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Abstract

A classical probability question asks for the expected waiting time
for flipping a coin (fair or not) until a series of consecutive k heads
occur. Now instead of k heads, we can ask for the expected waiting
time for a prescribed string such as HTHHTT (H for ‘head’ and T for
‘tail’), and furthermore, the following more general setting: replacing
coin flipping by taking a letter, one at a time, what is the expected
waiting time until a prescribed string (a series of letters) is reached?
Here we allow different probabilities for the occurrence of different let-
ters. We give an exposition to this problem by offering an elementary
algorithm and implementing it to compute the corresponding probabil-
ity generating function: we show that there exists a universal program
taking as inputs the choice of letters with given probabilities and the
prescribed string, and as output, returning the probability generating
function for the waiting time. The same method is applied to solve the
problem of several competing strings, which asks for the probability (or
more generally the probability generating function) of one of the given
strings occurring before the remaining strings. In particular, this solves
the problem of finding the expectation and variance for the waiting time
random variable of the first problem.
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1 Introduction

The interest of the current investigation originated from a question posed by
‘hotkarl’ in an actuarial science discussion forum ([10]). By paraphrasing, the
problem concerns solving the expectation and variance for the process of runs
([1]). Hotkarl knew how to compute the expectation but wondered how to find
the variance, for which a somewhat tricky solution was proposed by ‘Third
Eye’, who used the method of compound distribution ([10], [5], [14]). In this
paper, a method via probability generating function was devised to solve the
above particular problem, then this was generalized to solve the general cases,
including the generalization to the problem of competing strings. Granted that
this problem is classical and its various solutions are known, the exact method
proposed in this note does not seem to appear in textbook (we figured out the
results independently of the existing solutions, and we only found out later that
there was an exposition in [4] similar in flavor). It is our attempt to keep the
prerequisite to the minimum (for solutions from more advanced viewpoints, see
[6] and [3]). By literature search we learned that this problem has interesting
history (for connection with the Penney Ante type problems, we refer to [2]
and [8]), and the field of applicability is wide ([12], [13], [17]; see also [15] for
a long list of references). We hope the findings and the implementation of our
algorithm can be of use, either pedagogically or in the applied fields, such as
scan statistics, biology, and actuarial science.
In section 2, we provide an ad hoc method to solve the generating functions
for the processes which are factorizable. This method is simple and serves as
the driving force for solving the problem regarding the general patterns. In
section 3, we have a simple and unified approach to the general problem. The
method consists of two steps: first we associate a given problem with a state
tree with proper indexing. Secondly based on the tree, we write down a system
of equations. Solving the equations yields the required probability generating
function. The method of section 3 is generalized in section 4 to the situation of
two or more competing strings. We have implemented our algorithm in SAGE
([16]) and Maple ([7]). The codes in SAGE are provided in the Appendix.

2 Basic facts and motivating examples

We recall here some basic facts and give two motivating examples. The main
result of this paper will be stated and proven in the next section.
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Definition 2.1 Let X be a discrete random variable taking only nonnegative
integers. The probability generating function associated to X, written as fX(x),
is defined by

fX(x) =
∞∑

k=0

P(X = k)xk.

For more information of generating functions, we refer the readers to [18] and
[4].

Facts 2.2 The mean (i.e. expectation) of X defined by

E(X) =

∞∑
k=0

P(X = k)k

can be computed by E(X) = f ′
X(1), and the variance of X defined by

Var(X) := E((X − E(X))2) = E(X2) − E(X)2

can be computed by Var(X) = f ′
X(1) + f ′′

X(1) − f ′
X(1)2. (See for example, p.

266 of [1].)

Example 2.3 Performing coin flipping, one stops once we get a series of k
consecutive heads. Let X be the random variable denoting the number of throws
until one stops. What are E(X) and Var(X)?

Solution. Here we do the case of fair coin (the argument of unfair coin is
similar). Observe that the process can be factored as

(T, HT, HHT, · · · ,
k−1︷ ︸︸ ︷

H · · ·H T ) ∗
k︷ ︸︸ ︷

H · · ·H,

where ∗ simply means juxtaposition and each element in the parenthesis rep-
resents a failed attempt, which may be empty, or repeated as many times as
possible, and the order does not matter. Now by multinomial coefficient argu-
ment it is straightforward to see that the probability generating function for
the waiting time is given by

fX(x) =
∞∑

n=0

{
x

2
+

(x

2

)2

+ · · ·+
(x

2

)k
}n (x

2

)k

,

or

fX(x) =
1

1 − (x
2
) − · · · − (x

2
)k

·
(x

2

)k

Therefore by a straightforward computation, we have

E(X) = f ′
X(1) = 2k+1 − 2

and
Var(X) = 22k+2 − 2k+1 · (2k + 1) − 2.
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Example 2.4 Flipping a coin until a pattern of HHT first occurs, what is the
expected waiting time? What is the variance of the waiting time?

Solution. For illustrative purpose, we deal only with fair coin here. Clearly in
this situation, the process can be factored as

(T, HT ) ∗ HH ∗ (H) ∗ T,

where elements in the parentheses can be empty, or repeated as many times as
possible, and are commutative. Therefore the probability generating function
is

fX(x) =
1

1 − x
2
− (x

2
)2

·
(x

2

)2

· 1

1 − x
2

· x

2
,

i.e.

fX(x) =
x3

(x − 2)(x2 + 2x − 4)
.

By a straightforward computation, we found E(X) = 8 and Var(X) = 24.

The above two examples are special in that the process can be factored and
hence the probability generating function can be written down by reading off
the factorization. Since not every process can be factored, we need a unified
approach to deal with the problem. Fortunately we can solve the problem
by using analogue of state diagram: we consider several states each of which
represents level of success; instead of the usual state diagram with loops, we
use state tree with the same states. This observation is simple but crucial to
the problem.

3 Unified Approach

Problem 3.1 Let T be a finite set of letters with a probability distribution
on it so that each letter has a positive probability. Let s be a string of length
� > 0 formed by letters from T . Furthermore let X be the random variable of
waiting time associated to the process of taking letters, one at a time, and each
independently of the other, where one stops when a pattern of s first appear.
We are interested in computing the probability generating function of X and
in particular, E(X) and Var(X).

Lemma 3.2 Let T, X, and s be as in Problem 3.1. Let

fX(x) =
∞∑

n=0

P (X = n)xn

be the probability generating function associated to X. Then the power series
defining fX(x) has a radius of convergence greater than 1.
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Proof. Let p, 0 < p < 1, be the probability of obtaining the string s at the
first � attempts. First write fX(x) =

∑∞
n=0 P (X = n)xn =

∑∞
n=0 anxn, which

can be regrouped, depending on equivalent classes of the powers modulo �, as
follows

∞∑
n=0

anxn =
�−1∑
m=0

∞∑
k=0

a�k+mx�k+m =
�−1∑
m=0

xm
∞∑

k=0

a�k+mx�k.

To prove the result, it suffices to find a majorant coefficient for a�k+m, which
can be estimated by dividing the qualified words of length �k +m into a string
of length m, and all the remaining, strings of length �, as follows

m︷ ︸︸ ︷∗ · · · ∗
�︷ ︸︸ ︷∗ · · · ∗ · · ·

�︷ ︸︸ ︷∗ · · · ∗ .

To estimate the probability we allow the first m letters to be arbitrary. We
know that all the strings but the last of length � in the above division cannot
contain s, which shows that 1− p is an upper bound of the probability of that
corresponding segment. Therefore we have

a�k+m ≤ (1 − p)k−1 · p,

from which it follows that the original series has radius of convergence at least
1

�
√

1−p
> 1.

�

Definition 3.3 A state tree for Problem 3.1 is a tree structure such that the
root node is empty letter (denote as ∗ with index 0) and inductively each child
node is a letter belonging to the set T with index denoting the progress in
achieving the required string s, and it becomes a terminal node if the index
already appears in the ancestor nodes. A node with index equal to the length
of the string s indicates the least waiting time for the random variable X.

We illustrate the above definition by working out the state tree for Example
2.4 as follows:

Example 3.4

*0

��� ���

H1

�� ��

H2

�� ��
T3 H2

T0

T0
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Lemma 3.5 For Problem 3.1, there exists an algorithm taking the given set
T and s as inputs, and returning a state tree similar to the above example as
output.

Proof. For convenience, we let s be represented by A1A2 · · ·A�. Starting with
state zero, the root of the tree, descend one step depending on the input letter
A(1) ∈ T . If A(1) agrees with the first letter of s, label it as state (A1)1 which
we call state 1, otherwise label it as (A(1))0 and prescribe it as a terminal
node. In general, a node with index appearing the second time will be treated
as terminal node. Now inductively, assume that for i ≤ k < �, (Ai)i, together
with (A(i))j have been defined. (As will be evident by construction, these nodes
(A(i))j , j < i are the terminal nodes.) Going one step down from (Ak)k, k < �, if
the input A(k+1) ∈ T agrees with the (k+1)-th letter of s, label it as (A(k+1))k+1

which is state k + 1. For the other possibilities, consider the string t which
differs with s′ = A1 · · ·AkAk+1 only for the last letter, i.e. t = A1 · · ·AkA

(k+1)

with A(k+1) �= Ak+1. It is convenient to think of the strings as digital numbers.
Initially they are lined up one row below the other such that their starting
letters are at the same position. Now perform the shifting procedure: shift t
left by one digit, if the overlapped digits of s′ and the shifted string agree, then
the state of A(k+1) would be labeled as k, otherwise keep shifting left, until
there is agreement of the digits in the overlap, or one stops right after s′ and
the shifted string become disjoint (i.e. no overlapped digits). Then the state
of A(k+1) would be labeled as (k + 1) minus the number of shifts. Note that
the case of shifting until the two strings become disjoint gives the state index
of (k + 1) − (k + 1) = 0. �
Example 3.6 Let T = {A, a, D} and s = ADD in the above lemma. Then
the corresponding state tree would be as follows:

*0

��������

��������

A1

�����

�����

D2

���
���

D3 A1 a0

A1 a0

a0 D0

Definition 3.7 Pertaining to the state tree, for each state i, 0 ≤ i ≤ �, we de-
fine the conditional probability generating function fi(x) for the random vari-
able Yi of extra stopping time conditioned on starting with state i, where the
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stopping status is when a string of s first appears. Clearly f0(x) = fX(x), and
f�(x) = 1.

Lemma 3.8 For a particular state i, 0 ≤ i ≤ � − 1, with descendants

(A1)j1 , · · · , (Am)jm ,

where the indices j’s mean the states, and we can assume as we did above that
the leftmost descendant is of state i + 1, while 0 ≤ jm ≤ i, for 2 ≤ i ≤ m.
Here by our notations, we mean T = {A1, · · · , Am} and for convenience we
denote the probability of occurrence of Ak by ak for 1 ≤ k ≤ m. Then we
have the following recursive formula for the (conditional) probability generating
functions fi(x), fj1(x) = fi+1(x), · · · , fjm(x):

fi(x) =
m∑

k=1

(akx)fjk
(x).

Proof. Regard Yi as a joint distribution of Yjk
, 1 ≤ k ≤ m with required

transition probability ak, but with one step shift (hence multiplied by akx),
i.e. the transition from state i to state jk requires taking one more letter. The
formula is clear.

�

Theorem 3.9 There exists a universal (computer) program taking the inputs
T with corresponding probability distribution, and s, which returns the proba-
bility generating function of the random variable X defined in the problem. In
particular, this allows to compute E(X) and Var(X).

Proof. From Lemma 3.5, we have an algorithm to obtain a state tree with
subscripts denoting the states. Due to Lemma 3.8, for each of the non-terminal
nodes (i.e. the first appearance of the states 0 up to �− 1),we can write down
the system of equations with unknowns fj(x): Lemma 3.2 shows that f0(x) is
well-defined function which is analytic within the radius of convergence of the
power series; by the relation of the system of equations, the same holds for other
fj(x)’s. These are � equations in � unknowns (note that f�(x) = 1 is known).
For convenience, we keep the indices of fj(x) as an ordering of variables so
that the entries of the corresponding coefficient matrix are described by Cij

with 0 ≤ i, j ≤ � − 1, and we work over the function field of one variable, e.g.
R(x) (Q(x) suffices if all the assigned probabilities of the letters are rational
numbers). We will show that this system of equations has a unique solution
over R(x). For this purpose, observe that the coefficient matrix is the sum
of a lower triangular matrix and a matrix whose only nonzero terms are the
(i, i + 1)-entries. These (i, i + 1)-entries are of the form ±ax, where a is the
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transition probability from the non-terminal node with index i to the non-
terminal note with index i + 1. Similarly, it is easy to see that the diagonal
entries are of the form ±(ax − 1) (with a �= 0) or ±1, and the remaining
entries in the lower triangular matrix are either 0 or of the form ±ax. The
determinant of this matrix is obviously a polynomial f(x) ∈ R[x] ⊂ R(x). To
show that the system has a unique solution, if suffices to show that f(x) �= 0.
But this is clear, since f(0) = ±1.

Now the universal program can be obtained by using the algorithm of
finding the state tree and the corresponding system of equations, which can
be solved by suitable computer algebra system.

�
Corollary 3.10 The probability generating function associated with the prob-
lem is a rational function.

Proof. This follows from Cramer’s Rule.
�

Corollary 3.11 With assumption as in Theorem 3.9, one can organize the
matrix of the coefficient matrix, denoted M (so that det(M) = f(x)), in the
proof such that it becomes the identity matrix when x = 0. Then

f(1) = P(X = �),

which is a product of � probabilities associated with the letters of the given
string s of length �. In particular, f(1) �= 0.

Proof. First we denote the assigned probabilities for the letters of the string s
as a1, a2, · · · , a�. Under the stated conditions, the system of equations can be
written in matrix form

M

⎡
⎢⎢⎢⎣

f0(x)
...

f�−2(x)
f�−1(x)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0
...
0

a�x

⎤
⎥⎥⎥⎦ := B,

where the (i, i + 1)-entries of M are of the form −a1x, · · · , · · · ,−a�−1x. By
Cramer’s rule for solving f0(x), we have

f0(x) =
det(Mf0)

f(x)
,

where Mf0 is the matrix obtained by replacing the first column of M by B.
By direct computation, we see that det(Mf0) = (a1a2 · · ·a�)x

� and we have the
relation f(x)f0(x) = (a1a2 · · ·a�)x

�. Setting x = 1 yields

f(1) = a0a2 · · ·a� = P (X = �),

since f0(1) = fX(1) = 1.
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�

Example 3.12 Let T = {H, T} with probability of occurrence p for H and q
for T such that p + q = 1. What is the probability generating function for the
waiting time associated to the string HTHHTT?

Solution.
*0

��� ���

H1

��� ���

T2

��� ���

H3

��� ���

H4

�� ��

T5

�� ��
T6 H3

H1

T2

T0

H1

T0

With a computer program accepting the string “HTHHTT”, one first com-
putes the information“010213” which is the state tree, and then the system of
equations in unknowns fi(x), 0 ≤ i ≤ 5.

f0(x) = q ∗ x ∗ f0(x) + p ∗ x ∗ f1(x)
f1(x) = p ∗ x ∗ f1(x) + q ∗ x ∗ f2(x)
f2(x) = q ∗ x ∗ f0(x) + p ∗ x ∗ f3(x)
f3(x) = q ∗ x ∗ f2(x) + p ∗ x ∗ f4(x)
f4(x) = p ∗ x ∗ f1(x) + q ∗ x ∗ f5(x)
f5(x) = p ∗ x ∗ f3(x) + q ∗ x

Finally solving these recursive formulas (with the same program), one gets

f0(x) =
q3x6p3

1 − px − qx + p3x6q3
,

which under the assumption that p = q = 1
2

yields

fX(x) =
x6

64(1 − x + 1
64

x6)
.

It is important to note that we aim not just to compute a single example. In
fact, we can compute all cases using a single program!



5702 Cherng-tiao Perng, Godfred Yamoah, and Abdinur Ali

It seems fitting to explain the relation of our generating function with that
defined by Odlyzko. Following Odlyzko, let’s define first the correlation of two
strings X and Y over some given alphabet, which was first mentioned and
called leading number by Conway ([2]).

Definition 3.13 Let A and B be two words over some alphabet, possibly of
different lengths. The correlation of A and B, denoted AB, is a binary string of
the same length as A such that the i-th bit (from the left) of AB is determined
by placing B under A so that the leftmost character of B is under the i-th
character (from the left) of A, and checking whether the characters in the
overlapping segments of A and B are identical. If they are identical, the i-th
bit of AB is set equal to 1, and otherwise it is set equal to 0.

Example 3.14 If A = abcab and B = bcabbc, then AB = 100100, as depicted
below.

A : a b c a b
B : b c a b b c 0

b c a b b c 1
b c a b b c 0

b c a b b c 0
b c a b b c 1

Note that in the above example, we have AB = 01001, BA = 000000 (so
AB �= BA in general), AA = 10010, and BB = 100010.

It is useful in application to record AB = anan−1 · · ·a0 (ai = 0 or 1 for 0 ≤ i ≤
n) as a polynomial in z and write ABz := anzn + an−1z

n−1 + · · · + a0, where
ai = 0 or 1. Then with inputs as in Example 3.14, we have

ABz = z3 + 1, BAz = 0, AAz = z4 + z

and
BBz = z5 + z.

Similarly in the above examples, we can evaluate z at a given number, for
example, AB2 = 23 + 1 = 9, etc.

To relate our function and the functions defined by Odlyzko, we consider the
random variable X associated with the process of getting a word A made with
a finite set Ω of alphabet with cardinality q ≥ 2. We have the probability
function

fX(x) =

∞∑
n=0

P (X = n)xn.
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In [9], Odlyzko defined a generating function

GA(z) :=

∞∑
n=0

gA(n)z−n,

where gA(n) is the number of words of length n containing A as suffix (and
subword) and no other occurrences of A as subwords (we have slightly changed
the notations). By elementary argument, the following result was derived:

GA(z) =
1

1 + (z − q)AAz

. (1)

In particular, GA(z) is a rational function in z.

Now if we assume equal probability for each letter in Ω, then it follows easily
that our fX(x) is of the form

fX(x) =

∞∑
n=0

gA(n)

qn
xn = GA

( q

x

)
. (2)

Proposition 3.15 Let X be a random variable associated with the word A
consisting of alphabet Ω of size q ≥ 2, where the occurrence of each letter in Ω
has equal probability 1

q
. Then E(X) = qAAq.

Proof. We have by equations (1) and (2)

fX(x) = GA

( q

x

)
=

1

1 +
(

q
x
− q

)
AA q

x

.

Since fX(1) = 1 and E(X) = f ′
X(1), we have by straightforward computation

E(X) =
d

dx

[
1

1 +
(

q
x
− q

)
AA q

x

]
|x=1 = qAAq.

�

4 Competing Strings

Our method in the above section generalizes easily to the problem of two or
more competing strings: given a finite list of strings such that none of them
could contain the other strings as subword. We are interested in the problem of
solving the probability of a given string occurring before the remaining strings.
For simplicity we describe only the case of two competing strings, for which
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we have implemented the algorithm in SAGE and Maple.

In what follows we define and explain the case of two competing strings.
We omit the details of proof since it is completely analogous to the one given
in the previous section.

Definition 4.1 Let A and B be two nonempty strings consisting of letters
from alphabet Ω (we assume that Ω is the union of the set of letters in A and
in B). We define XA�B to be the random variable associated to A leading B
such that P (XA�B = n) means the probability of A leading B exactly in step
n. We let P (A 	 B) be the probability that A leads B. Furthermore we let

fXA�B
(x) :=

∞∑
n=0

P (XA�B = n)xn

be the probability generating function associated with the random variable XA�B.

By our definition, clearly we have P (A 	 B) = fXA�B
(1).

Remark. If we define fXA
(x) to be the probability generating function as-

sociated with the string A as in previous sections, then clearly fXA
(x) is a

majorant series of fXA�B
(x). In particular, fXA�B

(x) has a radius of conver-
gence greater than 1.

The following example illustrates our implementation for computing fA�B(x),
based on analogous algorithm to Lemma 3.5. In the current situation, we need
to keep track of indices of the form of ordered pairs, where the first component
denotes the success level of the first string and the second component denotes
the success level of the second string.

Example 4.2 TTHH versus HHH

In this example, we are interested in computing the probability generating
function fA�B(x), where A = “TTHH” and B = “HHH”. Since we want the
probability that A leads B, the indices in the form of ordered pairs are chosen
such that the first component reaches 4 before the second component reaches
3. The obvious terminal nodes are of the form (4, i) for some i < 3 which
corresponds to the probability generating function 1, and (j, 3) for some j < 4
which corresponds to the probability generating function 0. Any other node
becomes terminal if it appears the second time in the tree. For this example
the state tree is as follows.
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*(0,0)

������

������

H(0,1)

���
���

H(0,2)

�� ��

H(0,3) T(1,0)

T(1,0)

T(1,0)

�����

�����

H(0,1) T(2,0)

���
���

H(3,1)

�� ��

H(4,2) T(1,0)

T(2,0)

If we fix an ordering for the non-terminal nodes top-down and from left to
right and assign the symbols f0, · · · , f5 representing the probability generating
functions starting with the given nodes, then we can write down easily the
following system of equations. Note that in our program we have used p0 for
probability of “H” and p1 for probability of “T”.

f0(x) = p0 ∗ x ∗ f1(x) + p1 ∗ x ∗ f2(x)
f1(x) = p1 ∗ x ∗ f2(x) + p0 ∗ x ∗ f3(x)
f2(x) = p0 ∗ x ∗ f1(x) + p1 ∗ x ∗ f4(x)
f3(x) = p1 ∗ x ∗ f2(x)
f4(x) = p1 ∗ x ∗ f4(x) + p0 ∗ x ∗ f5(x)
f5(x) = p1 ∗ x ∗ f2(x) + p0 ∗ x

Equivalently in matrix form, we have

⎡
⎢⎢⎢⎢⎢⎢⎣

1 −p0x −p1x 0 0 0
0 1 −p1x −p0x 0 0
0 −p0x 1 0 −p1x 0
0 0 −p1x 1 0 0
0 0 0 0 1 − p1x −p0x
0 0 −p1x 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

f0(x)
f1(x)
f2(x)
f3(x)
f4(x)
f5(x)

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0

p0x

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

which can be solved in a similar manner as in the proof of Theorem 3.9, noting
that by the remark following Definition 4.1 f0(x) has a radius of convergence
greater than 1.

We have fXA�B
(x) =

p4
0p2

1x6+p3
0p2

1x5+p2
0p2

1x4

p2
0p2

1x4−p2
0p1x3−p0p1x2−p1x+1

, which is computed by our func-

tion “two party p function” that we have implemented.

Now just for fun, we assume that p0 = p1 = 1
2
, and XA, XB are random variable

associated with the strings A and B as in Definition 2.1. The cases of fXA
(x)
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and fXB
(x) can be computed by our function “general p function”.

We have the following results:

fXA
(x) =

x4

x4 − 16x + 16
, fXB

(x) =
−x3

x3 + 2x2 + 4x − 8

E(XA) = f ′
XA

(1) = 16, E(XB) = f ′
XB

(1) = 14

fXA�B
(1) =

7

12
and

(BB2 − BA2) : (AA2 − AB2) = (7 − 0) : (8 − 3) = 7 : 5,

where the computation shows that the probability that A leads B, namely 7
12

,
does confirm the prediction by Conway’s algorithm for computing the odds
that A leads B, namely 7 : (12 − 7) = 7 : 5. This example was a problem
introduced by David L. Silverman, referred to as Penney paradox : TTHH
has a waiting time of 16 and HHH has a waiting time of 14. Which of these
strings is most likely to appear first and with what probability (see [2],[11] and
[8] for recent development)?

To quench the curiosity why Conway’s algorithm is true, we offer here a concise
explanation, by relating our function with the function defined by Odlyzko.
The result we use from Odlyzko is not very complicated, and we refer it to his
paper.

Pertaining to the case of two competing strings A and B, we adopt the
following definition of Odlyzko ([9])

HA(z) =
∞∑

n=0

hA(n)z−n, (3)

where hA(n) is the number of strings over Ω of length n that end with A but
contain no other subwords of A and B. It was shown that

HA(z) =
BBz − BAz

(z − q)(AAz · BBz − ABz · BAz) + AAz + BBz − ABz − BAz

(4)

(see formula (5.2) of [9] where q = 2 was used).

Assuming equal probability of occurrence of letters in Ω, it is clear by (3) and
(4) that the probability of A leading B is

HA(q) =
BBq − BAq

AAq + BBq − ABq − BAq

.
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By symmetry, we have that the probability of B leading A is

HB(q) =
AAq − ABq

AAq + BBq − ABq − BAq

.

The above argument shows that the odds that B leads A is

AAq − ABq : BBq − BAq, (5)

a result obtained by Conway by a much more complicated method (see (5.3)
of [9], where q = 2 was used).

Now to relate HA(z) with our probability generating function, note that
by Definition 4.1 and (3), we have

fXA�B

(q

z

)
= HA(z),

where fXA�B
(1) = HA(q) is the probability of A leading B. Hence under the

assumption of equal probability for alphabet Ω, one has

fXA�B
(x) = HA

( q

x

)
. (6)

Example 4.3 Let Ω = {a, b, c}, A = abcab, and B = bcabbc as in Example
3.14. Then our program shows that

fXA�B
(x) = two party p function(′abc′,′ abcab′,′ bcabbc′)

=
−(p3

0p
4
1p

2
2x

9 + p2
0p

2
1p2x

5)

D(p0, p1, p2, x)
,

where the denominator D(p0, p1, p2, x) equals

p3
0p

4
1p

3
2x

10 − p0p
3
1p

2
2x

6 − (p3
0p

4
1p

2
2 + p2

0p
4
1p

3
2)x

9 + (p2
0p

3
1p

3
2 + (p3

0p
3
1 + p2

0p
4
1)p

2
2)x

8

+(p0p
3
1p2 + p0p

2
1p

2
2)x

5 − p0p1p2x
3 + (p2

0p1p2 + p0p1p
2
2)x

4 + (p0 + p1 + p2)x − 1.

Assuming p0 = p1 = p2 = 1
3
, this leads to

fXA�B
(x) =

−3(x9 + 81x5)

x10 − 6x9 + 27x8 − 81x6 + 486x5 + 1458x4 − 2187x3 + 59049x − 59049
.

Note that fXA�B
(1) = 123

151
is the probability that A leads B and it is straight-

forward to check that

fXA�B
(x) = HA

(
3

x

)
(in agreement with (6) for q = 3)

and the odds that A leads B equals 123 : (151 − 123) = 123 : 28 = 246 : 56 =
(BB3 − BA3) : (AA3 − AB3), in agreement with (5).
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Appendix

See next page for the codes in SAGE (tested on Version 4.6 and Version 5.4)
for computing probability generating functions.
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def general p function(Alphabet, Word): # for example, Alphabet = ‘HT’, Word = ‘HTHHTT’
A = list(Alphabet)
W = list(Word)
p = list(var(‘p %d’ %i) for i in range(len(A)))
f = list(var(‘f %d’ %i) for i in range(len(W)))
L = [ ]
for i in range(0, len(W)):

M = 0
for j in range(0, len(A)):

if general tree index(Word, i, A[j]) < len(W):
M = M+p[j]*x*f[general tree index(Word, i, A[j])]

else:
M = M+p[j]*x

L = L + [f[i]==M]
s = solve(L,f)
return s[0][0].right()

def general tree index(Word, i, char):
L = list(Word)
if i==0:

if L[0]==char:
return 1

else:
return 0

K = L[0:i+1]
if K[i]==char:

return i+1
else:

K[i]=char
j = 0
while(j<i+1):

if L[0:i+1-j]==K[j:i+1]:
break

j=j+1
return len(K[j:i+1])

def two party p function(Alphabet, Word1, Word2): # for example, Alphabet = ‘abc’, Word1 = ‘abcab’, Word2 = ‘bcabbc’
A = list(Alphabet)
W1 = list(Word1)
W2 = list(Word2)
V = variable index(Alphabet, Word1, Word2)
p = list(var(‘p %d’ %i) for i in range(len(A)))
f = list(var(‘f %d’ %i) for i in range(len(V)))
L = [ ]
for i in range(0, len(V)):

M = V[i]
N = 0
for j in range(0, len(A)):

k = general tree index(Word1, M x(M),A[j])
l = general tree index(Word2, M y(M),A[j])
if l < len(Word2):

if k==len(Word1):
N = N+p[j]*x

else:
for m in range(0, len(V)):

if (k,l)==V[m]:
N = N+p[j]*x*f[m]
break

L = L+[f[i]==N]
s = solve(L,f)
return s[0][0].right()

def variable index(Alphabet, Word1, Word2):
A = list(Alphabet)
W1 = list(Word1)
W2 = list(Word2)
L = [(0,0)]
M = L
while(len(M)!=0):

N = [ ]
for i in range(0, len(M)):

for j in range(0, len(A)):
k = general tree index(Word1, M x(M[i]),A[j])
l = general tree index(Word2, M y(M[i]),A[j])
if k < len(Word1) and l < len(Word2) and (k,l) not in Set(L):

N = N + [(k,l)]
L = L + N
M = N

return L

def M x((x,y)):
return x

def M y((x,y)):
return y


