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ABSTRACT

We propose a new scalable algorithm that can compute Per-
sonalized PageRank (PPR) very quickly. The Power method
is a state-of-the-art algorithm for computing exact PPR;
however, it requires many iterations. Thus reducing the
number of iterations is the main challenge.
We achieve this by exploiting graph structures of web

graphs and social networks. The convergence of our algo-
rithm is very fast. In fact, it requires up to 7.5 times fewer
iterations than the Power method and is up to five times
faster in actual computation time.
To the best of our knowledge, this is the first time to

use graph structures explicitly to solve PPR quickly. Our
contributions can be summarized as follows.

1. We provide an algorithm for computing a tree decom-
position, which is more efficient and scalable than any
previous algorithm.

2. Using the above algorithm, we can obtain a core-tree
decomposition of any web graph and social network.
This allows us to decompose a web graph and a social
network into (1) the core, which behaves like an ex-
pander graph, and (2) a small tree-width graph, which
behaves like a tree in an algorithmic sense.

3. We apply a direct method to the small tree-width
graph to construct an LU decomposition.

4. Building on the LU decomposition and using it as pre-
conditoner, we apply GMRES method (a state-of-the-
art advanced iterative method) to compute PPR for
whole web graphs and social networks.

1. INTRODUCTION

1.1 Large Graphs
Very large scale datasets and graphs are ubiquitous in to-

day’s world; the World Wide Web, online social networks,
and huge search and query-click logs are regularly collected
and processed by search engines. Therefore, designing scal-
able systems for analyzing, processing, and mining huge real-
world graphs have become issues for all of computer science.
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The main problem is that modern graph datasets are huge.
The best example is the World Wide Web, which currently
consists of over one trillion links and is expected to exceed
tens of trillions in the near future. Facebook [20] also con-
sists of over 800 million active users, with hundreds of bil-
lions of friend links. In addition, Twitter [31] has over 41
million users with 1.47 billion social interactions. Examples
of large graph datasets are not only limited to the web and
social networks. Biological networks are also comprised of
large graph dataset.

Despite the size of these graphs, it is still necessary to
perform computations with the data. One of the most well-
known graph computation problems is computing Personal-
ized PageRank (PPR) [38] that is described as follows.

Problem 1 (Personalized PageRank problem).

• Given: an input graph G with n vertices, and a per-
sonalized vector b ∈ R

n

• Output: x ∈ R
n (PPR scores for all vertices of G with

respect to the personalized vector b)

As used by the Google search engine, PPR exploits the
linkage structure of the web to compute global importance
scores, which can be used to influence the ranking of search
results. PPR and other personalized random walk based
measures are very effective in various applications such as
link prediction [34] and friend recommendation [8] in social
networks.

1.2 Difficulty
Current graph systems can handle graphs with more than

ten billion edges by distributing the computation. However,
efficient large-scale computation of web graphs and social
networks still remains a significant challenge.

Existing graph frameworks partition the graph into small
pieces and handle the graph problem simultaneously for
each piece to obtain a solution by looking at all solutions
for small pieces. However, the main difficulty is that web
graphs and social networks cannot be readily decomposed
into small pieces, which can be processed in parallel. Find-
ing efficient graph cuts, which minimize communication be-
tween pieces and are also balanced is a very difficult prob-
lem [33]. This problem makes MapReduce [17] inefficient
for computing such graphs, as has been pointed by many
researchers [13,35,36].

1.3 Our Purpose
In this paper, we shall look at a somewhat different di-

rection. Parallel computations are useful; however, it would
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definitely be best for them to adapt the fastest algorithm to
compute PPR. To the best of our knowledge, either

• the Power method (a variant of an iterative method)
is adapted to compute PPR, or

• some efficient approximation algorithms based on a
Monte Carlo method are proposed to compute PPR
(Section 8).

To date, approximation algorithms based on a Monte Carlo
method have been extensively studied because the Power
method suffers from slow convergence speed, especially for
large-scale graphs. There are many accelerating methods
that are designed to speed up the convergence procedure.
Among them, iterative methods based on the Arnoldi pro-
cess have been proposed [44]; however according to [44] and
our analysis (Section 7), this can accelerate by at most 50%,
and sometimes it requires more time.
Thus the main challenge to adapt an iterative method to

solve PPR is

reducing the number of iterations of an iterative
method to speed up the convergence procedure.

It is not desirable to relax exactness, i.e., we require algo-
rithms that can compute PPR x ∈ R

n such that ‖x−x∗‖ ≤
ǫ‖x∗‖ for very small ǫ > 0, where x∗ ∈ R

n is a vector of the
optimal PPR. The accuracy of the algorithm is ǫ. According
to [32], it should be less than 10−9.

1.4 Main Contributions
It is well-known that web graphs and social networks are

sparse. Moreover, common structural properties of these
networks have been extensively studied [2, 33]. By building
upon and generalizing these properties, our main contribu-
tion is to achieve the above purpose by exploiting not only
sparsity of these networks, but also graph properties. We im-
plemented and applied our algorithm to graphs with billions
of edges, and indeed it ran within 10 minutes.
How do we achieve this? To answer this question, it is con-

venient to explain when iterative methods converge quickly
in terms of theoretical justification. It is known that itera-
tive methods converge very quickly when the gap between
the first and the second eigenvalue is large, i.e., the spectral
gap is large (Section 2.2). It is also known that (1) when a
graph G is close to random this would happen, but on the
other hand, (2) when G is close to a tree, then this is far from
true1 (experiments were performed to support these facts;
Section 6.4). Thus, intuitively, if a given graph contains a
large tree as an induced subgraph, then the convergence of
iterative methods would be slow. This is the key idea in our
algorithm and has motivated us to analyze the structures of
web graphs and social networks more closely.
As mentioned above, web graphs and social networks can-

not be readily decomposed into small pieces. However, they
can be decomposed into two parts such that one part is a
core, and the other is almost a tree [33]. Moreover, concern-
ing the core, we have the following information:

The core part of web graphs and social networks
tends to be an expander graph [33] (See Section
2.2 for the exact definition of expander graphs,
but they have some similarity with random graphs).

1This is true for undirected graphs, but it is not well-
established for digraphs. That is why we perform some ex-
periments.

This is the main reason why they cannot be decomposed into
small pieces. On the other hand, this property is a good situ-
ation for iterative methods, because expander graphs exhibit
rapid convergence for iterative methods (Section 6.4). Our
proposed algorithm takes advantage of this core property,
together with the almost a tree part. For the core part, an
iterative method works very well; however, it does not work
well for the almost a tree part (Section 6.4). What about
the almost a tree part? There is another method; namely
a direct method. This method can take advantage of trees
because it can handle them very quickly; however it does
not work well for the core (Section 6.3).

To obtain a faster algorithm for PPR, we could attempt to
combine the two methods, i.e., an iterative method for the
core and a direct method for the almost a tree part. However
there are several issues to be resolved. In particular, what
are the exact structural properties of the core part and the
almost a tree part? What kind of decomposition is required
to apply this idea? How do we combine an iterative method
with a direct method?

We can answer the first two questions by employing our
core-tree-decomposition method. At a high level, this method
allows us to decompose any graph into the core part and the
almost a tree part such that

1. the core part behaves like an expander graph, thus
making the convergence of an iterative method very
fast, and

2. the almost a tree part is of small tree-width (i.e., it be-
haves like a tree in an algorithmic sense; Section 2.3).
This allows us to apply a direct method that runs in
linear time (Section 6.1).

Moreover, such a decomposition can be computed efficiently
(Section 5).

Another important key idea of our algorithm is the combi-
nation of an iterative method with a direct method. Specifi-
cally, a direct method quickly provides an LU decomposition
of the almost a tree part. We plug this decomposition into
the preconditioner2 of an iterative method. It is well-known
that an iterative method can be accelerated by precondition-
ing, which is also the case for our algorithm. In fact we can
apply an advanced iterative method, GMRES [42], for whole
networks. This results in an algorithm that can compute
PPR very quickly. To support this claim, we implemented
our algorithm for graphs with at least one billion (or even ten
billion) edges and compared it with a state-of-the-art algo-
rithm (i.e., the Power method) and an additional suggested
accelerated method [44]. From these comparisons, the con-
vergence is up to 7.5 times fewer than the Power method for
the number of iterations, and up to five times faster than
the Power method in actual computation time. In addition,
our algorithm is much faster than algorithms [44] for large
graphs.

In summary our main technical contributions are as fol-
lows:

1. We exploit more detailed structures of web graphs
and social networks. Specifically, we propose a novel
core-tree-decomposition for web graphs and social net-
works, such that not only core-whisker structure [33]
but also expander-like core together with the small
tree-width part is obtained. Moreover, we can com-
pute this decomposition very quickly.

2For the precise definition, see Section 3.1
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2. We use an LU decomposition (to the small tree-width
part) as a preconditioner for an advanced iterative
method (i.e., GMRES). To the best of our knowledge,
this is the first time to use an LU decomposition, ap-
plied to a subgraph of an entire graph as a precondi-
tioner, for an iterative method for quick convergence.
This is due to the core property.

Note that the first point concerns the preprocessing of
our algorithm, and the second point is to compute PPR.
Let us point out that our preprocessing is also efficient. In
fact, even if we take our preprocessing time into account
to compute PPR, our proposed algorithm is still 2–4 times
faster than the Power method. In applications, we may have
to handle millions of query requests simultaneously; in this
case once we perform one efficient preprocessing for a large
network (say once a day, because the network may change
in a single day), our query algorithm can handle millions
of query requests up to five times more efficiently than the
Power method
This paper is organized as follows: In Section 2, we present

key concepts in our proposed algorithm; namely expander
and core-tree-decompositions. In Section 3, we present two
major approaches to compute PPR (i.e., directed methods
and iterative methods) and then present preconditioner of
iterative methods which play a key role in our algorithm. We
then present an overview of our proposed algorithm in Sec-
tion 4. We give more details concerning our preprocessing
to construct core-tree-decompositions in Section 5. Section
6 gives theoretical analysis and experimental verification of
our algorithm. To demonstrate the performance of the pro-
posed algorithm, we conducted experiments on several web
graphs and social networks, and compared the results with
other existing methods. The results are discussed in Section
7. Related work is given in Section 8, and we conclude our
paper in Section 9.

2. PRELIMINARIES
In this section, we formally define our key concepts: core-

tree-decompositions and an expander graph. A core-tree-
decomposition is a generalization of the well-known tree-
decomposition. We first introduce basic notations from graph
theory and matrices, which are needed in our paper, and
then define tree-decomposition and tree-width.

2.1 Basic Notation
Let G = (V,E) be a graph, where V is the vertex set and

E is the edge set. We use n and m to denote the number of
vertices and edges of a graph, respectively. For a vertex set
S ⊆ V , let e(S) be the set of edges between S and V \ S.
We define d(S) := |e(S)|. For a vertex v ∈ V , dG(v) is the
degree of v. If G is a digraph, then d−(v) is the number of
edges whose tail is v.
We are also interested in the matrix A that arises from a

graph. Formally, given a digraph G, we are interested in the
adjacency matrix; We set the vertex set V (G) = {1, . . . , n}.
Then, A(i, j) = 1 if there is an edge from i to j. The tran-
sition matrix P of G is P = AD−1, where D is a diagonal
matrix and D(i, i) = d(i)−1.

2.2 Expander Graph
Generally, an expander graph [27] is a sparse graph in

which each subset of the vertices that is not too large has

a large boundary (i.e., globally connected). One of the key
properties presented in our paper is that our core is close to
an expander graph (Section 6.2). Here, we formally define
an expander graph. Whether or not a given graph G is close
to an expander is a key in our paper. We will discuss how
to determine this at the end of this subsection.

To define an expander graph formally, we need some more
definitions. For a vertex set S ⊆ V ,

µ(S) :=
∑

v∈S

d(v),

and the conductance is defined as φ(S) := d(S)/µ(S). The
conductance of an undirected graph G is

φ(G) := min
S⊆V :µ(S)≤µ(V )/2

φ(S).

We say that a graph G is an η-expander if φ(G) ≥ η. Intu-
itively, if the conductance η is large, we say that G is globally
connected. In this case we say that G is an expander. It is
known that expander graphs behave like random graphs [4].

The quantity φ(G) is NP-complete to compute. However,
the following inequality of Jerrum and Sinclair [29] states
that we can approximately determine η by looking at the
second eigenvalue λ2 of the transition matrix of a graph:

η2/16 ≤ 1− λ2 ≤ η. (1)

Indeed, from spectral graph theory [14], expander graphs
and eigenvalue distribution are closely related, and more-
over the second eigenvalue of an expander graph is relatively
small compared to the first eigenvalue. On the other hand, if
G is far from an expander (i.e., φ(G) is small), according to
(1), the eigenvalues are scattered in the unit circle. For ex-
ample, if G is a binary tree, by taking the left half of the tree
as S, φ(G) is close to zero. THus that the second eigenvalue
λ2 is close to one by (1) and hence the second eigenvalue is
scattered nearly in the unit circle. This means that the gap
between the first eigenvalue (which is also scattered in the
unit circle) and the second one is very small.

Note that (1) can be extended for a directed graph [15].
Therefore, to determine whether a given graph G is close to
an expander the easiest way seems the following:

look at the eigenvalues (and their distribution)
of the transition matrix of G.

This is discussed in greater detail in Section 6.2.

2.3 Tree-decomposition
One of the main tools used in this paper is a core-tree-

decomposition, which is based on a tree-decomposition. Let
us define tree-decomposition and tree-width. Let G be an
undirected graph, T a tree and let V = {Vt ⊆ V (G) | t ∈
V (T )} be a family of vertex sets indexed by the vertices t of
T . A pair (T,V) (or (Vt)t∈T ) is called a tree-decomposition
of G if it satisfies the following three conditions [6, 39]:

1. V (G) =
⋃

t∈T Vt,

2. for every edge e ∈ E(G) there exists a t ∈ T such that
both ends of e lie in Vt,

3. if t, t′, t′′ ∈ V (T ) and t′ lie on the path of T between t
and t′′, then Vt ∩ Vt′′ ⊆ Vt′ .

Each Vt is sometimes called a bag. The width of (T,V) (or
(Vt)t∈T ) is the number max{|Vt|−1 | t ∈ T}, and tree-width
tw(G) of G is the minimum width of any tree-decomposition
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of G. In a sense, tree-width is a measure how close a given
graph is to a tree. Specifically, if tree-width is small, it be-
haves like a tree. This is a good situation from an algorith-
mic perspective. Indeed, if the width d of a given graph G is
small, then we can apply a dynamic programming approach
to G [6], much like it can be applied to a tree.

2.4 Core-tree-decomposition
Finally, we introduce the most important concept of this

paper. We say that G has a core-tree-decomposition of width
d if a tree-decomposition (T,V) satisfies the following con-
ditions.

1. r is a root of the tree T .

2. For all t ∈ T \ {r}, |Vt| ≤ d.

3. For W = V (G) \ Vr, there is an ordering W of v1, . . . ,
such that for each l > 0 with Wl = {vl+1, . . . , },
N(vl) ∩ Wl is contained in Vt for some t ∈ T \ {r},
where N(vl) denotes the neighbor of vl.

The bag Vr is called the core part, and it is the only bag
that has more than d vertices. Sometimes we call W the
small tree-width part. The third condition is necessary when
applying a direct method. Indeed, our direct method starts
with v1, and proceeds in the order ofW . As will be explained
in Section 3 later, the order of W is important to analyze the
time complexity of the direct method. In addition, the last
statement “N(vl)∩Wl is contained in Vt for some t ∈ T \{r}”
is important because this allows us to keep the small tree-
width graph even after adding edges in the directed method
(Section 6.1).
The purpose of our core-tree-decomposition is as follows.

1. We want to steal as many vertices in the core as pos-
sible so that the stolen vertices induce a graph W of
small tree-width. If the remaining core is also small
(i.e., less than or equal to d vertices), then the tree-
width is at most d. Therefore we first want to take d
such that the core size is as small as possible.

2. If we are stuck with stealing vertices from the core
and the remaining core contains more than d vertices,
the core no longer induces a graph of tree-width d.
This means that this core contains a highly connected
subgraph that behaves like an expander graph. In this
case we want to take d such that this core is as close
to an expander as possible.

In Section 5, given d, we propose an efficient algorithm to
obtain our core-tree-decomposition of width d. In Section 7
(and Table 4), we discuss the selection of d.

3. BASIC ALGORITHMS
In this section, we briefly introduce definitions and basic

facts about PageRank. Given a directed graph G = (V,E).
Let P be a transition matrix of G and let b : V → R be
a stochastic vector, called personalized vector. The person-
alized PageRank (PPR) is the solution x of the following
equation:

x = αPx+ (1− α)b, or (I − αP )x = (1− α)b. (2)

Here, α ∈ (0, 1) is called the teleportation constant, which is
usually set to 0.85. By setting A = I − αP in (2), we only
need to solve a linear system Ax = b.
When solving a linear system Ax = b, we are interested

in accurate linear solvers, i.e., algorithms that can compute

x ∈ R
n such that ‖x − x∗‖ ≤ ǫ‖x∗‖ for very small ǫ > 0,

where x∗ ∈ R
n is a vector such that Ax∗ = b. The accuracy

of the algorithm is ǫ. In this paper we always set ǫ < 10−9.
There are two major approaches to solve a linear system

Ax = b. The first is direct methods, which are essentially
variants of Gaussian elimination that lead to exact solutions.
The second is iterative methods. Let us look at these two
methods more closely.

Direct method. The most naive direct method is to com-
pute the inverse matrix explicitly and then apply the in-
verse. However, this method is quite impractical because
the inverse matrix often becomes dense even if the original
matrix is sparse. Hence, rather than computing the explicit
inverse, computing an LU decomposition is more desirable.
An LU decomposition is a matrix factorization of the form
A = LU , where L is a lower triangular matrix with unit
diagonals and U is an upper triangular matrix. This de-
composition can be obtained from Gaussian elimination or
from more sparse-matrix-friendly algorithms [16].

When applying an LU decomposition to A, we do not
have to permute rows and columns to avoid pivots that are
zero. However, the choice of which row and column to elim-
inate can have significant impact on the running time of the
algorithm [5, 25]. Formally, the choice of elimination order-
ing corresponds to the choice of a permutation matrix Π,
for which we factor Π⊤AΠ = LU . By carefully choosing
elimination ordering, we can often obtain a factorization of
the form LU in which both L and U are sparse and can be
computed quickly.

For a matrix A that arises from a graph, this procedure
has a very clear graph theoretical interpretation. The rows
and columns correspond to vertices. When we eliminate
the row and column corresponding to a vertex, the resulting
matrix is obtained from the original matrix of a graph in
which that vertex has been removed but all of its neighbors
become a clique (which we call fill-in). Thus,

the number of entries in L and U depends linearly
on the sum of degrees of vertices when they are
eliminated, and the time complexity to compute
L and U is proportional to the sum of the squares
of degrees of the eliminated vertices (i.e., fill-in).

In our algorithm, we actually fix the order of vertices W
that would be eliminated; let W = {v1, v2, . . . , vq}. Our
algorithm proceeds as follows:

We first delete v1, and all of its neighbors become
a clique. We then move on v2, . . . , vq in this or-
der, and for vi, we add edges between any nonad-
jacent vertices in Nvi ∩Wi, which is bounded by
|Vt′ |

2, where the bag Vt′ contains all the vertices
of N(vi) ∩Wi for some t′ ∈ T \ {r}.

Thus the order of the vertices to be eliminated
is very important, and moreover the smaller de-
grees of the eliminated vertices are, the smaller
the time complexity to compute L and U is.

We use this key fact explicitly in our analysis for our algo-
rithm (Section 6.1).

A few studies have applied a direct method to compute
PPR [22, 23]. However, as discussed in Section 7, the com-
putational cost of a direct method largely depends on graph
structures. For most graphs, the computational time is too
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expensive. Thus a direct method can only be applied to a
very restricted class of networks.

Iterative method. Iterative algorithms for solving linear
systems Ax = b produce successively better approximate
solutions. The fundamental iterative method is the Power
iteration (aka. Jacobi algorithm), which iterates x(t+1) =

(I − A)x(t) + b. The convergence property of the Power it-
eration depends on the spectral radius of matrix I−A. The
convergence rate is O(λt), where λ is the spectral radius of
I −A.
Here, we focus on computing PPR. Since A = I − αP ,

where P is the transition matrix of a given graph G, the
above iteration reduces to the following form:

x(t+1) = αPx(t) + (1− α)b.

This is known as the PageRank iteration and the conver-
gence rate isO(αt). The PageRank iteration has been widely
used for computing PPR in real applications.
The Krylov subspace method [41] is a modern frame-

work of iterative algorithms that contains many methods
such as CG (conjugate gradient) method, BiCG (biconju-
gate gradient) method, and GMRES (generalized minimal
residual) method. The basic idea of the Krylov subspace

method is to maintain all vectors x(1), . . . , x(t) of the Power
iteration to construct a better solution for the linear equa-
tion. More precisely, for the linear equation Ax = b, the
Krylov subspace method generates a subspace Kt(A, b) :=
span{b, Ab, . . . , At−1b}, and then finds the best approximate
solution in Kt(A, b). In particular, the GMRES method [42]
solves the following problem iteratively:

x(t+1) = arg min
x∈Kt+1(A,b)

‖b−Ax‖.

Note that this problem can be solved efficiently by (modi-
fied) Gram-Schmidt orthogonalization.
The convergence rate of GMRES has been well studied [19,

42]. Essentially, it is fast if eigenvalues of A are clustered
and far from the origin, and the condition number κ(U) :=
‖U−1‖‖U‖ of the eigenvector matrix U is small.
Krylov subspace methods are regarded by numerical ana-

lysts as state-of-the-art for solving large sparse linear equa-
tions. However, with respect to computing PPR, it has been
reported that Krylov methods do not outperform simple
Power iteration [18, 26] especially for web graphs. In com-
parison of Krylov subspace methods and Power iterations to
compute PPR, Gleich, Zhukov, and Berkhin [26] have stated
the following:

Although the Krylov methods have highest av-
erage convergence rate and fastest convergence
by number of iterations, on some graphs, the ac-
tual run time can be longer than the run time for
simple Power iterations.

3.1 Preconditioning
An important technique for iterative methods is precon-

ditioning, which accelerates iterative methods significantly.
This method is usually adapted if Ax = b has a poor con-
vergence property. A good preconditioner for a matrix A is
another matrix M that approximates A such that it is easy
to solve systems of linear equations in M (rather than in

A). Specifically, let M be a non-singular matrix, called pre-
conditioner. Preconditioning is the transformation of a lin-
ear equation that applies the preconditioner: MAx = Mb.
Needless to say, preconditioning does not changes the solu-
tion of the linear equation. However, in some cases, if we
choose a preconditioner M carefully, the convergence prop-
erty of MA becomes better than A. Thus iterative methods
converge quickly.

In most situations, ideally M should be be close to A−1.
Indeed, the best preconditioner is M = A−1, because this
converges the linear equation MAx = Mb in exactly one
step. However, this is obviously not an option because com-
puting A−1 would be very expensive. Thus, we use an LU
decomposition that is obtained from the small tree-width
part (i.e., a subgraph that behaves like a tree), as a precon-
ditioner. The experiments in Section 7 show that this pre-
conditioner actually yields fast convergence. We also provide
theoretical analysis for this fact in Section 6.

4. OVERVIEW OF OUR ALGORITHM
We now give an overview of our algorithm. At a high level,

our algorithm consists of the following three parts. Given
an input graph G,

1. we first find a core-tree-decomposition.

2. For the small tree-width part, we use a direct method
to obtain an LU decomposition.

3. The LU decomposition is used as the preconditioner
of an iterative method. Using this preconditioner, we
apply the GMRES method to G.

Note that the first two parts are for preprocessing, and the
last part computes PPR. Let us look at these two parts more
closely.

4.1 Preprocessing for Small Tree-Width Part
For the preprocessing part, we first compute a core-tree-

decomposition (T,V) of width d for a given graph G and
a constant d. This can be performed using the algorithm
described in Section 5. The time complexity is O(dn+m).
As mentioned before, we need to choose d such that the core
part is as close to an expander as possible (or as small as
possible). In Section 7 (and Table 4), we discuss how to
choose d; however we conclude that d = 100 is the average
case, and hereafter we fix d.

As defined previously, the core-tree-decomposition gives
rise to the following ordering.

W = {v1, . . . , vl} such that for i < j, d(vi) ≤
d(vj). Note that W = V (G) \ Vr. Moreover, for
each i > 0 with Wi = {vi+1, . . . , vl}, N(vi) ∩Wi

is contained in Vt for some t ∈ T − r.

Then the transition matrix P of G can be partitioned into
2× 2 blocks:

P =

[

P [W,W ] P [W,Vr]
P [Vr,W ] P [Vr, Vr]

]

.

Finally, we compute an LU decomposition of the graph in-
duced by W : LU = I − αP [W,W ]. This can be performed
using a direct method starting with v1, and proceeding in
the order of W . The pseudo code is given in Algorithm 1.

Section 6.1 shows that the total number of fill-ins for W
is bounded by

∑

t∈T−r |Vt|
2. This gives rise to a good upper

bound for the time complexity of our algorithm for the small
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Algorithm 1 Preprocessing.

1: Compute a core-tree-decomposition (T,V) with fill-in of
width d (d ≤ 1000 is fixed at the beginning), with the
ordering of G.

2: Let W = V (G) \ Vr. Compute an LU decomposition of
|W | × |W | submatrix of I −αP [W,W ] by using a direct
method starting with v1, and proceeds in the ordering
of W .

Algorithm 2 Fast Personalized PageRank.

1: Solve (I − αP )x = (1− α)b by preconditioned GMRES
with the preconditioner M in (3).

2: return x

tree-width part because the time complexity to obtain an
LU decomposition for W is proportional to the number of
fill-ins, which is at most d× n time.

4.2 Computing PPR: Core Part
Once a core-tree-decomposition of width d and an LU de-

composition of W is obtained, we can compute PPR effi-
ciently by applying the preconditioned GMRES algorithm.
The preconditioner is the following block diagonal matrix.

M =

[

(I − αP [W,W ])−1 O
O I

]

. (3)

Thus, our linear equation is transformed as follows.
[

I −α(I − αP [W,W ])−1P [W,Vr]
−αP [Vr,W ] I − αP [Vr, Vr]

]

x

= (1− α)

[

(I − αP [W,W ])−1b[W ]
b[Vr]

]

,

where b[W ] and B[Vr] denote the W and Vr components
of b. We can evaluate the above efficiently using the LU
decomposition of (I−αP [W,W ]). The pseudo code is given
in Algorithm 2.
The number of iterations of the preconditioned GMRES

depends on the graph structure; thus it is difficult to esti-
mate in advance. However, if the core of a graph is close to
expander, the number of iterations is much lesser than that
in the Power method; see Section 6.4.

4.3 Total Time Complexity
Here we estimate the time complexity of our algorithm.

For the preprocess part, as in Section 4.1, the time com-
plexity is O(dn + m) time. For computing PPR, the time
complexity is O(K′m), where K′ is the number of iterations
of our algorithm. However, as mentioned before, K′ ≤ K/5,
where K is the number of iterations of the Power method.
Note that both K and K′ are determined when all PPR
scores have errors less than 10−9.
From our experiments (Tables 2 and 3), in most of the

cases, our preprocessing (CT + LU in Table 2) is much
faster than PPR computation (Table 3).

5. CORE-TREE-DECOMPOSITION ALGO-

RITHM
In this section, we give a detailed description of our algo-

rithm for constructing a core-tree-decomposition. A naive
algorithm for the decomposition can be obtained by extend-
ing the well-known min-degree heuristic [10]; however, its

Algorithm 3 Min-degree heuristic.

1: Repeatedly reduce a vertex with minimum degree to
generate a list of bags until all the vertices have degree
larger than d.

2: Add a bag with all the remaining vertices to the list as
the root bag.

3: Construct a tree of these bags.

scalability is highly limited because of its costly clique ma-
terialization. To construct the decompositions for large net-
works, we propose a new algorithm with several orders of
magnitude better scalability using the new idea of a star-
based representation. Our method is also based on the min-
degree heuristic; thus we first explain this heuristic (Sec-
tion 5.1), and then present our new algorithm (Section 5.2).

Here, we are only interested in undirected graphs (but
our input graph is directed). Thus we ignore the direction
of each edge of the input graph, and then we apply the
following algorithms to the resulting undirected graph.

5.1 Min-degree Heuristic Algorithm
Our algorithms is based on the min-degree heuristic [10],

which is a standard tree-decomposition algorithm in prac-
tice [2, 43, 45]. Here, we present a modified version of the
min-degree heuristic that takes a parameter d and computes
a core-tree-decomposition with fill-ins of width d.

At a high level, the algorithm first generates a list of bags,
and then constructs a tree of these bags (Algorithm 3). To
generate a list of bags, the algorithm repeatedly reduces a
vertex with degree at most d. The reduction of vertex v in-
cludes of three steps. First, we create a new bag Vv including
v and all its neighbors. Second, we change the graph G by
removing node v. Third, we create a clique among those
vertices in Vv \ {v}. After reducing all vertices with degree
at most d, we create a bag Vr that includes all the remain-
ing vertices, and that corresponds to the core (note that this
can be very large). Then, we construct the tree of the tree
decomposition from the list of bags. We set the parent of
bag Vv as bag Vp, where (Vv \{v}) ⊆ Vp. We can always find
the valid parent because all neighbors of a reduced vertex
are contained in a clique.

Drawback of Scalability. Even if we assume that the ad-
jacency lists are managed in hash tables and operations on
edges can be performed in O(1) time, reducing vertex v
takes Θ(|Vv|

2) time. Thus, in total, the algorithm takes
Θ(

∑

t∈T\{r} |Vt|
2) time. Furthermore, we need to materi-

alize edges of cliques; hence space consumption is also too
large. Therefore, even if we use a relatively small parameter
d (e.g., 100), it becomes impractical to apply the described
algorithm to large-scale networks.

5.2 Proposed Core-Tree-Decomposition Algo-
rithm

5.2.1 Overview

The idea behind our method is to virtually conduct the
min-degree heuristic algorithm to avoid costly clique materi-
alization. Rather than naively inserting all the edges of the
cliques, we introduce star-based representation to maintain
clique edges efficiently. In this representation, all operations
on graphs used in the min-degree heuristic correspond to
simple operations, such as modification of roles of vertices
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(d) The represented graph
after reducing vertex 1.

Figure 1: Star-based representation and reduction.
The white vertices are normal vertices, and gray ver-
tices are hub vertices.

and contraction of edges, which leads to improved scalability
of several orders of magnitude.

Star-based Representation. Here we deal with two kinds
of graphs: A (star-based) representation graph is what we
store and maintain in the memory, and a represented graph
corresponds to a virtual snapshot of a graph represented
by a representation graph that would be maintained by the
naive min-degree heuristic algorithm.
In the star-based representation, each vertex belongs to

one of the following two types: normal vertices or hub ver-
tices. Two hub vertices are never connected, i.e., edges con-
nect either two normal vertices or a normal vertex and a hub
vertex. The represented graph can be obtained by a repre-
sentation graph by (1) adding edges to make its neighbors
a clique for all hub vertices and (2) removing hub vertices.
For example, the representation graphs shown in Figures 1a
and 1c represents the graphs shown in Figures 1b and 1d,
respectively.

Overall Algorithm. At a high level, our algorithm con-
ducts the min-degree heuristic (Algorithm 3) on virtually
represented graphs, i.e., it repeatedly reduces vertices with
degree at most d in the represented graph to generate a list
of bags. Then our algorithm constructs the tree of the bags.
To construct the tree, we use the same tree construction
algorithm. Therefore, as noted before, the main difference
here is that, during the reduction phase, we do not main-
tain the represented graph itself. We manage the star-based
representation graph instead. Thus, we explain how to re-
duce vertices using star-based representation for enumerat-
ing bags.

Reducing a Vertex. First, for a easier case, we consider a
situation in which we reduce vertex v, whose neighbors are
all normal vertices. To remove v and make its neighbors a
clique in the represented graph, we must alter the vertex
type of v from normal to hub.
Let us now consider a general situation, where some of

v’s neighbors in the representation graph are hub vertices.
One of the challenges here is the fact that no direct edges
can exist in the representation graph between some of v’s
neighbors due to these neighbor hub vertices. To make v’s

neighbors a clique in the represented graph, we must create
a new hub vertex that is connected to all these neighbors.

Rather than creating such a new hub from scratch, the
new hub can be efficiently composed by contracting v and
all the neighboring hub vertices. Contraction of two ver-
tices means removing the edge between them and merging
two endpoints. For example, reducing the vertex 1 in the
represented graph shown in Figure 1b corresponds to con-
tracting vertices 1, 2, and 3 in the representation graph de-
picted in Figure 1a, thus yielding the representation graph in
Figure 1c. By doing so, as we will discuss in Section 5.2.2,
the time complexity becomes almost linear to the output
size using proper data structures. Moreover, we never add
any new edge to the representation graph. Therefore, the
number of edges in the representation graph never increases;
thus, space consumption is also kept in linear.

5.2.2 Details

Finding a Vertex to Reduce: Precisely finding a vertex
with minimum degree is too costly because we must track
the degree of all vertices. Therefore, we approximately find
a vertex with minimum degree by using a priority queue as
follows. First, we insert all vertices into the priority queue,
and use their current degree as keys. To find a vertex to
reduce, we pop a vertex with the smallest key from the pri-
ority queue. If its current degree is the same as the key, then
we reduce the vertex. Otherwise, we reinsert the vertex to
the priority queue with its new degree.

Data Structures: We manage adjacency lists in hash ta-
bles to operate edges in constant time. To efficiently con-
tract edges, we manage groups of vertices and merge adja-
cency lists, similar to the weighted quick-find algorithm [46].

Core-tree-decomposition Ordering: For our total PPR
algorithm, in addition to the decomposition, we also require
ordering of vertices V (G) \ Vr that satisfies the conditions
specified in Section 2.4. Actually, this can be obtained easily
by the order of vertices to be reduced. It is easy to see that
this ordering satisfies the conditions.

Time Complexity: As we contract vertices similar to the
weighted quick-find algorithm, the expected total time con-
sumed for edge contractions is O(m) time [30]. Reducing a
vertex v takes approximately O(d′), where d′ is the degree of
v. Therefore, we expect that the proposed algorithm com-
putes a core-tree-decomposition in

∑

i<d idi + O(m) time,
where di is the number of vertices of degree i. In Section 6.1,
we point out

∑

i<d idi ≤ d/10× n. In particular, it runs in
linear time if d is a constant.

6. THEORETICAL ANALYSIS AND EXPER-

IMENTAL VERIFICATION
Let G = (Tr,V) be a rooted tree-decomposition of width d

and Vr corresponding to the core. Here, we give a theoretical
analysis of our proposed algorithm. Then we justify it by
performing several experiments.

We first show that our algorithm to construct an LU de-
composition for a small tree-width part is very efficient. This
can be qualified by giving an upper bound for fill-in (Section
6.1), which is also an upper bound for the time complexity
to construct an LU decomposition. Our next empirical re-
sults imply that the core Vr is very close to an expander
graph (Section 6.2). So far, we have examined undirected
graphs.
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In Sections 6.3 and 6.4, we show that a direct method
works very well for small tree-width graphs; however a direct
method does not work well for expander graphs. Moreover,
an iterative method works very well for expander graphs, but
does not for small tree-width graphs. These two facts would
clarify theoretical hypothesis for our proposed algorithm.
Thus, we need to look at directed graphs for this purpose.
We also perform some experiments to support these facts.

6.1 How Many ”Fill-in”?
Here, we estimate an upper bound for the number of fill-in.

As in Algorithm 1, our algorithm starts with v1 and proceeds
in the order of W . Let us consider vi. The number of fill-
in for vi is exactly same as that of non-edges between any
nonadjacent vertices in Nvi∩Wi, which is bounded by |Vt′ |

2,
where the bag Vt′ contains all the vertices of N(vi)∩Wi for
some t′ ∈ T \ {r}. It follows that the number of fill-in is
at most

∑

t∈T\{r} |Vt|
2. By our construction of the core-

tree-decomposition, naively
∑

t∈T\{r} |Vt|
2 is proportional

to
∑

i<d i
2di, where di is the number of vertices of degree i

in V (G) \Vr. Note that we keep the small tree-width graph
even after adding edges.
To estimate

∑

i<d i
2di more accurately, we must look at

the distribution of the bag size of the core-tree-decompositions
of the graphs shown in Figure 23. As is shown, many bags
are small, and only a few bags are large. This can be ex-
plained from a theoretical perspective. A scale-free network
is a network whose degree distribution follows a power law,
at least asymptotically. That is, the fraction P (k) of ver-
tices in the network having degree exactly k for large values
of k can be described as follows:

P (k) ∼ k−γ ,

where γ is a parameter whose value is typically in the range
2 < γ < 3. Many networks are observed to be scale-
free, including social networks and web graphs. Our core-
tree-decomposition is based on minimum degree heuristic,
which depends on degree distribution. Therefore, in prac-
tice,

∑

i<d idi ≤
∑

i<d i× n/i2 ≤ d/10× n and
∑

i<d i
2di ≤

∑

i<d i
2 × n/i2 ≤ d× n.
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Figure 2: Distribution of bag sizes.

6.2 How Close the Core is to Expander?
As explained previously, we determine how close the core

of real networks is to expander by evaluating the distribu-
tion of the eigenvalues of the transition matrix. For two
synthetic networks (a typical expander graph and a typi-
cal non-expander graph), two real web graphs (it-2004 and

3Datasets are explained in Section 7.
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Figure 3: Extreme eigenvalues of typical networks
on complex plane; x axis is for the real part and
y axis is for the imaginary part. Red points are
the distribution of eigenvalues of the whole network,
purple points are that of the core with d = 10, blue
points are that of the core with d = 100, and green
points are that of the core with d = 1000. For (a)
and (b), there are only red and blue points.

uk-2007-05), and two real social networks (twitter-2010 and
livejournal)4, we compute 200 extreme eigenvalues of the
transition matrix of their cores and their whole networks,
respectively, using the Arnoldi method [40]. The results are
shown in Figure 3. The transition matrices are not neces-
sarily symmetric; thus, eigenvalues may not be real. In fact,
they contain both the real part and the imaginary part, as
shown in Figure 3.

Figure 3a indicates a directed version of an Erdös-Rényi
random graph, which is supposed to be a typical expander
graph, and Figure 3b indicates a directed complete binary
tree with a few random edges added, which is a typical
non-expander graph (i.e., a small tree-width graph). As
explained previously, a given network is close to expander
if the eigenvalues are clustered near the origin. This can be
also qualified by Figures 3a and 3b.

For real networks (Figures 3c–3f), the eigenvalues of the
whole networks (red points) are scattered, similar to the dis-
tribution of a non-expander graph (Figure 3b). On the other
hand, the eigenvalues of the core (blue points) are relatively

4Again, datasets are explained in Section 7.
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clustered near the origin, similar to the distribution of an
expander graph (Figure 3a). These results suggest that

real networks are non-expanders but the core of
each network is closer to an expander.

6.3 Direct Method Is Fast on Small Tree-Width
Graphs

From the analysis in Section 6.1, if a graph is of tree-width
d then the number of fill-in is O(nd). Thus, the number of
nonzero elements in L and U is O(m + nd). Therefore, if
the tree-width of a given graph is larger, then it is expected
to take much more time to find an LU decomposition.
We now verify this discussion for real networks by finding

an LU decomposition for typical synthetic undirected net-
works (i.e., Erdős-Rényi and binary tree with random edges
added). The tree-width of an Erdős-Rényi random graph is
O(n) [24], and the tree-width of a binary-tree is O(1). Both
graphs have m = O(n) edges; however the computational
time required to find an LU decomposition (and hence for a
direct method) is quite different (Figure 4). This coincides
with the above theoretical observation.
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Figure 4: Computational time of LU decomposition.

Note that in the literature for a sparse direct method,
many re-ordering methods are proposed to reduce the num-
ber of fill-ins [5, 25]; however if a graph has a large tree-
width, any ordering cannot reduce the computational cost,
as shown in Figure 4. Therefore, we conclude that decom-
posing a graph into the small tree-width part and the core
part is more important than finding a better ordering.

6.4 Iterative Method Is Fast on Expander
Graphs

Here, we show that iterative methods, in particular GM-
RES, converge quickly if a network is close to expander.
Let us start with the analysis of the Power iteration. The

Power iteration for PPR is given by

x(t+1) = αPx(t) + (1− α)b.

To simplify the following discussion, we assume x(0) = (1−
α)b. By substituting the left side to the right side iteratively,
we obtain

x(t) = (1− α)
[

I + αP + · · ·+ αt−1P t−1] b

and hence the residual r(t) = (1−α)b−(I−αP )x(t) satisfies

‖r(t)‖ ≤ αt‖P tr(0)‖. (4)

The standard analysis of PPR uses this formula and applies
the Perron-Frobenius theorem to show that the convergence

rate is O(αt) [38]. However, we should take advantage of an
expander graph; thus more detailed analysis is required.

Suppose that the transition matrix P is diagonalizable,
i.e., U−1PU = diag(λ1, . . . , λn) for an eigenvector matrix
U = [v1 . . . vn]. Without loss of generality, we may assume
that 1 = λ1 ≥ |λ2| ≥ · · · ≥ |λn|. Then, by expanding

r(0) = (1− α)b by the eigenvectors of P as

r(0) = β1u1 + · · ·+ βnun, (5)

and substituting to (4), we obtain

‖r(t)‖ ≤ αt
n
∑

i=1

|λi|
t|βi|. (6)

As explained before in the case of an expander graph, the
second eigenvalue of an expander graph is relatively small
compared to the first eigenvalue [14]. Therefore, all terms
except for the first converge rapidly; thus the Power itera-
tion converges quickly. However, this does not give us im-
provement. The asymptotic convergence rate of the Power
iteration is still O(αt) because the first eigenvector compo-
nent is a bottleneck.

To take the advantage of expander, we have a closer look
at the GMRES algorithm. We consider Embree [19]’s re-
sult, which is a generalization of (6). Here, let κi be the
condition number of i’th eigenvalue λi, which is defined as
κi = ‖uLi‖‖uRi‖/|u

∗
LiuRi|, where uLi and uRi are the left

and right eigenvectors of λi, respectively. Then, for any poly-
nomial p(z) of degree t and p(0) = 1, we have the following
bound [19]:

‖r(t)‖ ≤
n
∑

i=1

|p(1− αλi)|κi. (7)

Generally, we do not know the optimal polynomial p to min-
imize the right side of (7) which gives tight convergence es-
timation. However, by using some explicit polynomial p, we
can obtain an upper bound of convergence estimation.

Let us first use a simple polynomial p(z) = (1− z)t. Thus
(7) gives

‖r(t)‖ ≤ αt
n
∑

i=1

|λi|
tκi,

which is a similar form of (6). This implies that GMRES
requires at most the same number of iterations of Power iter-
ation. To take further advantage of the expander property,
let us use p(z) ∝ (1− α− z)(1− z)t−1. Then, (7) gives

‖r(t)‖ ≤ Kαt
n
∑

i=2

|λi|
tκi

for some constant K. We emphasize that the summation
starts from i = 2, i.e., the term for i = 1 is removed. This
shows that GMRES can remove the effect of the first eigen-
vector component, which is the bottleneck of the Power it-
eration. Thus the convergence rate of GMRES is at least
O(|αλ2|

t). This significantly improves the Power iteration
when a given graph is an expander, i.e., |λ2| ≪ 1.

We verify the above discussion empirically by applying
Power iteration and GMRES to typical synthetic networks.
Consider an Erdős-Rényi random graph and a binary tree
with random edges, whish are typical expander and non-
expander graphs, respectively. We plot the error curves of
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Table 1: Dataset information.5

name n m

in-2004 1,382,908 16,917,053
it-2004 41,291,549 1,150,725,436
uk-2007-05 105,896,555 3,738,733,648
twitter-2010 41,652,230 1,468,365,182
web-BerkStan 685,230 7,600,505
web-Google 875,713 5,105,049
web-NotreDame 325,728 1,497,134
web-Stanford 281,903 2,312,497
livejournal 5,284,457 77,402,652
flickr 1,846,198 22,613,981
orkut 3,072,441 223,534,301

the Power iteration and GMRES for these networks in Fig-
ure 5. Observe that the error curve for an expander graph is
shown in Figure 5a. Both the Power iteration and GMRES
have a steeper slope in the first few iterations. However, in
the latter iterations, the slope of GMRES stays steep, but
the slope of the Power iteration becomes gentle. This result
implies that

iterative methods are fast for expander graphs.
In particular, GMRES can exploit much more
information on expander graphs than the Power
iteration.

Next, we examine the error curves for non-expander graphs.
The results are shown in Figure 5b. We can see that the
error curves of the Power iteration and GMRES are com-
pletely overlapped, because, as there are too many larger
eigenvalues, there is no good polynomial p that shows the
rapid convergence of GMRES. Since the computational cost
of a single iteration of GMRES is more expensive than that
of the Power iteration [18,26], we can conclude that

GMRES cannot outperform the Power iteration
for non-expander graphs.
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Figure 5: Comparison between the Power iteration
and GMRES.

7. EXPERIMENTAL EVALUATION
We conducted experiments on several web graphs as well

as a few social networks. The purpose of the experiments is
to demonstrate performance of our proposed algorithm for
both the preprocessing and the computation for PPR.
All experiments are conducted on an Intel Xeon E5-2690

2.90GHz CPU with 256GB memory and running Ubuntu
12.04. Our algorithm is implemented in C++ and compiled
with g++v4.6 with -O3 option. We use 10 directed and 1
undirected (orkut) networks shown in Table 1.

5in-2004, it-2004, uk-2007-05, and twitter-2010 data sets are
available at http://law.di.unimi.it/datasets.php [11,

Table 2: Preprocessing; width d = 100.
name CT dec[s] core size LU dec[s]
in-2004 0.39 41,475 1.41
it-2004 162.90 4,309,140 43.45
uk-2007-05 528.26 13,009,914 101.47
twitter-2010 197.32 7,513,858 16.81
web-BerkStan 2.02 36,823 0.83
web-Google 2.22 41,693 0.83
web-NotreDame 0.42 5,252 0.31
web-Stanford 0.70 10,393 0.35
livejournal 33.81 1,174,081 3.74
flickr 12.91 148,385 0.88
orkut 28.53 1,950,126 1.13

Preprocessing. The experimental results for the prepro-
cessing phase are shown in Table 2. For these networks we
set the width d of the core-tree-decomposition as d = 100.
We also perform the preprocessing phase with varying d.
The results will be given later; however, d = 100 is the aver-
age case (i.e., CT+LU in Table 2) for many datasets. Thus
let us fix d = 100 for the moment. We perform our algorithm
100 times and take the average.

For these networks, the computational time to construct
a core-tree-decomposition (CT in Table 2) and an LU de-
composition (LU in Table 2) is essentially proportional to
the number of vertices and edges. However it varies signifi-
cantly among the networks. The size of the core also varies
among the networks

These experiments show that we can perform our prepro-
cessing very quickly to obtain both a core-tree-decomposition
and an LU decomposition of the small tree-width part.

Personalized PageRank computation and comparison
to other algorithms. The experimental results for the PPR
computation phase are shown in Table 3. We take the per-
sonalized vector b such that the number of nonzero elements
is four, and these nonzero elements are randomly chosen6

All algorithms in Table 3 must compute x ∈ R
n such that

‖x− x∗‖ ≤ 10−9‖x∗‖, where x∗ ∈ R
n is a vector of the op-

timal PPR (accuracy 10−9 in Table 3). We set α = 0.85, as
it is widely used. We perform our algorithm 100 times and
take the average.

We compare our algorithm with the Power method and
the naive GMRES method [44](Note that no preconditioning
is performed).

First, let us look at our algorithm, the preconditioned
GMRES, and the Power method, and the naive GMRES
method. The proposed algorithm is 2–5 times faster than
the Power method and 1.5–6 times faster than the naive
GMRES method. Even if we consider the preprocessing time
into account for the query time, our proposed algorithm
is 2-4 times faster than the Power method and the naive
GMRES method. Note that the number of iterations of our
algorithm is very small, say 5 times less than the Power
method. These results suggest that if we handle millions of
query requests simultaneously, then once we have performed
one efficient preprocessing for a large network (e.g., once a

12]. web-BerkStan web-Google, web-NotreDame, and web-
Stanford data sets are available at http://snap.stanford.
edu/data/index.html [3, 33]. livejournal, flickr, and
orkut data sets are available at http://socialnetworks.
mpi-sws.org/datasets.html [37].
6In word sense disambiguation, the number of query nodes
is 2.2 on average, see [9].
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Table 3: Solving PPR; accuracy 10−9.

name
precond. GMRES Power naive GMRES
time[s] iteration time[s] iteration time[s] iteration

in-2004 2.55 23 4.65 108 8.44 64
it-2004 136.08 21 321.65 104 572.33 74
uk-2007-05 576.98 26 1078.10 103 1626.06 73
twitter-2010 540.49 22 1824.23 106 1434.89 50
web-BerkStan 0.91 15 2.48 107 6.09 74
web-Google 1.88 27 2.40 107 4.91 64
web-NotreDame 0.18 17 0.61 102 0.98 71
web-Stanford 0.48 20 0.82 106 1.70 60
livejournal 21.20 21 69.11 106 35.79 37
flickr 3.50 18 11.35 108 7.18 37
orkut 41.69 21 120.33 74 46.99 24

Table 4: Computational time for various bag sizes
d. PPR column shows the number of iterations in
parenthesis.

it-2004 twitter-2010
d CT[s] LU[s] PPR[s] CT[s] LU[s] PPR[s]

10 8.87 10.48 148.44(26) 17.77 14.06 540.78(23)
20 24.58 14.71 142.79(25) 39.05 15.61 547.89(23)
50 78.94 26.60 134.35(23) 107.73 15.35 589.16(23)

100 162.90 43.45 136.08(21) 197.32 16.81 540.49(22)
200 276.96 70.86 148.40(21) 353.61 19.74 547.51(22)
500 476.99 219.24 160.97(20) 958.65 21.67 577.86(22)

1000 690.73 563.77 168.15(19) 2265.78 21.53 557.14(22)

day because the network may change in a single day), our
algorithm can handle millions of query requests up to five
times more efficiently than the Power method and the naive
GMRES method.

Bag size and computational time. As mentioned above,
d = 100 is the average case for many datasets; however,
sometimes our algorithm runs faster if d is smaller. This
is the case for a web graph (it-2004) and a social network
(twitter-2010). The results are shown in Table 4. For these
two datasets, the time for PPR (i.e., our proposed query
phase) does not vary significantly. Therefore, we can obtain
a slightly faster algorithm (for CT + LU + PPR).
Here we present theoretical justification. First, Let us look

at Figures 3c and 3d for web graphs and Figures 3e and 3f
for social networks. We compute 200 “extreme” eigenvalues
of the whole networks and of only their cores for the cases
d = 10, 100, and 1000, respectively, by using the Arnoldi
method [40]. We can conclude that as d increases, the eigen-
values of the cores of web graphs are clustered closer to the
origin. This means that as d increases, the core of web
graphs gets closer to an expander (similar to the distribu-
tion of an expander graph (Figure 3a)). On the other hand,
as d increases, the eigenvalues of the cores of social networks
are first clustered closer to the origin, but then stay for a
while. This means that, for social networks, we can stop at
some value of d. Indeed, d = 100 seems sufficient for social
networks.; however for web graphs, we can increase d.

8. RELATED WORK
We discuss previous work related to PPR computation.
Several approximate approaches have been proposed fo-

cusing on efficient computation for PPR. However, none of
them seems to guarantee an accurate solution. Their out-
puts differ from those of iterative methods. Therefore, it is

difficult for these approximate approaches to compare the
quality of real applications with ours.

Having said that, Jeh and Widom have suggested a frame-
work that provides a scalable solution for PPR for vertices
that belong to a highly linked subset of hub vertices [28].
Their approach is based on the observation that relevance
scores for a given distribution can be approximated as a
linear combination of those from a single vertex in hubs.
They compute approximate relevance scores for a given dis-
tribution using relevance scores that can be precomputed
from hubs. Fogaras et al. [21] proposed a Monte Carlo
based algorithm for PPR. To compute approximate rele-
vance scores, they used fingerprints of several vertices; a
fingerprint of a vertex is a random walk starting from the
vertex. They first preprocess fingerprints by simulating ran-
dom walks, and then approximate relevance distributions
from the ending vertices of these random walks. They ap-
proximated relevance scores by exploiting the linearity prop-
erty of PPR. Avrachenkov et al. [7] and Bahmani, Chowd-
hury, and Goel [8], independently, improved the Monte Carlo
method.

9. CONCLUSION
In this paper, by exploiting graph structures of web graphs

and social networks, we have proposed a GMRES (a state-
of-the-arts advanced iterative method) based algorithm to
compute the personalized PageRank for web graphs and so-
cial networks. The convergence of the algorithm is very fast.
In fact, it is as much as 7.5 times less than the Power method
for the number of iterations and as much as five times faster
than the Power method in actual computation time. Even
if we consider the preprocessing time into account for the
query time, the proposed algorithm is 2-4 times faster than
the Power method. In addition, we can implement our al-
gorithm for graphs with billions of edges. If we must handle
millions of query requests simultaneously, then once we have
performed a single efficient preprocessing for a large network
(once a day because the network may change in a single day),
our algorithm can handle millions of query requests up to
five times more efficiently.

Finally, we would mention that our experimental results
imply that web graphs and social networks are different in
the structure of core-tree-decomposition. In [1], we extend
this idea and analyze several real networks via core-tree-
decomposition.
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