally
we consider 2-special types of data which serve both to exploit
¥NAP(2) to its fullest potential and to chow how disastrous it can
be. Data set IV has sequential si=i, M=2*max{s;} and the ratios
pi/:1 are all equal. Data set V has random wéights 8y equal ratios
pi/s; but there exists no partition.

Table I represents KHKAP(l) versus KNAP(2) as tested for

finding a single solution on data scts I,II and IIX. For each choice
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of M, tho oizo of tho knapoack, thc timeo given {s the total
time that was needed to solve the generated knapsack problems
for sizos r=15-60 in stops of S. 1In all, 50 knapsack prob=-
lems wore solved for: each teat. Table II compares these 2
methods for finding the optimal solution using the same data
sets I, II and IIIX,
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Data Set M KNAP (1) KNAP (2)
I 2*Max 6.8 8;45
172 17.7 15,11
IX(a) 2*Max 8.37 7.9
172 27.94 142,2
"TI(b) 2*Max 8.15 10.9
172 29.50 276.0
IIT(a) - ‘2*Max 8.04 4.56
172 27.22 41.93
IIX(b) 2*Max 8.60 7.47
I72 32,38 60,74

Times in Seconds

Table I: Single Solution
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pata Set M KNAP (1) XNAP (2)
I . 2*Max 6.8 10.7
172 17.7 16.8

Ila " 2*Max 8.37 10.18
1/2 27.94 263.94

IIb 2*Max 8.15 11.39
1/2 29.50 311.69

IlXa 2*Max 8.04 6.11
172 29,22 163,47

IIIb 2*Max 8.60 G.28
172 32.38 70.77

Times in scconds

Table XI: Optimal Solution
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rYor the problem of finding a single nolution, oxamine
atinn of Tahlae 1 shows that hoth motholds are of ten compotitive.
However, whenever there is a significant difference, as whon M=
{/2 ¢« FEAP(1) is consistently faster than KNAP(2) ofton by a fac-
tor of 2 or greater. In examining Table II, we again see that
KNAP (1) remains far more stable than KNAP(2) and is faster in al=-
most every category. Again for the case when M=]/2 we sce that
X5NAP (1) is often 5-10 times faster than KNAP(2). In order to sece
what is happening more concretely, Table III expands the data of
Table I for the caso: data sots I, IITa with M~]/2,

x KHAP (1), KNAP (2) KAP (1) KNAP (2)
15 46.50 73.22 53.24 119.80
20 89.86 209.66 76.56 222.98
25 136.46 242,94 133.12 246,28
30 227.40 775.44 216.32 818.68
35 332,80 975.10 359.42 309.50
40 522,50 183,04 565.76 352.78
45 708,86 5973.76 778.74 4226.56
50 - 908.56 389,38 1028.36 4156.64
5% 1164.80 18720.00 1381.12 858.64
60 1454.32 1865.28 1883.64 835.34
Data Sct Y Data Sot IXXa

Time in milliscconds

Table IIX:s Single Solution Expanded
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Tabla III clearly roveala how KNAP (1) remaina gtable
with increasing r whilo KNAP(2) experiences wide variation., For
r=45, KNAP(2) needs 5%00 millimcconds but for r=50 KLAT(2) drops
down to 389 millisoconda. Wo noto that this phenomenon occurs 4§
the data is such that a single solution is discovered quickly.
Then KNAP(2) abruptly terminates, but one cannot canily determin
a priori if such a situation exists. On the average KNAP(1l) doe
better than KNAP(2) . Thus wo conclude from Tables I, IT and III
that KNAP(1l) is either as fast and sometimes much faster than
KNAP (2) ,

Let us now look at the behavior of these methods on th
data sots 1V and V {n Table IV, Where the ratios are equal and
the data sequential as in sot IV, KNAP(2) finds a solution quick-
ly and hence works extremely well, However, to find the optiral
solution KNAP(2) must do all of the work and the heuristic is no
longer helpful. Thus we sce that the times for KNAP(2) grow pro-
hibitively large. 1In data seot V, where no partition exists, we
again sce that KNAP(2) works extremely poorly whercas KNAP(1) is
very stable. Therefore, both for the straightforward data scts
as well as for the specially concocted ones, KNAP(1l) with split-
ting is almost always faster and often much faster. The cmpir-
ical data combined with the fact that in the worst case we know
KNAP (2) to be worse than KNAP(1l) combines to make KNAP(1l) our

first choice.
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r KNAP(1)
- (Single
Solution)
15 16.6 0.0
20 33.2 16.6
25 66.5 49.8
30 83.2 33.2
35 166.4 16.6
40 199.6 16.6
45 183.0 33.2
50 249.6 33.2
55 316.1 49.8
60 382.7 49.8
15 50.0 2300.0
20 99.8 80437.7
25 200.0 > 600000.0

Timos in milliscconds

KNAP (2)

KNAP (2)

(Optimal
Solution)

632.3
3394.5
14776.3
50302.7
159760.6

> 400000.0

2912.0
92834.5
> 600000.0

Table IV: Single and Optimal Solutions
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6. Conclusion

We have considered the problem of finding all combine
ations of r numbers which sum to M and shown how to recduce the
computing éimo and ntoraqge requirements for algorithrms which
solve this problem by a square root factor. Then we have ctu-
died additional improvemcnts such as heuristics and special da-
ta structures. The resgulting alqorithms were then extensively
tested and comparcd. Algorithm 4(b) turned out to be superior
in almost every case and often far supcrior than all of the
others. Also it is empirically cstablished that binary cnzoling
as in 4(b) is better than the conventional implicit erncoling
scheme of algorithm 3(b). Only under aspeclial circumstances ef
the input will algorithm l(b) even he competitive with 4 (L) ans
these casces are outlined.

Then we have presented the 0/1 knapsack problerm and
shown how the square root improvement scen before can be dircct-
ly generalized to its solution. The 2 standard rethods, branch
and bound and dynamic proqgramming for the knapsack problem (with
the inclusion of the square root improvement technique and other
heurianticns) were programmed and tented, The erpirical renulta
showed that the knapsack problem ran 10 times faster than the paz-
tition problem. In comparinon, YHAP(1l) uniformly cutlepwrrforred
its main competitor KHAP(2). Though for certain types of input
KNAPP (2) {b oxticmoly fasl tox‘
others it is disastrously slow whercas KNAP(l) remains stable

as a function of the size of the input. Purther for firding ei-
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tbor the optlmtl or cquivalontly all solutions, KNAP (1) was
far more efficient than KNAP(2). Therefore, unless one is
guaranteed that many solutions exist and that they all will
ba fraund early by ¥NAP(2), FHAP(1), with the aplitting teche
nique, is both asymptotically and ompirically the bottor

cholce,
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