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A quantum processor can be used to exploit quantum mechan-
ics to find the prime factors of composite numbers1. Compiled
versions of Shor’s algorithm and Gauss sum factorizations
have been demonstrated on ensemble quantum systems2, pho-
tonic systems3–6 and trapped ions7. Although proposed8, these
algorithms have yet to be shown using solid-state quantum
bits. Using a number of recent qubit control and hardware
advances9–16, here we demonstrate a nine-quantum-element
solid-state quantum processor and show three experiments to
highlight its capabilities.We begin by characterizing the device
with spectroscopy. Next, we produce coherent interactions
between five qubits and verify bi- and tripartite entanglement
through quantum state tomography10,14,17,18. In the final experi-
ment, we run a three-qubit compiled version of Shor’s algorithm
to factor the number 15, and successfully find the prime factors
48% of the time. Improvements in the superconducting qubit
coherence times and more complex circuits should provide the
resources necessary to factor larger composite numbers and
runmore intricate quantum algorithms.

In this experiment, we scaled up from an architecture initially
implemented with two qubits and three resonators16 to a nine-
element quantumprocessor capable of realizing rapid entanglement
and a compiled version of Shor’s algorithm. The device is composed
of four phase qubits and five superconducting co-planar waveguide
(CPW) resonators, where the resonators are used as qubits by
accessing only the two lowest levels. Four of the five CPWs can be
used as quantummemory elements as in ref. 16 and the fifth can be
used to mediate entangling operations.

The quantum processor can create entanglement and execute
quantum algorithms19,20 with high-fidelity single-qubit gates21,22

(X , Y , Z and H ) combined with swap and controlled-phase (Cφ)
gates15,16,23, where one qubit interacts with a resonator at a time. The
quantum processor can also use fast-entangling logic by bringing
all participating qubits on resonance with the resonator at the
same time to generate simultaneous entanglement24. At present, this
combination of entangling capabilities has not been demonstrated
on a single device. Previous examples have shown spectroscopic
evidence of the increased coupling for up to three qubits coupled
to a resonator17, as well as coherent interactions between two and
three qubits with a resonator14, although these lacked tomographic
evidence of entanglement.

Here we show coherent interactions for up to four qubits with
a resonator and verify genuine bi- and tripartite entanglement
including Bell11 and |W 〉 states12 with quantum state tomography
(QST). This quantum processor has the further advantage of
creating entanglement at a rate more than twice that of previ-
ous demonstrations12,14.
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In addition to these characterizations, we chose to implement
a compiled version of Shor’s algorithm25,26, in part for its historical
relevance19 and in part because this algorithm involves the challenge
of combining both single- and coupled-qubit gates in a meaningful
sequence. We constructed the full factoring sequence by first
performing automatic calibration of the individual gates and
then combined them, without additional tuning, so as to factor
the composite number N = 15 with co-prime a = 4, (where
1 < a < N and the greatest common divisor between a and N

is 1). We also checked for entanglement at three points in the
algorithm using QST.

Figure 1a shows a micrograph of the quantum processor, made
on a sapphire substrate using Al/AlOx/Al Josephson junctions.
Figure 1b shows a complete schematic of the device. Each qubit
Qi is individually controlled using a bias coil that carries d.c.,
radiofrequency and gigahertz pulses to adjust the qubit frequency
and to pulse microwaves for manipulating andmeasuring the qubit
state. Each qubit’s frequency can be adjusted over an operating
range of ∼2GHz, allowing us to couple each qubit to the other
quantum elements on the chip. Each Qi is connected to a memory
resonatorMi, as well as the bus B, through interdigitated capacitors.
Although the coupling capacitors are fixed, Fig. 1c illustrates how
the effective interaction can be controlled by tuning the qubits into
or near resonance with the coupling bus (coupling on) or detuning
Qi to fB±500MHz (coupling off)27.

The quantum processor is mounted in a superconducting
aluminium sample holder and cooled in a dilution refrigerator to
∼25mK. Qubit operation and calibration are similar to previous
works10–12,15,16, with the addition of an automated calibration
process28. As shown in Fig. 1d, we used swap spectroscopy16 to
calibrate all nine of the engineered quantum elements on the
quantum processor, the four phase qubits (Q1–Q4), the four
quarter-wave CPW quantum-memory resonators (M1–M4) and
one half-wave CPW bus resonator (B). The coupling strengths
between Qi and B (Mi) were measured to be within 5% (10%)
of the design values.

The qubit–resonator interaction can be described by the Jaynes–
Cummings model Hamiltonian29 Hint =

∑
i(h̄gi/2)(a

†σ−
i + aσ+

i ),
where gi is the coupling strength between the bus resonator B
and the qubit Qi, a

† and a are, respectively, the photon creation
and annihilation operators for the resonator, σ+

i and σ−
i are,

respectively, the qubit Qi raising and lowering operators and
h̄ = h/2π. The dynamics during the interaction between the
i={1,2,3,4} qubits and the bus resonator are shown in Fig. 1c and
Fig. 2a,b,c respectively.

For these interactions the qubits Q1–Q4 are initialized in the
ground state |gggg 〉 and tuned off-resonance from B at an idle
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Figure 1 |Architecture and operation of the quantum processor. a, Photomicrograph of the sample, fabricated with aluminium (coloured) on sapphire

substrate (dark). b, Schematic of the quantum processor. Each phase qubit Qi is capacitively coupled to the central half-wavelength bus resonator B and a

quarter-wavelength memory resonator Mi. The control lines carry gigahertz microwave pulses to produce single-qubit operations. Each Qi is coupled to a

superconducting quantum interference device (SQUID) for single-shot readout. c, Illustration of quantum processor operation. By applying pulses on each

control line, each qubit frequency is tuned in and out of resonance with B (M) to perform entangling (memory) operations. d, Swap spectroscopy16 for all

four qubits. Qubit excited state |e〉 probability Pe (colour scale) versus frequency (vertical axis) and interaction time1τ . The centres of the chevron

patterns gives the frequencies of the resonators B, M1–M4, f =6.1,6.8,7.2,7.1,6.9GHz, respectively. The oscillation periods give the coupling strengths

between Qi and B (Mi), which are all ∼=55MHz (∼=20MHz).
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Figure 2 | Rapid entanglement for two to four qubits. a–c, The measured state occupation probabilities PQ1−4
(colour) and Pb (black) for increasing

number of participating qubits N= {2,3,4} versus interaction time1τ . In all cases, B is first prepared in the n= 1 Fock state10 and the participating qubits

are then tuned on resonance with B for the interaction time1τ . The single excitation begins in B, spreads to the participating qubits and then returns to B.

These coherent oscillations continue for a time1τ and increase in frequency with each additional qubit. d, Oscillation frequency of Pb for increasing

numbers of participating qubits. The error bars indicate the −3 dB point of the Fourier transformed Pb data. The inset schematics illustrate which qubits

participate. The coupling strength increases as ḡN =
√
Nḡ, plotted as a black line fit to the data, with ḡ= 56.5±0.05MHz. e,f, The real part of the

reconstructed density matrices from QST. e, Bell singlet |ψs〉 = (|ge〉−|eg〉)/
√
2 with fidelity FBell = 〈ψs|ρBell|ψs〉 =0.89±0.01 and EOF=0.70.

f, Three-qubit |W〉 = (|gge〉+|geg〉+|egg〉)/
√
3 with fidelity FW = 〈W|ρW|W〉 =0.69±0.01. The measured imaginary parts (not shown) are found to be

small, with |Im ρψs |<0.05 (e) and |Im ρW|<0.06 (f), as expected theoretically.

frequency f ∼ 6.6GHz. Q1 is prepared in the excited state |e〉 by
a π-pulse. B is then pumped into the first Fock state n= 1 by tuning
Q1 on resonance (f ∼ 6.1GHz) for a duration 1/2g1 = τ ∼ 9 ns,
long enough to complete an iSWAP operation between Q1 and B,
|0〉⊗|eggg 〉→|1〉⊗|gggg 〉 (ref. 10).

The participating qubits are then tuned on resonance (f ∼
6.1GHz) and left to interact with B for an interaction time 1τ .
Figure 2a–c shows the probabilityPQi

ofmeasuring the participating
qubits in the excited state, and the probability Pb of B being in the
n = 1 Fock state, versus 1τ . At the beginning of the interaction
the excitation is initially concentrated in B (Pb maximum) then
spreads evenly between the participating qubits (Pb minimum) and
finally returns back to B, continuing as a coherent oscillation during
this interaction time.

When the qubits are simultaneously tuned on resonance with
B they interact with an effective coupling strength ḡN that scales
with the number N of qubits as

√
N (ref. 17), analogous to a single

qubit coupled to a resonator in an n-photon Fock state10. For N
qubits, ḡN =

√
Nḡ , where ḡ = [1/N (

∑
i=1,N g

2
i )]1/2. The oscillation

frequency of Pb for each of the four cases i = {1,2,3,4} is shown
in Fig. 2 d. These results are similar to those of refs 17,30, but with
a larger number N of qubits interacting with the resonator, we can
confirm the

√
N scaling of the coupling strengthwithN . From these

data we find amean value of ḡ =56.5±0.05MHz.
By tuning the qubits on resonance for a specific interaction

time τ , corresponding to the first minimum of Pb in Fig. 2a,b
we can generate Bell singlets |ψs〉 = (|ge〉 − |eg 〉)/

√
2 and |W 〉

states |W 〉 = (|gge〉+ |geg 〉+ |egg 〉)/
√
3. Stopping the interaction

at this time (τBell = 6.5 ns and τW = 5.1 ns) leaves the single

excitation evenly distributed among the participating qubits and
places the qubits in the desired equal superposition state similar
to the protocol in ref. 14. We are able to further analyse these
states using full QST. Figure 2e,f shows the reconstructed density
matrices from this analysis18. The Bell singlet is formed with fidelity
FBell = 〈ψs|ρBell|ψs〉 = 0.89±0.01 and entanglement of formation31

EOF = 0.70. The three-qubit |W 〉 state is formed with fidelity
FW = 〈W |ρW |W 〉 = 0.69±0.01, which satisfies the entanglement
witness inequality FW > 2/3 for three-qubit entanglement32.
Generating either of these classes of entangled states (bi- and
tripartite) requires only a single entangling operation that is short
relative to the characteristic time for two-qubit gates (tg ∼ 50 ns).
This entanglement protocol has the further advantage that it can be
scaled to an arbitrary number of qubits.

The quantum circuit for the compiled version of Shor’s
algorithm is shown in Fig. 3a for factoring the number N = 15
with a = 4 co-prime25,26, which returns the period r = 2 (10
in binary) with a theoretical success rate of 50%. Although the
success of the algorithm hinges on quantum entanglement, the final
output is ideally a completelymixed state, σm = (1/2)(|0〉〈0|+|1〉〈1|).
Therefore, measuring only the raw probabilities of the output
register does not reveal the underlying quantum entanglement
necessary for the success of the computation. Thus, we perform a
runtime analysis with QST at the three points identified in Fig. 3b,
in addition to recording the rawprobabilities of the output register.

The first breakpoint in the algorithm verifies the existence
of bipartite entanglement. A Bell singlet |ψs〉 is formed after a
Hadamard gate22 (H ) onQ2 and a controlled-NOT (CNOT; refs 15,
16) between Q2 and Q3. As illustrated in Fig. 3c, the CNOT gates
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Figure 3 | Compiled version of Shor’s algorithm. a, Four-qubit circuit to factor N = 15, with co-prime a=4. The three steps in the algorithm are

initialization (Init), modular exponentiation and the quantum Fourier transform, which computes armod(N ) and returns the period r= 2. b, Recompiled

three-qubit version of Shor’s algorithm. The redundant qubit Q1 is removed by noting that HH= I. Circuits a and b are equivalent for this specific case. The

three steps of the runtime analysis are labelled 1,2 and 3. c, CNOT gates are realized using an equivalent CZ circuit. d, Step 1: Bell singlet between Q2 and

Q3 with fidelity FBell = 〈ψs|ρBell|ψs〉 =0.75±0.01 and EOF=0.43. e, Step 2: Three-qubit |GHZ〉 = (|ggg〉+|eee〉)/
√
2 between Q2, Q3 and Q4 with fidelity

FGHZ = 〈GHZ|ρGHZ|GHZ〉 =0.59±0.01. f, Step 3: QST after running the complete algorithm. The three-qubit |GHZ〉 is rotated into

|ψ3〉 =H2|GHZ〉 = (|ggg〉+|egg〉+|gee〉−|eee〉)/2 with fidelity F=0.55. g,h, The density matrix of the single-qubit output register Q2 formed by:

tracing-out Q3 and Q4 from f (g), and directly measuring Q2 with QST (h), both with F= √
ρ σm

√
ρ=0.92±0.01 and Sl =0.78. From 1.5× 105 direct

measurements, the output register returns the period r= 2, with probability 0.483±0.003, yielding the prime factors 3 and 5. i, The density matrix of the

single-qubit output register without entangling gates, H2H2|g〉 = I|g〉. Ideally this calibration algorithm returns r=0 100% of the time. Compared with the

single quantum state |ψout〉 = |g〉, the fidelity Fcal = 〈ψg|ρcal|ψg〉 =0.83±0.01, which is less than unity owing to the energy relaxation.

are processed by inserting a controlled-Z (CZ) between twoH gates
on the target qubit. The CZ is realized as in ref. 16 by bringing the
target qubit |f 〉 ↔ |e〉 transition on resonance with B to execute an
(iSWAP)2. The target qubit acquires a phase shift of π conditioned
on the control qubit. Figure 3d is the real part of the density matrix
reconstructed from QST on |ψs〉. The singlet is formed with fidelity
FBell = 〈ψs|ρBell|ψs〉 = 0.75±0.01 (|Im ρψs

|< 0.05 not shown) and
EOF= 0.43. The primary cause of the reduced fidelites were energy
relaxation and dephasing of the qubits, with characteristic times of
T1 ∼ 400 ns and T2 ∼ 200 ns, respectively, for all four qubits and
T1 ∼ 3 µs for the bus resonator. Measurement fidelities for |g 〉 and
|e〉 for the four qubits are M1,g = 0.9523, M1,e = 0.8902, M2,g =
0.9596,M2,e = 0.9049,M3,g = 0.9490,M3,e = 0.9365,M4,g = 0.9579
and M4,e = 0.8323. For all reported QST fidelities, measurement
errors have been subtracted.

The next breakpoint in the algorithm is after the second CNOT
gate between Q2 and Q4 to check for tripartite entanglement. At
this point a three-qubit |GHZ〉 = (|ggg 〉+ |eee〉)/

√
2, with fidelity

FGHZ = 〈GHZ|ρGHZ|GHZ〉 = 0.59 ± 0.01 (|Im ρGHZ| < 0.06 not
shown), is formed between Q2, Q3 and Q4, as shown in Fig. 3e.
This state is found to satisfy the entanglement witness inequality
FGHZ>1/2 (ref. 32), indicating three-qubit entanglement.

The third step in the runtime analysis captures all three qubits
at the end of the algorithm, where the final H gate on Q2 rotates

the three-qubit |GHZ〉 into |ψ3〉 = H2|GHZ〉 = (|ggg 〉 + |egg 〉 +
|gee〉 − |eee〉)/2. Figure 3f is the real part of the density matrix
with fidelity F = 〈ψ3|ρ3|ψ3〉 = 0.54± 0.01. From the three-qubit
QST we can trace out the register qubit to compare with the
experiment where we measure only the single-qubit register and
the raw probabilities of the algorithm output. Ideally, the algorithm
returns the binary output 00 or 10 (including the redundant qubit)
with equal probability, where the former represents a failure and
the latter indicates the successful determination of r = 2. We use
three methods to analyse the output of the algorithm: three-qubit
QST, single-qubit QST and the raw probabilities of the output
register state. Figure 3g,h is the real part of the density matrices
for the single-qubit output register from three-qubit QST and
one-qubit QST with fidelity F = √

ρ σm
√
ρ = 0.92 ± 0.01 for

both density matrices. From the raw probabilities calculated from
150,000 repetitions of the algorithm, we measure the output 10
with probability 0.483± 0.003, yielding r = 2, and after classical
processing we compute the prime factors 3 and 5.

The linear entropy Sl = 4[1−Tr(ρ2)]/3 is another metric for
comparing the observed output to the ideal mixed state, where
Sl = 1 for a completely mixed state33. We find Sl = 0.78 for both
the reduced density matrix from the third step of the runtime
analysis (three-qubit QST), and from direct single-qubit QST
of the register qubit.
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As an extra calibration to verify that the system possesses
coherence throughout the duration of the algorithm, we remove
the entangling operations and use QST to measure the single-qubit
output register. The circuit reduces to two H gates separated by
the time of the two entangling gates, equivalent to the time of
the full algorithm. Ideally Q2 returns to the ground state and
the algorithm output is 0 100% of the time. Figure 3i is the real
part of the density matrix for the register qubit after running this
calibration. The fidelity of measuring the register qubit in |g 〉 is
Fcal =〈g |ρcal|g 〉=0.83±0.01, indicating that the system is coherent
over the algorithm time.

We have implemented a compiled version of Shor’s algorithm
on a quantum processor that correctly finds the prime factors
of 15. We showed that the quantum processor can create Bell
states, both classes of three-qubit entanglement and the requisite
entanglement for properly executing Shor’s algorithm. In addition,
we produce coherent interactions between four qubits and the bus
resonator with a protocol that can be scaled to create an N -qubit
|W 〉 state, by adding more qubits to the bus resonator. During
these coherent interactions, we observe the

√
N dependence of

the effective coupling strength with the number N of participating
qubits. These demonstrations represent an important milestone
for superconducting qubits, further proving this architecture for
quantum computation and quantum simulations.
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