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ABSTRACT 
  
We explore the effect of computerization on productivity and output growth using data from 527 
large US firms over 1987-1994.  We find that computerization makes a contribution to measured 
productivity and output growth in the short term (using one year differences) that is consistent 
with normal returns to computer investments.  However, the productivity and output 
contributions associated with computerization are up to five times greater over long periods 
(using five to seven year differences).  The results suggest that the observed contribution of 
computerization is accompanied by relatively large and time-consuming investments in 
complementary inputs, such as organizational capital, that may be omitted in conventional 
calculations of productivity.  The large long-run contribution of computers and their associated 
complements that we uncover may partially explain the subsequent investment surge in 
computers in the late 1990s. 
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1. INTRODUCTION 

 

In advanced economies, productivity growth depends both on technological innovation and on 

the organizational changes enabled by technological innovation.   The increasing 

computerization of most businesses is a case in point.  Rapid technological innovation in the 

computer industry has led to a quality-adjusted price decline of 20% or more per year for several 

decades (Berndt and Griliches, 1990; Gordon, 1999), and these declines are likely to continue for 

the foreseeable future.  Meanwhile, nominal investment in computers has increased even in the 

face of precipitous price declines, reflecting the myriad new uses that have been found for 

computers and related technologies.  In recent years, companies have implemented thousands of 

large and small innovations in software applications, work processes, business organization, 

supply chain management, and customer relationship management.  Research using a growth 

accounting approach has documented that rapidly rising computer investment in the US has 

contributed significantly to output growth especially in the late 1990s (Oliner and Sichel, 2000; 

Jorgenson and Stiroh, 2000).  Yet the computerization of firms involves far more than merely 

their investment in computers. 

 

In this paper, we build on previous research on the growth contribution of computerization, 

exploiting the advantages of measurements at the firm level.   Panel data on outputs and inputs 

(including computers) is available for large numbers of firms, enabling the use of econometric 

techniques to estimate the contribution of computerization to several measures of multifactor 

productivity growth.  In addition, firm heterogeneity may be used to obtain a more accurate 

estimate of the true contribution of computerization, especially where these contributions are in 

the form of intangible benefits (such as quality, variety or convenience), which are often poorly 

measured in output statistics (see a formal treatment of this in Appendix B and Section 2).  

Furthermore, firm-level data enables us to understand the private returns of computerization that 

ultimately drive decisions by managers to invest in the first place. 

 

Our focus on the firm level also enables us to investigate the process by which computerization 

contributes to multifactor productivity growth.  Computers are best described as a “general 

purpose technology” whose primary contribution is to make new production methods possible 
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when combined with complementary investments such as new work systems, organizational 

redesign, and business process reengineering (Milgrom and Roberts, 1990; Malone and Rockart, 

1991; Bresnahan and Trajtenberg, 1995; Greenwood and Jovanovic, 1997; Bresnahan, 

Brynjolfsson and Hitt, 2002).  These changes, in turn, yield substantial productivity 

improvements and perhaps even structural changes in the economy over longer periods of time 

(David, 1990; Greenspan, 1997; Brynjolfsson and Hitt, 2000). 

 

Indeed, the business and academic literature on computerization emphasizes the importance of 

large and small complementary changes, including changes in business processes, organization 

structure and innovations in customer and supplier relations.1   These changes can be thought of 

as complementary investments in “organizational capital” that may be up to 10 times as large as 

the direct investments in computers (Brynjolfsson and Yang, 1999; Brynjolfsson, Hitt and Yang, 

2002).  Because these complementary investments take time, a testable implication of this 

argument is that the long-run benefits of computerization should exceed the short-run 

contribution.  These additional benefits from computerization arise as firms implement 

complementary changes in the rest of the business.  Therefore, the resulting effects of 

computerization on output may be greater than the factor share of computer capital.  We can 

exploit our panel data to test for this relationship by varying the time horizon over which we 

calculate input and output growth.   

 

A number of previous studies have found a positive relationship between IT investment and firm 

productivity levels (Brynjolfsson and Hitt, 1995, 1996b; Lichtenberg, 1995). These studies used 

production function estimates and found that output elasticities for computers significantly 

exceed their capital costs.2  However, no previous econometric study on computers and 

                                                 
1 See Brynjolfsson and Hitt, 2000 for a review and Bresnahan, Brynjolfsson and Hitt, 2002 and the studies cited 
therein for empirical evidence on this point. 
2 In contrast, previous research at the industry level has been relatively inconclusive.  Morrison (1997) finds a zero 
or even negative correlation between computers and productivity, while Siegel (1997) found a positive relationship 
after correcting for measurement error in input and output quantity.  Other studies showing mixed results in industry 
data include Berndt, Morrison and Rosenblum (1992), Berndt and Morrison (1995), Morrison and Berndt (1990) 
and Siegel and Griliches (1991).  Even studies which simply assume that computers were earning a normal rate of 
return have come to contrasting conclusions about what this implies for their overall contribution to the economic 
growth.  See Lau and Tokutsu (1992), Jorgenson and Stiroh (1995), Bresnahan (1986), Brynjolfsson (1996), and 
Oliner and Sichel (1994). More recently, Oliner and Sichel (2000) and Jorgenson and Stiroh (2000) conclude that 
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productivity at the firm level has examined multifactor productivity growth, most likely due to 

data limitations. 

 

In this paper, we apply standard growth accounting and productivity measurement approaches to 

examine the relationship between growth in computer spending and growth in output and 

multifactor productivity for 527 large firms over 1987-1994.  Our results suggest that over short 

horizons (such as one year), estimated contributions of computers are roughly equal to their costs 

– they contribute to output growth but not productivity growth.  However, as the time horizon 

increases (increasing the difference length used in the growth calculation), the contribution rises 

substantially above capital costs, suggesting that computerization in the long run contributes to 

multifactor productivity (MFP) growth as conventionally measured. 

 

The quantitative results are consistent with qualitative arguments that computers complement 

other long-term productivity-enhancing investments, including innovations in business methods 

and organization, which are carried out over a period of several years.    Without a direct 

measure of the cost and timing of complementary investments, we cannot determine whether 

correlations between computers and MFP represent a true correlation with MFP growth (if the 

complements were appropriately included) or an equilibrium return on a system of investments 

of computers and their complements. Nonetheless, it does suggest that computers are related to a 

broader set of assets and that the long-run contribution of computerization to growth is 

potentially much larger than would be expected from the quantity of direct investment in 

computer capital. 

 

We provide further background on our theoretical framework in Section 2 and present the basic 

models and data in Section 3.   Section 4 presents the results using a variety of specifications, 

Section 5 discusses the main explanations for the findings, and we conclude with a brief 

summary and some implications in Section 6. 

 

                                                                                                                                                             
computers were a major contributor to the productivity revival in the late 1990s, while Gordon (2000) emphasizes 
the role of other factors.  Brynjolfsson (1993), Brynjolfsson and Yang (1996) and Brynjolfsson and Hitt (2000) 
provide more comprehensive literature reviews. 
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2.  BACKGROUND: THE GROWTH CONTRIBUTION OF COMPUTERIZATION 

 

2.1 Changes in the Production Process in Unmeasured Inputs 

 

Computers are primarily an investment good, so their effect on economic welfare depends on 

how successfully they support the production of other goods and services.  Companies have 

substantially increased both nominal and real investments in computers over time, and this trend 

accelerated further in the 1990s.  Presumably, companies perceive that exploiting these new 

technologies will result in a significant potential increase in profits.  In part, this trend reflects 

the substitution of computers for labor or other types of capital along a given production 

possibility frontier for computer consumers.  Users of ever-cheaper computer equipment can 

thereby achieve greater output for a given cost of inputs.  However, after properly accounting for 

the deflation of computer prices, this type of substitution-driven output growth reflects 

investment growth, not necessarily multifactor productivity growth by computer users 

(Jorgenson and Stiroh, 1995, Stiroh, 2002).  Nonetheless, the welfare effects ascribed to the 

decline in computer prices (due to productivity growth by computer producers) have amounted 

to a sizable fraction of recent output growth in the United States (Brynjolfsson, 1996; Jorgenson 

and Stiroh, 1995, 2000; Oliner and Sichel, 2000). 

 

Computers may affect the multifactor productivity growth of the firms that use them by changing 

the production process itself and engendering complementary innovations within and among 

firms -- the act of computerizing a business process or collection of processes.  Rather than 

merely substituting a cheaper input (e.g., computers) for another input (e.g., labor) in the context 

of a fixed production process, companies can combine computers with other innovations to 

fundamentally change their production processes.  This could lead to an output elasticity that is 

greater than computers’ input share and the appearance of excess returns on computer capital 

stock.  Viewed another way, the complementary innovations can themselves be thought of as a 

kind of input, or organizational capital (Brynjolfsson, Hitt and Yang, 2002).  In this 

interpretation, the presence of seemingly excess returns to computers, especially in the long run, 

may suggest the presence of unmeasured complementary factors and provide some indication of 

their output growth benefits.  While there is substantial case evidence of a wide variety of these 
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complementary factors, including human capital (Murnane, Levy and Autor, 1999), internal firm 

organization (Bresnahan, Brynjolfsson and Hitt, 2002; Davenport and Short, 1990; Orlikowski, 

1992), and supply chain management systems (Short and Venkatramen, 1992), few studies have 

considered the broader economic implications of these factors or measured their presence. 

  

2.2 Unmeasured Output 

 

In addition to unmeasured inputs, computers have also been associated with unmeasured outputs.  

A variety of case evidence as well as direct survey of managers (Brynjolfsson and Hitt, 1996a) 

suggests that the provision of intangible outputs such as quality, convenience, variety or 

timeliness represent major reasons for investing in computers.  These types of benefits are 

difficult to account for in price indices (Boskin et. al., 1997), leading to potential understatement 

of output and productivity growth at the aggregate level.  In particular, any purely financial 

accounting of return on computing investment will likely understate the true output of firms that 

invest heavily in computerization to improve intangible aspects of output. 

 

Without detailed corrections of output price indices to account for changes in the intangible 

component of performance levels, it is difficult to capture these effects directly.  But we can 

indirectly measure the value of intangible performance improvements by examining the 

measurable variations in output among competing firms.  In particular, firms that invest more 

heavily in computers than do their competitors should achieve greater levels of intangible 

benefits.  In turn, customers will recognize and value these benefits.  Thus, we can hypothesize 

that firms that invest in computers for competitive advantage will be able to charge a higher 

price, force competitors to lower their prices, or both.  In aggregate industry or economy-wide 

data, this type of firm-level variation will be averaged out, making it difficult or even impossible 

to measure.  However, at the firm level, this variation will result in variation in measured 

revenue and output, enabling at least some of this intangible value to be detected 

econometrically (see a formal treatment of this issue in Appendix B).  However, even firm level 

data may miss important industry-wide improvements of intangibles and underestimate the 

contribution of computerization to performance. If two or more competitors simultaneously 
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introduce computer-supported intangible benefits, some or all of these benefits will be passed on 

to their customers and elude detection in revenue or output data. 

 

3. MODELS AND DATA 

 

3.1. Estimation Framework 

 

We apply the standard growth accounting framework that has been used extensively for studying 

the productivity of inputs such as capital, labor, energy, and research and development (R&D) 

(Berndt, 1991).  We assume that the production process of the firms in our sample can be 

represented by a production function (F) that relates firm value-added (Q) to three inputs: 

ordinary capital stock (K), computer capital stock (C), and labor (L).  In addition, we assume that 

the production function is affected by time (t), and the industry (j) in which a firm (i) operates.  

Thus: 

 

(1)       ( , , , , , )it it it itQ F K L C i j t=

 

Following common practice, we assume that this relationship can be approximated by a Cobb-

Douglas production function.3 For most of our analyses, we implement this function with three 

inputs -- ordinary capital, computer capital, and labor -- written in levels or logarithms of levels 

(lower-case letters for factor inputs denote logarithms; firm and time subscripts on inputs and 

output are omitted except when needed for clarity): 

 

(2a)  ( , , ) k lQ A i j t K L C cβ β β= , or      

(2b) ( , , )   k lq a i j t k l ccβ β β= + + +     

 

                                                 
3 The Cobb-Douglas functional form has the advantage that it is the simplest form that enables calculation of the 
relevant quantities of interest without introducing so many terms that the estimates are imprecise.  More general 
functional forms such as the transcendental logarithmic (translog) have been utilized in research on the levels of 
computer investment and productivity (see Brynjolfsson and Hitt, 1995) with output elasticity estimates nearly 
identical to those for the Cobb-Douglas specification.  
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We will also sometimes consider a four-input specification that uses gross output as the 

dependent variable and includes materials as an additional input.4   

 

The term a, often referred to as the multifactor productivity level or, more ambitiously, total 

factor productivity level, captures differences in output across firms and over time that are not 

accounted for by changes in the input use.  It contrasts with labor productivity by also 

accounting for changes in capital inputs.   Because we hypothesize the potential existence of 

additional unmeasured inputs, such as organizational capital, we will generally use the more 

precise terms “two-factor productivity” (2FP) and “three-factor productivity” (3FP) in this paper, 

depending on whether computers, as well as capital and labor, are explicitly included as inputs.  

This allows us to highlight the inclusion of these inputs, but not necessarily the totality of all 

inputs, in our main estimating equations.5  

 

This type of productivity framework is usually implemented in time series or panel data settings 

by taking the time differences of variables in logarithms to yield growth rates. While this is 

usually a single time period difference, longer multi-period differences (n years) can also be 

used.  If input variables are measured without error, and factor adjustment to price and other 

exogenous changes is instantaneous, then the short- and long-difference estimates should be 

identical.  However, as noted by Bartelsman, Caballero and Lyons (1994), when adjustment is 

not instantaneous, longer differences can be interpreted as “long-run” effects of factor input 

changes.  Such changes include not only the direct effect of factor inputs, but also the effects of 

adjustment of complementary factors.  The time-consuming nature of many of the organizational 

changes that are complementary to computers will make long-run productivity estimates an 

important part of our analysis. 

 

                                                 
4 Previous work has suggested that the separability assumptions underlying the value-added formulation are often 
violated in practice, arguing for a 4-input output-based specification (Basu and Fernald, 1995).  However, the value-
added (3 input) formulation has the advantage for econometric estimation that it reduces biases due to the potential 
endogeneity of materials, the factor input most likely to have rapid adjustment to output shocks. 
5 Just as one way to increase labor productivity is through deepening of physical capital, one way to increase three-
factor productivity is through deepening of organizational capital.  
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In addition, when the factor inputs are measured with error, estimates based on longer 

differences will typically be less biased than estimates based on shorter differences (Griliches 

and Hausman, 1986). Thus as we compare elasticity estimates at varying difference lengths, we 

will need to consider this “errors in variables” argument, as well as the “long-run” elasticity 

interpretation. 

 

For growth accounting exercises (e.g., Oliner and Sichel, 2000 or Jorgenson and Stiroh, 2000), 

the values of the elasticity parameters ( , ,c k lβ β β

kr

) are typically assumed to be equal to their 

theoretical values, thus enabling three-factor productivity growth and the contribution of each 

input to be computed without econometric estimation.  Under standard assumptions (cost 

minimization, competitive output and input markets, and factor quantities in long-run 

equilibrium), the output elasticity is equal to the ratio of the current dollar cost of the input to the 

current dollar value of output.  In addition, in growth accounting practice it is common to 

average these quantities over the growth interval.  We denote the price of output and labor to be 

p and w respectively.  The rental price of capital (the current dollar value of service flows for a 

unit of constant dollar stock) is denoted by and the rental price of computers by , typically 

computed by the approach of Christensen and Jorgenson (1969).6   This yields the following 

estimate of three-factor productivity growth:  

cr

(3)   
1 1

2 2
1

2

( ) ( ) ( ) ( ) (

( )( )

k k
t t t n t n t t t n t n

n t t n t t n t t n t t n
t t t n t n t t t n t n

c c
t t t n t n

t t n
t t t n t n

r K r K w L w La q q k k l lp Q p Q p Q p Q
r C r C c cp Q p Q

− − − −
− − −

− − − −

− −
−

− −

= − = − − + − − + −

− + −

& )−a a   

 

To econometrically estimate the contribution of computerization, we can proceed in a number of 

ways.  First, we can simply compute three-factor productivity using Equation 3 and regress this 

value on the change in computer stock:  

(4)  ˆ ˆ ( )n t t na c cλ β ε−= + − +&  

                                                 
6 The cost of capital is typically computed using the Jorgensonian formula ( k

k k
k

)pr cp r
p

δ ∆
= + + where c is a 

constant that is a function of taxes and other common factors, r is the required rate of return on capital, δ is the 
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The estimated parameter in this equation ( β̂ ) is the contribution of computerization to three-

factor productivity growth – the excess in the computer output elasticity above its theoretical 

value.  The total output contribution could then be calculated by adding this excess amount to the 

theoretical value derived from the input quantities and the Jorgensonian rental price. 

 

Alternatively, we can utilize a variant of this framework to estimate the output elasticity directly.  

Here we regress two-factor productivity growth (computed without the computer term ) on 

computer growth.  Defining 

\c
na&

(5) \ 1 1

2 2
( ) ( ) ( ) ( ) (

k k
c t t t n t n t t t n t n

n t t n t t n t t n
t t t n t n t t t n t n

r K r K w L w Lq k k l lp Q p Q p Q p Q
− − − −

− −
− − − −

= − − + − − + −& )−

n

a q , we 

have the estimating equation: 

 (6)  \ ˆ ˆ ( )c c
n t ta c cλ β ε−= + − +&   

This approach was previously used by Adams and Jaffe (1996) for the study of R&D 

productivity, and it has the advantage that it enables a direct estimate of the output elasticity and 

thus the contribution of computerization to output growth.  A potential disadvantage of the 

approaches embodied in equations (3)-(6) is that they rely on proper measurement of input 

quantities (capital, labor and materials) in deriving the estimate of 2FP and 3FP.   

 

To the extent that computers may be associated with unmeasured complements or intangible 

assets that might legitimately be part of the productive assets of the firm (e.g., organizational 

capital), the estimates of 3FP and 2FP are likely to be higher than they otherwise would be.  In 

particular, such unmeasured complements can make estimated growth and productivity 

contributions of computers to appear to be larger than the values that theory would predict based 

on the factor share of computers alone.  

 

In addition to these formulations, we can also consider different approaches to the direct 

estimation of the production function relationship (Equation 2b) in differences.  The most 

obvious formulation is to simply estimate the elasticities directly using either first-differences 

                                                                                                                                                             
/k kdepreciation rate and is the proportional change in the price of capital.  This formula underlies the Bureau 

of Labor Statistics (BLS) capital rental price estimates that we use for our empirical estimates. 
p p∆
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(n=1) or long-differences (n>1) of all inputs and outputs.  However, this formulation tends to 

have poor empirical performance in firm level data, yielding implausibly low estimates for 

capital inputs and excess elasticities for labor and materials.7  This is because labor quantity 

tends to react faster to exogenous shocks and prices than do other “quasi-fixed” factors such as 

capital (e.g., ordinary capital, R&D, or computers), and therefore the smaller changes in these 

other non-labor factors are more easily overwhelmed by measurement error.  Because computers 

have a much smaller factor share than capital or labor, it is important that we minimize the 

estimation bias introduced by these factors.  In the context of R&D measurement, Griliches and 

Mairesse (1984) therefore proposed a “semi-reduced form” formulation to directly address the 

endogeneity of labor.  Using this formulation in our setting yields the following system: 

(7)  

ˆ ˆ
ˆ ( ) ( )

1 1
ˆ ˆ

ˆ ( ) ( )
1 1

k c

t t n q t t n t t nl l

k c

t t n l t t n t t n ll l

q q k k c c

l l k k c c

β β
qγ ε

β β

β βγ ε
β β

− −

− −

− = + − + − +
− −

− = + − + − +
− −

−

−

     

 

The first equation is simply a direct estimate of the production function in differences of 

logarithms, omitting the labor input term; the second is a parallel equation for labor.  The 

coefficient estimates (which can be constrained to be equal across equations) are the elasticities 

of capital and computers relative to the labor elasticity.  The actual capital and labor elasticities 

can be recovered using an estimate of the labor elasticity derived from its factor share.   

 

3.2. Data Sources and Construction 

 

The data set for this study was created by combining two main data sources: a database of capital 

stock of computers provided by Computer Intelligence InfoCorp (CII); and public financial 

information obtained from Compustat II (Compustat).  We also employed rental prices for the 

capital factors from the Bureau of Labor Statistics (BLS), and other price deflators from various 

government and private sources.  In some corroborating analyses, we also used a data set of 

                                                 
7 In our data, these approaches yielded an upward bias in labor and materials elasticities of as much as 20% and 
downward biases in capital elasticities of as much as 50% as compared to their factor share. 
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computer hardware and related expenses obtained through surveys conducted by International 

Data Group (IDG).  Appendix A provides additional details on the data sources and construction. 

 

Computer Stock Data.  CII conducts a series of surveys that tracks specific pieces of computer 

equipment in use at approximately 25,000 sites at different locations of the 1000 largest firms in 

the United States.  CII interviews information systems managers to obtain detailed information 

on each site’s information technology hardware assets.  Site sampling frequency ranges from 

monthly to annually, depending on the size of the site.  CII's interview process includes checking 

on hardware that was reported in previous interviews to make more accurate time series 

comparisons.  Each piece of hardware is market-valued and aggregated to form a measure of the 

total hardware value in use at the firm. These data obviate the need to make assumptions about 

retirement rates or depreciation, which are typically required when constructing capital series.8  

The CII data provide a relatively narrow definition of computers that omits software, information 

system staff, and telecommunications equipment.  In addition, the CII data represents the wealth 

stock (market value of the assets) rather than the productive stock (the value of assets based on 

output capability) of the surveyed firms.  Thus, we multiply these wealth stock asset values by 

the annual aggregate ratio of the productive stock to the wealth stock of computer assets reported 

by the BLS. This ratio is approximately 1.2 and holds fairly constant across our sample period.  

The comparable figure for ordinary capital is approximately 1.   Annual computer stock data are 

available for the Fortune 1000 for the period 1987 to 1994. 

  

We consulted Standard & Poor's Compustat II database to obtain information on sales, labor 

expense, capital stock, industry classification, employment, and other expenses for all the firms 

in the CII database. These data were supplemented with price deflators from a variety of sources 

to construct measures of the sample firms’ inputs and outputs using procedures consistent with 

earlier work (Hall, 1990; Brynjolfsson and Hitt, 1995; Bresnahan, Brynjolfsson and Hitt, 2002).  

Output, value added and materials were deflated using the National Income and Product 

                                                 
8 This methodology may introduce some error in the measurement of computer inputs because different types of 
computers are aggregated by stock rather than flow values (weighted by rental price). The direction of such a bias is 
unclear because it depends on assumptions about depreciation rates of various types of computers at each site. 
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Accounts (NIPA) output deflators at the 2-digit industry level in each year.9  Labor cost was 

either taken directly from Compustat where reported or estimated by multiplying employment by 

a sector-level estimate of average labor expense.  Results are similar in magnitude (but often less 

precise due to the sample size reduction) when we alternatively use employment or restrict or 

sample to only those firms with reported labor expense.  Our rental prices for computers and 

ordinary capital were based on BLS calculations.  The computer rental price represents an 

aggregate for the entire economy for each year, while the rental price for ordinary capital is 

calculated for each industry (at the NIPA two-digit level) in each year.  All factor inputs are 

measured in constant 1990 dollars.  The average rental price is 10.3% for ordinary capital and 

44% for computers.  The large rental price for computer capital reflects the need to compensate 

for very large negative capital gains due to the deflation of real computer prices each year. 

 

Sample.  Using data from the CII database and Compustat, we constructed a nearly balanced 

panel of 527 firms in the Fortune 1000 over an 8-year period, omitting firms from our raw data 

which had incomplete data, especially those which had less than 6 of the 8 years present in the 

sample, and those which had missing data other than at the beginning or end of the measurement 

period.  This left us with a sample of 4097 firm-year observations.  We also have corroborating 

estimates of firm's computer stocks for 1324 of these observations that were gathered by IDG.  

IDG gathered data from a single officer in each firm and used a somewhat different definition of 

computer capital than was used by CII.  For the overlapping firms, the computer capital data had 

a correlation of 73% between CII and IDG data sets. 

 

The firms in the sample are quite large, averaging $1 billion in value-added. Within the sample, 

57% of the firms are from the manufacturing industry, 41% from service, and 2% from mining, 

construction and agriculture.  Some service industries -- banking, insurance -- are largely 

excluded because many of the firms in these industries do not report ordinary capital stock on 

Compustat.  Because these industries are particularly computer-intensive, the firms in our sample 

                                                 
9 To the extent that firms that use computers heavily also consume higher quality materials, this could introduce a 
downward bias in the materials estimate, because the output deflator may understate quality change in materials.  
However, this may be offset partially by a bias in the output deflator in the same direction.  The effect of this bias is 
unknown and cannot be directly estimated, but the fact that output-based and value-added based specifications 
(reported later) yields similar results suggests that this bias may not be large in practice. 
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are somewhat less computer-intensive than the economy as a whole.  Otherwise, our sample 

appears to be broadly representative of large firms in the U.S. economy, and firms in the sample 

account for about 15% of total U.S. economic output over our sample period. 

 

4. RESULTS 

 

4.1.  Productivity Analyses 

 

In Table 1, we report the results of estimating the three-factor productivity contribution of 

computerization, based on a regression of 3FP growth on computer growth (Equation 4).  We 

report the results for difference lengths varying from one year to seven years, the maximal 

difference possible in our data.  Because differences include overlapping data, this introduces a 

possible correlation between the disturbances for differences with different base years. We 

therefore perform our estimates weighting the data based on the theoretical form of the within-

firm correlation matrix (unique to each difference length), and then use a robust variance 

estimator to ensure the standard errors are not biased by empirical deviations from this 

theoretical structure.10 

 

Column 1 of Table 1 shows that in the base specification, with no time or industry controls, 

computers are significantly correlated with productivity growth when measured at all difference 

levels (t-statistics for all estimates are above 2.2).  A striking finding is that the estimated 

coefficients increase monotonically and substantially as we move from a one-year difference 

specification to a seven-year difference specification.  The seven-year difference estimate is 

significantly larger than each of the one- through four-year difference estimates at p<.05 or 

                                                 
10 The exact form of the within-firm covariance matrix (where each row and column correponds to a particular year 
of observation for a single firm) under zero autocorrelation  for an observation with a difference length n ending in 
year t compared to an observation ending in year t-j is given by cov( , )t t n t j t j nε ε ε ε− − − −− − .  This yields a matrix 

with diagonal elements 22 εσ , a jth off-diagonal element of 2
εσ−  and zero otherwise where 2

εσ  is the variance of 
the disturbance term.  Estimates are computed using the STATA xtgee command with this theoretical covariance 
structure as the weighting input and standard errors computed by the “robust” option which performs the calculation 
based on the empirical covariance matrix of disturbances and is thus robust to other forms of correlation or 
heteroscedasticity. 
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better, and the six year difference is significantly above the one-year and two-year difference 

estimates (p<.05).11   

 

We also examine different sets of control variables, one set for year and another for major 

industry.12  These control variables remove effects of industry heterogeneity and possibly short-

run time productivity shocks common across all firms that might bias the coefficients.  At the 

same time, they also remove the portion of 3FP that is shared by all firms in an industry or across 

the economy.  Thus, the results with these controls are likely to underestimate the true 3FP 

contribution of computers and their associated complements.  In principle, comparing the results 

with and without controls can provide an indication of how much, if any, of the 3FP growth 

attributable to computers is common to the economy or industry.   

 

We find that industry and time effects do influence the measured productivity contribution of 

computerization.  Examining the one-year difference specification (moving across the first row 

of Table 1), time controls reduce the computer excess elasticity (3FP) estimate by 30%, industry 

controls by 20%, and combined they reduce it as much as 45%.  In the regressions with the 

controls, we typically cannot reject the null hypothesis of no contribution of computers to 3FP 

growth in one-year through three year-differences, but we consistently find that the estimated 

elasticity of computers significantly exceeds the computer input share in longer differences.  All 

results continue to show monotonically increasing coefficients as difference length increases.  

  

We also consider a 4-input productivity formulation in which we use gross output as the 

dependent variable of the production function and include materials as a separate input. The 

results are shown in Table 2 for the no controls regression (column 1) and the full industry and 

time controls regression (column 2).  Other regressions show comparable behavior to those in 

Table 1 and are omitted.  As expected, given the relatively smaller factor shares of capital and 

                                                 
11 We also separately investigated the year-by-year coefficients for each regression (results not shown).  Although 
they vary somewhat from year to year we generally cannot reject the restriction that the elasticities are the same 
over time for the same difference length (except for one observation in 1-year differences), and we find the general 
pattern of rising coefficients nearly identical to that shown in Table 1. 
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labor in this specification, the precision of the estimates is substantially diminished.  However, 

the magnitudes are comparable to the earlier estimates.13 With or without controls, short 

differences are typically not significantly different from zero, but many of the longer difference 

results are.  Because the value-added specification yields more precise estimates and exhibits no 

apparent bias relative to the gross output specification, we focus the discussion on value-added 

specifications in the remainder of the paper.14 

 

In the remainder of Table 2, we examine estimates of 3FP calculations that omit the computer 

input term (Equation 6) – the coefficient estimates are thus output elasticities.  Applying the 

Jorgensonian rental formula to the data, the average input share of computers in our sample is 

0.84% of value added.  Thus, if these results were identical to Table 1 they should be higher in 

point estimates by 0.0084 (or 0.0034 for the output specifications).   As we see from the Table, 

this relationship is approximately true.  Although there had been questions about whether 

computers were contributing significantly to output when date from before our time period were 

studied (e.g. Solow, 1987; Morrison and Berndt, 1990; Loveman, 1994), we can reject the 

hypothesis that computers do not contribute to output growth in almost all of our specifications.  

As before, coefficients monotonically rise as difference length is increased in all specifications. 

 

In Table 3, we probe the robustness of the results to potential specification errors in capital and 

labor.  System estimates of the semi-reduced form specification (using Iterated Seemingly 

Unrelated Regression) of the computer and ordinary capital elasticities are reported in column 

pairs (1)-(2) without controls and (3)-(4) with controls.  Because we cannot reject the equality of 

coefficients across the labor and output equations in the system, we impose this linear restriction 

for increased efficiency.   The results that appear in the table are the elasticities and their 

standard errors (rather than the ratio of the elasticities to the labor elasticities) calculated using 

an average labor input share of 0.575.   

                                                                                                                                                             
12 Our major industry controls divide the economy into 10 sectors:  high-tech manufacturing, process 
manufacturing, other non-durable manufacturing, other durable manufacturing, mining/construction, trade, 
transportation, utilities, finance, and other services. 
13 The value-added to output ratio is 40%, so we expect these coefficients to be 40% of the results reported in Table 
1. 
14  We continue to compute comparable output-based results as a robustness check. 
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Consistent with the findings of Griliches and Mairesse (1984) in the R&D context, the semi-

reduced form specifications show considerably greater precision in the estimates with t-statistics 

on the order of 10 (compared to 2-3 for the 3FP regressions).  However, the results do appear to 

be slightly different.  First, the rise in coefficients is much steeper as we move from one-year to 

seven-year differences:  there is as much as a five-fold increase on the share of output 

attributable to computerization.  By contrast, on the 3FP regressions, the corresponding rise was 

no more than a factor of three.  In addition, the coefficients on the one-year differences imply 

that there is output growth contribution but not a net productivity growth contribution in the 

short run.  Another useful observation from this table is that the rise as we move to longer 

differences is much more substantial for computer elasticity (+309%) than the rise in the 

ordinary capital coefficient (+70%), using estimates from the regression with time and industry 

controls.  In addition, the ordinary capital elasticity is relatively unaffected by the presence of 

time and industry controls, suggesting that there is substantially more cross-industry 

heterogeneity in the contribution of computers, and that computers may be more strongly 

correlated with economy-wide changes in output (a correlation attenuated by the use of time 

controls). 

 

4.2 Instrumental Variables Estimates 

 

Our earlier results assume that computer investment is determined by exogenous factors and is 

not correlated with shocks in productivity or output.  The time controls remove the effects of 

shocks common to all firms over time or across industries.15  However, this approach may be 

inadequate if the shocks are firm specific.  For example, if firms disproportionately increase 

investments in computers in years where demand for their products is unexpectedly high, our 

short-difference elasticity results may be upward biased.   Alternatively, if firms change their 

other expenses in response to demand shocks more than their investments in computers, then our 

previous panel data estimators may underestimate the contributions of computerization.  

 

                                                 
15 Results are also similar when we include controls for the interaction of time and industry (not shown). 
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For instruments, we require variables that are correlated with computer investment at the firm 

level, but not with output shocks.  One reason why different firms might have varying levels of 

computer investments is that, due to historical choices, they have different technological 

infrastructures, which makes incremental investments in computers and their complements more 

or less difficult.  For example, companies with an existing client-server computing architecture 

may find it faster and less costly to implement modern software systems, such as enterprise 

resource planning,16 which typically run in a client-server environment.  Alternatively, firms 

with aging production equipment may find it more difficult to adapt to electronic controls and 

other computer-enabled production methods.   An aging capital base may also represent a firm-

specific inability or unwillingness to invest in new technologies.  Finally, we might expect, 

especially in the short-run, that capital constraints could be a deterrent to computer investments 

or investments in computer-related complements.17 

 

We therefore hypothesize a principally cross-sectional set of instrumental variables (IV) for 

computer growth that includes five measures in total.  The first and second measures assess the 

extent of a firms’ deployment of a client-server computing architecture (the ratio of personal 

computers to mainframe terminals and the fraction of PCs connected to a network).   The third 

measure is capital age, which reflects other production technologies.  The final two measures 

concern capital costs and investment constraints (the debt to equity ratio, which is a measure of 

leverage, and beta, which is a measure of the volatility of the firms’ stock price that is a key 

driver of the cost of capital under the Capital Asset Pricing Model).  These instruments are 

introduced in levels, and their effects are allowed to vary by sector and time.   We also include 

time dummies and industry control variables in the regressions to remove changes in common 

                                                 
16 Enterprise resource planning systems are integrated software suites that integrate different functional areas of a 
firm such as production planning, human resource management and inventory management. 
17 We considered but rejected using price data, because prices do not vary across firms.  We also considered 
techniques such as those proposed by Arellano and Bond (1991) or Griliches and Hausman (1986), which enable 
instrumental variables estimation in panel data without external instruments.  In general, factor growth rates for a 
particular firm have little correlation over time (Blundell and Bond, 1999), making it difficult to estimate production 
functions in differences with internal instruments. In our data, the Arellano and Bond (1991) dynamic panel data 
estimator did not perform well -- point estimates in a first difference specification were similar to our results 
(computer coefficients around .013), but had very wide confidence intervals, reflecting low first-stage power.  The 
“systems GMM” estimator of Blundell and Bond (1998) performed slightly better and yielded a computer elasticity 
point estimate of .014 but the estimates were still quite imprecise.   However, these estimators are not suitable for 
long-difference estimation because long differences alter the moment restrictions that can be used in identification. 
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exogenous factors over time (such as prices) as well as industry heterogeneity.  The time 

dummies also accommodate any possible set of time-series instruments common across all firms. 

 

Instrumental variables estimates were computed by a two-stage procedure to enable us to 

compute standard errors comparable to those reported in our other productivity estimates.  In the 

first stage, 3FP and computer growth were projected on the instrument set using ordinary least 

squares.  Then, the fitted values from this first-stage regression were used to compute 

productivity contribution estimates using the same technique to account for within-firm 

autocorrelation as before (see footnote 10).    

 

Results of this IV approach for various specifications are shown in Table 4.  The specifications 

based on the 3FP regression (column 1) show coefficient estimates substantially larger than any 

of the previous estimates.  Both regressions also show the now-familiar rise in coefficients as a 

function of the difference period, although the rise is not as large (60-80%) and is no longer 

monotonic.  As one might expect, the estimates of the semi-reduced form using IV are more 

comparable to those without IV, both in the magnitude (.019) of the one-year differences and in 

the substantial additional rise as the time difference is lengthened.  Similar results are found on 

the output-based specifications (column 4).  The IV results provide evidence against the 

alternative hypothesis that endogeneity leads to an upward bias in the estimate of computer 

productivity (if anything, they suggest the opposite).  Similarly, they suggest that the rising 

coefficients are not easily explained by an errors-in-variables bias, which would be removed by 

instrumental variables estimation.  Instead, the results are consistent with the accumulation of 

complementary inputs that enhance the output contributions of computerization over time. 

  

4.3. Production Function Estimation and an Alternative Data Set 

 

To examine the possibility that our results are unique to this data set or the modeling approach 

we employ, we now analyze the data using production functions instead of directly examining 

productivity, and we compare results from our data to that of an alternate data set from 

International Data Group (IDG).   In addition, we can further examine the effects of 

measurement error on our estimates by using the IDG estimate of computer capital stock as an 
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instrument.  Under the assumption that measurement errors are uncorrelated between the IDG 

and the CII datasets, using the IDG estimate as an instrument for the CII computer stock should 

remove bias due to measurement error (although it will do little to reduce the effects of other 

forms of endogeneity). 

 

Most previous firm-level studies have focused on estimating production functions in which the 

elasticity of other factors (capital and labor) are estimated from the data but are constrained to be 

the same across firms.  The results from a 3-input (computers, capital, labor) production function 

estimation are shown in Table 5 using both our data set and the data set from International Data 

Group (IDG) used in earlier research by Brynjolfsson and Hitt, and by Lichtenberg. 

 

Overall, we find consistency both within this study and between this study and previous work.  

Ordinary least squares (OLS) estimates of the production function in levels with time and 

industry controls are reported for each dataset.  These estimates were performed by pooling the 

data, estimating the coefficients with OLS, with the standard errors corrected for 

heteroscedasticity and within-firm correlation using the Huber-White method.  The CII estimates 

for the computer elasticity are higher than the corresponding IDG estimate, but they are not 

significantly different. This difference may be due to better precision in the CII computer stock 

estimates than the IDG estimates,18 which leads to less bias from errors in variables.  Estimated 

coefficients on other factors are comparable.  When we run an IV regression, instrumenting CII 

computer capital level by the corresponding IDG estimate, we find that the coefficient on 

computers rises by about 20%.  These IV estimates are also remarkably close to the seven-year 

difference results.  This is not surprising because one can view a levels regression as equivalent 

to a difference regression where the difference length becomes very large.  Altogether, this 

suggests consistency in our estimate of the long-run measured contribution of computerization. 

 

To further explore the impact of measurement error, we can utilize the IDG estimate (this time in 

differences) as an instrument for the IV 3FP regressions, such as those reported in Table 4.  

Results of this analysis (comparable to column 1 of Table 4 with this additional instrument) are 
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shown in Table 6.  Due to the substantial reduction in the size of the dataset (since IDG is both a 

smaller and a less complete panel) the confidence intervals on the estimates are quite wide.  

However, we still see rising coefficients as the difference length increases, at least up until 5-

year differences where only 66 observations remain.  This appears to provide further evidence 

against the alternative hypothesis that our observed pattern of rising coefficients over longer 

differences is attributable simply to a measurement error explanation. 

 

5.  DISCUSSION AND ANALYSIS 

 

5.1 Potential Explanations for the Results 

 

The principal results from this econometric analysis are:  1) the measured output contribution of 

computerization in the short-run are approximately equal to computer capital costs, 2) the 

measured long-run contributions of computerization are significantly above computer capital 

costs (a factor of five or more in point estimates), and 3) that the estimated contributions steadily 

increase as we move from short to long differences.  These results are robust to a wide range of 

alternative treatments including: using productivity growth or output specifications; estimating 

production functions rather than productivity values; and applying a series of econometric 

adjustments for the endogeneity of labor, and, subject to limitations of our instrument set, 

endogeneity or measurement error of computer investment. 

 

One interpretation of these results could be that computers, at least during this period, had excess 

rates of return (the elasticity per unit of capital input).  However, in light of the related research 

on how computers actually affect businesses organization and processes, a more consistent 

explanation is that computer investment is complemented by time-consuming organizational 

changes.  We hypothesize that the short time-difference estimates represent the direct 

contribution of computer investment -- the increase in output associated with the purchase and 

installation of a computing asset for some narrow, short-term business purpose. We hypothesize 

that the long-time differences represent the overall value contributed by the combined 

                                                                                                                                                             
18 Recall that CII uses a more thorough asset-tracking methodology in contrast to IDG's interviewing of a single 
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computers+complement system -- the increase in productivity associated with longer-term 

adaptation of the organization to more fully exploit its computing assets.  In this interpretation, 

the high values of the long time-difference estimates correctly reflect the total contribution of the 

computers+complements system and not just the contribution of computers alone. 

 

The presence of the complements complicates any calculations of return on the original 

computer investments.  In particular, we would likely overestimate the rate of return if we use 

these estimates of the output contribution and only include measured computer capital stock in 

the denominator.  Such a calculation would ignore the potentially large, if intangible, 

investments in the complements that drive the productive use of computers.  Alternatively, if we 

are willing to assume that firms are efficient, on average, in their investments in both tangible 

(i.e., computers) and intangible (i.e., complements) assets, then we can derive the likely 

magnitude of intangible investments that complement computer investments. 

 

This implies that measured “excess” returns ascribed to computers may provide an indirect 

estimate of the input quantity of these complementary factors, if one assumes that computers and 

the complements actually earn only normal returns.  In this interpretation, for every $1 of 

computer capital stock, there are four or more additional dollars of unmeasured complements 

that are correlated with the measured computer capital.  These hidden complements could then 

account for the additional output we measure.  Moreover, the rising coefficients over time imply 

that the adjustment in complementary factors is not instantaneous.  In the remainder of this 

section, we discuss the evidence regarding three plausible alternative explanations, as well as 

ways of distinguishing the proposed explanation of organizational complements from the 

alternative explanations. 

 

Alternative Explanation 1:  Random Measurement Error.   If computer inputs were measured 

with random error, we would expect estimates on computers' contribution to be biased 

downward (Griliches and Hausman, 1986).  This bias should be most pronounced in shorter 

differences since the amount of “signal” (e.g., the true change in computer investment) is likely 

                                                                                                                                                             
key employee at the surveyed firm. 
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to be reduced by differencing more than the “noise,” because noise is less likely to be correlated 

over time.  Thus, the signal-to-noise ratio, which is inversely proportional to the bias, is likely to 

increase as longer differences are taken.19  Thus, our rising coefficients are potentially consistent 

with a random measurement error explanation.   

 

However, three observations contradict this measurement error hypothesis.  First, errors-in-

variables models would predict that the relationship between elasticity and difference length 

would have a specific, concave pattern.  If random error is uncorrelated over time, then the true 

elasticity is related to the measured elasticity by
2

2 2( ) (1 )true error

signal error
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signalσ  is the true variance in the input.  In our data, no single assumption 

of error variance fits the observed pattern of our coefficients well.  Second, some of the 

treatments (using alternative estimates of computer capital stocks and IV) should reduce or 

eliminate the effects of measurement error and thus suppress the pattern of rising coefficients if 

measurement error is the cause of that pattern.  But, the same pattern of rising coefficients 

appears in the IV regressions, and instrumenting the CII data with the alternative estimate for 

IDG to reduce the measurement error also preserves the increasing coefficients result.    Third, 

and perhaps more important, is that the errors-in-variables explanation implies that even the long 

time-difference estimates understate the true elasticity.  Yet the observed estimates taken at face 

value suggest that computer investments generate extraordinary returns, so if random 

measurement error is creating a downward bias, then the true and higher magnitude of the impact 

of computer investments is still unexplained.  Therefore, even though we believe there may be 

substantial random measurement error in our measurements of computer inputs, this does not 

appear to be the sole, or even the principal, explanation of our findings of excess returns. In 

particular, random measurement error cannot explain why the measured long-run elasticity is so 

large relative to the factor share of computer capital. 

 

                                                 
19 In addition, because changes in different inputs for the same firm are nearly uncorrelated in our sample, the same 
downward bias should be evident in our specifications that have multiple regressors, such as the semi-reduced form 
estimates.  This is a straightforward calculation from the standard results on the effects of errors in variables with 
multiple regressors (see e.g., Greene, 1993). 
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Alternative Explanation 2:  Miscounted Complements.  Our main conclusion is that 

organizational investments are probably the largest and most important complements to 

computers.  However, there are a variety of other, simpler, complements to the technical 

investments measured in the data for this study.  Computer hardware and peripherals (measured 

in our analysis) are only one input of a set of technical complements including software, 

communications and networking equipment, computer training, and support costs. 

 

The size of these technical complements can be considerable.  For instance, the Bureau of 

Economic Analysis (BEA) estimates that in 1996, current dollar business investment in software 

was $95.1Bn while business investment in computer hardware was $70.9Bn, a ratio of 1.2: 1 

(BEA, 2000).  Whether or not technical complements such as software can influence our 

estimates of the computer elasticity and productivity contribution depend on whether and how 

they are included in other capital or labor (and thus measured as other inputs in the growth 

accounting framework) or whether they are omitted entirely.  

 

Productivity estimation, in which omitted factors appear as either capital or labor, has been 

studied in the context of R&D (Griliches, 1988, Ch. 15; Schankermann, 1981).   Of particular 

concern in these studies was that labor input devoted to R&D was “double counted,” appearing 

as both R&D expense and labor expense.  A similar framework can be extended to cases where 

omitted factors are simply misallocated between categories but correlated with the primary factor 

of interest (see Hitt, 1996, Ch. 1, Appendix D).  However, because these misclassifications have 

offsetting effects – factor productivity estimates of computers are biased upward because the 

computer input quantity is understated, but are biased downward because the contribution of 

these complements is being credited to capital or labor – this form of misclassification may not 

substantially influence our results.  For instance, if one assumed that there was $2 of each 

misclassified capital and labor for each $1 of computer stock, then it would result in only a 20% 

upward bias in the elasticity estimate, based on the derivation appearing in Hitt (1996).20  Thus, 

while this form of misclassification can explain some of the apparent excess returns, it is too 

                                                 
20 This analysis shows that as long as computers are small relative to the size of capital and labor, the measured rate 
of return of computers (output contribution per dollar of factor input) will be equal to a weighted average of the 
rates of return of the various inputs, with weights equal to the amount of misclassification.  
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small to be the principal explanation.  In addition, this type of misclassification does not explain 

the rising coefficients over longer differences. 

 

Alternative Explanation 3: Uncounted Complements. The same is not true for factors that are 

complementary to computers but omitted entirely from the measures of other factor inputs.  This 

can arise in two situations.  First, it arises if for some reason firms are historically endowed with 

these complements and they do not require current investment to maintain (e.g., if a set of 

modern, computer-friendly business processes were present at the outset of our sample period).  

Second, it arises if firms are actively investing in building these complements, but the costs are 

expensed against labor or materials rather than capitalized.  In either situation, only a small 

portion of the overall investment appears in the growth accounting estimate.  Over our sample 

period, it was indeed uncommon for many aspects of computing projects to be capitalized 

according to Financial Accounting Standards Board (FASB) rules, including internally-

developed software. There were considerable changes in these rules in the late 1990s to better 

recognize software as an investment but many other types of project costs -- especially 

organizational change investments -- are rarely allowed to be capitalized (see Brynjolfsson, Hitt 

and Yang, 2002; or Lev and Sougiannis, 1996, for a discussion). 

 

The effect of this type of misclassification can be large.  For instance, if there is $1.2 of 

unmeasured software stock per $1 unit of computer stock (as stated by BLS estimates), this 

could account for a 120% overstatement of the measured rate of return to computers.  Since 

software is likely to represent a considerable portion of the unmeasured technical complements 

(that do not appear in current expense), it would suggest that any excess returns beyond a factor 

of two are probably due to other complements.  The most natural candidates are organizational 

complements such as business processes and organization. 

 

This explanation also ties closely with our finding of rising coefficients over longer time-

differences.  If, over the short run, the ratio of current cost (appearing in labor or materials) of 

either technical or organizational investments is large relative to their accumulated stock, then 

the offsetting effects of misclassification on the elasticity estimate come into play.  Over longer 
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horizons the stock is large relative to current expense, so there is no corresponding downward 

bias in the elasticity estimates and consequently we observe high measured returns to computers. 

 

5.2 Firm-Level Estimates and Aggregate Output Growth 

 

Using our elasticity estimates for computers and the annual real growth rate of computer capital 

of about 25% per year, computers and their associated complements have added approximately 

0.25% to 0.5% annually to output growth at the firm level over this period.   As the factor share 

of computers has grown, so has the output contribution of computerization, ceteris paribus.  This 

contribution will also appear as increases in productivity growth as conventionally measured 

(i.e., including labor and tangible capital), although without estimates of the cost of the 

complementary investments we do not know whether our system of computers and complements 

would show productivity growth in a metric which fully accounted for the complements as 

additional inputs (i.e., such as intangible organizational capital).   However, because our 

productivity calculation reflects only private returns, including rent stealing but not productivity 

spillovers, we also cannot know whether the aggregate impact on the economy is smaller or 

larger than the private returns.  

 

If computers were more likely than other inputs to be used to capture rents from competitors, 

then the aggregate returns to the economy would be less than the sum of the private returns we 

measure.  Firms that invest in computers would merely displace those who do not.  Worse, the 

net effect would be to lower aggregate profits because redistributing rents is a zero-sum game 

that has no impact on aggregate profits, while computer expenditures are costly.  However, 

aggregate corporate profits do not appear to be any lower in our sample period, and there is some 

evidence that they grew. 

 

There is more evidence for an effect in the opposite direction -- computer investments generate 

positive returns both for the firm and, in aggregate, for the economy.  Some of the private 

benefits of computerization spill over to benefit consumers and even competing firms.  For 

example, when firms like Wal-Mart demonstrate new IT-enabled efficiencies in computerized 

supply chain management, their competitors explicitly attempt to imitate any successful 
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innovations (with varying degrees of success).  These innovations are generally not subject to 

any form of intellectual property protection and are widely and consciously copied, often with 

the aid of consulting firms, benchmarking services and business school professors.  Another 

example of positive externalities is the improved visibility IT systems provide across the value 

chain which reduces the impact of exogenous shocks -- companies are now less prone (but not 

immune) to excessive inventory build-ups. Job mobility also disseminates computer-related 

benefits as IT professionals move from firm to firm or use industry knowledge to create new 

entrants.  As a result, the gains to the economy might plausibly be much larger than the private 

gains to the original innovator.   

 

Computer investments also lead to increases in less observed -- but publicly shared -- forms of 

productivity.  When two or more competing firms simultaneously invest in flexible factory 

automation systems, most of the productivity benefits are passed on to consumers via 

competition in the form of greater product variety, faster response times and fewer stock-outs. 

As noted earlier, these types of outputs are not measured well, leading to underestimates of 

aggregate productivity growth. 

 

6.  CONCLUSION 

 

This paper presents direct evidence that computerization contributes to productivity and output 

growth as conventionally measured in a broad cross-section of large firms. Furthermore, the 

pattern of rising growth contributions over longer time periods suggests that computers are part 

of a larger system of technological and organizational change that increases firm-level 

productivity over time.  This is consistent with the conception of computers as a general-purpose 

technology. Computerization is not simply a synonym for simply buying computer capital; 

instead it involves a broader collection of complementary investments and innovations, some of 

which take years to implement. 

 

Specifically, although computer investment generates useful returns in its first years of service, 

we find that greater output contributions accrue over time.  When we examine the data in one-

year differences, we find that computerization contribute to output an amount roughly equal to 
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the factor share of computers.   This implies that computers contribute to output growth but not 

to productivity growth in the short run.  Over longer time horizons (between three and seven 

years), computerization is associated with an output contribution that is substantially greater than 

the factor share of computers alone – between two and five times as much as the short-run 

impact.  This implies a substantial contribution to long-run productivity growth as 

conventionally measured. 

  

The results are consistent with the hypothesis that the long-term growth contribution of 

computerization represents the combined contribution of computers and complementary 

organizational investment.  Other explanations for our findings, such as measurement error 

(either random or systematic) do not explain these results as well.  Our instrumental variables 

regressions also suggest that endogeneity does not appear to lead to upward biases in the 

estimation of computers’ contribution.   The magnitude of the long-run output elasticity 

associated with computerization is too large to be explained solely by omitted technical 

complements (like software).  By contrast, computer-enabled organizational investments, such as 

developing new business processes and inventing new ways to interact with customers and 

suppliers, are plausibly of sufficient magnitude to account for the additional output growth.  

 

While the late 1990s saw a surge in productivity and output as well as a corresponding surge in 

computer investment, it is important to note that our analysis is based on earlier data from the 

late 1980s and early 1990s.  This earlier time period did not enjoy extraordinary growth in the 

overall economy.  If computers indeed require several years to realize their potential growth 

contribution, the economic performance in the late 1990s may, in part, reflect the massive 

computer and organizational investments made in the early 1990s.  Furthermore, high private 

returns associated with computerization and the increase stock of organizational capital that we 

impute for the early 1990s also provide the foundation for the decision by firms to increase their 

nominal investments in computers shortly thereafter.  
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Table 1:  Regression Estimates of Multifactor Productivity Growth on Computer Growth using 
Varying Difference Lengths and Different Control Variables 
  

Controls No Controls Year Industry 
Year & 
Industry 

Sample 
Size 

Difference Length (1) (2) (3) (4)  
1 Year 0.0198 0.0141 0.0166 0.0107 3570 
Differences (0.0088) (0.0095) (0.0082) (0.0089)  
2 Year 0.0206 0.0144 0.0179 0.0116 3043 
Differences (0.0088) (0.0095) (0.0082) (0.0089)  
3 Year 0.0236 0.0177 0.0199 0.0139 2516 
Differences (0.0102) (0.0106) (0.0095) (0.0099)  
4 Year 0.0236 0.0158 0.0237 0.0162 1989 
Differences (0.0093) (0.0103) (0.0087) (0.0097)  
5 Year 0.0387 0.0398 0.0347 0.0360 1462 
Differences (0.0110) (0.0116) (0.0106) (0.0111)  
6 Year 0.0430 0.0434 0.0355 0.0359 935 
Differences (0.0142) (0.0143) (0.0137) (0.0137)  
7 Year 0.0535 0.0535 0.0388 0.0388 451 
Differences (0.0184) (0.0184) (0.0176) (0.0176)  
 
Estimates of the computer coefficient from Equation (4) are shown for a range of difference 
lengths (rows) using different controls (columns) – each cell represents a separate regression.  
Industry controls are used that divide the economy into 10 industries – see footnote 12).  Robust 
standard errors are shown in parenthesis.     
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Table 2:  Regression Estimates of Multifactor Productivity Growth on Computer Growth using 
Varying Difference Lengths and Alternative Specifications 
 

Specification 3FP 3FP 
2FP w/o 

IT 
2FP w/o 

IT 
2FP w/o 

IT 
2FP w/o 

IT 

Output Metric Output Output 
Value-
Added 

Value-
Added Output Output 

Controls 
No 

Controls 
Year & 
Industry 

No 
Controls

Year & 
Industry 

No 
Controls

Year & 
Industry 

Column (1) (2) (3) (4) (5) (6) 
1 Year 0.0039 0.0018 0.0289 0.0198 0.0076 0.0055 
Differences (0.0038) (0.0040) (0.0087) (0.0087) (0.0038) (0.0040) 
2 Year 0.0048 0.0026 0.0300 0.0210 0.0085 0.0063 
Differences (0.0037) (0.0039) (0.0085) (0.0086) (0.0037) (0.0039) 
3 Year 0.0061 0.0039 0.0337 0.0240 0.0100 0.0076 
Differences (0.0041) (0.0041) (0.0097) (0.0094) (0.0041) (0.0041) 
4 Year 0.0058 0.0038 0.0339 0.0266 0.0096 0.0076 
Differences (0.0038) (0.0040) (0.0089) (0.0093) (0.0038) (0.0040) 
5 Year 0.0107 0.0108 0.0494 0.0466 0.0147 0.0148 
Differences (0.0050) (0.0050) (0.0107) (0.0108) (0.0049) (0.0050) 
6 Year 0.0144 0.0118 0.0559 0.0486 0.0193 0.0165 
Differences (0.0064) (0.0063) (0.0136) (0.0131) (0.0064) (0.0063) 
7 Year 0.0182 0.0143 0.0668 0.0518 0.0234 0.0193 
Differences (0.0081) (0.0082) (0.0179) (0.0169) (0.0081) (0.0081) 
 
Regression estimates of the computer coefficient using a range of difference lengths (rows) for 
different specifications (columns) – each cell represents a separate regression.  Columns (1) and 
(2) represent the regression of computer growth on 3FP growth (analogous to Equation 4) using 
gross output rather than value-added as the output metric and including a materials input term.  
Columns (3) and (4) represent a regression of computers on 2FP growth where 2FP growth is 
computed using value-added but without including a computer input term (Equation 6) – 
estimated coefficients are the output elasticities of computers.  Columns (5) and (6) represent the 
equivalent regressions to Columns (1) and (2), calculating 2FP.   Robust standard errors are 
shown in parenthesis.  Sample sizes are as shown in Table 1.
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Table 3:  Regression Estimates of Three Factor Productivity Growth on Computer Growth using 
a Semi-Reduced Form Specification, Varying Difference Lengths and Controls 
 

Specification Semi-Reduced Form Semi-Reduced Form

Controls 

Computer 
Coefficient 

– No 
Controls 

Capital 
Coefficient 

– No 
Controls 

Computer 
Coefficient 
– Year & 
Industry 

Capital 
Coefficient 
– Year and 

Industry 
Column (1) (2) (3) (4) 
1 Year 0.0109 0.1694 0.0085 0.1694 
Differences (0.0020) (0.0053) (0.0021) (0.0052)
2 Year 0.0236 0.1914 0.0197 0.1915 
Differences (0.0025) (0.0056) (0.0026) (0.0056)
3 Year 0.0334 0.2069 0.0290 0.2060 
Differences (0.0031) (0.0060) (0.0030) (0.0059)
4 Year 0.0346 0.2223 0.0326 0.2182 
Differences (0.0035) (0.0065) (0.0035) (0.0064)
5 Year 0.0395 0.2329 0.0401 0.2277 
Differences (0.0043) (0.0073) (0.0042) (0.0072)
6 Year 0.0429 0.2441 0.0399 0.2410 
Differences (0.0058) (0.0092) (0.0055) (0.0089)
7 Year 0.0538 0.2489 0.0456 0.2486 
Differences (0.0087) (0.0129) (0.0083) (0.0126)
 
Regression estimates of the computer coefficient using a range of difference lengths (rows) for 
different specifications (columns) – each row in paired columns (1)-(2) and (3)-(4) represents 
estimates on the computers and ordinary capital coefficients in a single systems regression.  
Columns (1) and (2) represent coefficient estimates for computers and ordinary capital in a semi-
reduced form specification (Equation 7) using Iterated Seemingly Unrelated Regression (ISUR) 
constraining the capital and IT coefficients to be the same across the two-equation system.  
Columns (3) and (4) represent a second semi-reduced form system estimate with Year and 
Industry controls.  Coefficients in columns (1)-(4) are converted to elasticities by multiplying by 
the sample average Labor Input Share.  ISUR standard errors are shown.  Sample sizes are as 
shown in Table 1 
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Table 4:  Instrumental Variables Estimates of Three Factor Productivity Growth and Output 
Growth on Computer Growth using Varying Difference Lengths and Different Specifications 
 

Specification 
Value 
Added Semi Reduced Form Output 

Controls 
Year & 
Industry 

Computer 
Coeff. -  
Year & 
Industry 

Capital 
Coeff. -  
Year & 
Industry 

Year & 
Industry 

Columns (1) (2) (3) (4) 
1 Year 0.0599 0.0190 0.1193 0.0096 
Differences (0.0125) (0.0016) (0.0056) (0.0026)
2 Year 0.0493 0.0469 0.1316 0.0077 
Differences (0.0119) (0.0025) (0.0055) (0.0026)
3 Year 0.0668 0.0846 0.1557 0.0112 
Differences (0.0117) (0.0036) (0.0059) (0.0028)
4 Year 0.0599 0.0632 0.1788 0.0079 
Differences (0.0132) (0.0039) (0.0067) (0.0033)
5 Year 0.0967 0.0638 0.1852 0.0138 
Differences (0.0177) (0.0050) (0.0078) (0.0038)
6 Year 0.1151 0.0583 0.2032 0.0181 
Differences (0.0220) (0.0078) (0.0107) (0.0048)
7 Year 0.1010 0.0782 0.2024 0.0150 
Differences (0.0246) (0.0105) (0.0140) (0.0057)
 
Instrumental variables (IV) regression estimates of the computer coefficient using a range of 
difference lengths (rows) for different specifications (columns) – each cell in columns (1) and (4) 
represent a separate regression; the pair of columns (2)-(3) for each row represents a separate 
systems regression.  Column (1) represents an IV estimate of Equation (4).  Columns (2) and (3) 
represent an ISUR systems regression, constraining the computer and ordinary capital 
coefficients to be the same across equations and normalized by the sample average labor share 
(see Equation 7).  Column (4) represents an equivalent regression to Column (1) using 3FP 
calculated with gross output instead of value added and including a materials term.  All 
regressions use the same instrument set (in levels):  capital age, ratio of PCs/mainframe 
terminals, ratio of network nodes to PCs, debt-equity ratio, and stock market beta.  All 
instruments are interacted with time and industry dummy variables.  Robust standard errors are 
shown in parenthesis except in columns (2) and (3), where ISUR standard errors are reported.
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Table 5a:  Regression of Value Added on Factor Input Quantity – Levels Regression 
  
Specification CII - OLS IDG - OLS CII - IV 
Column (1) (2) (3) 
Computer Capital Elasticity 0.0483 0.0272 0.0584 
  (0.0110) (0.0086) (0.0272)
Ordinary Capital Elasticity 0.1963 0.1764 0.1678 
  (0.0178) (0.0154) (0.0181)
Labor Elasticity 0.7189 0.7791 0.7556 
  (0.0281) (0.0216) (0.0283)
Control Variables Year Year Year 
  Industry Industry Industry 
R2 95.0% 95.8% 95.8% 
        
Sample Size – Observations 
Firms 

4097 
527 

1324 
357 

1324 
357 

 
Levels regression of Value Added on Computers, Capital and Labor Quantity for the Computer 
Intelligence (CII) and International Data Group (IDG) datasets.  Huber-White Robust Clustered 
(by firm) standard errors reported in parenthesis.  Columns (1) and (2) represent OLS 
regressions.  Column 3 represents the equivalent regression of column 1 instrumenting computer 
capital with the corresponding estimate from IDG. 
 
Table 5b.  Instrumental Variables Regression of Three Factor Productivity Growth on Computer 
Growth using IDG Computer Capital Quantity as an Instrument and Varying Difference Lengths 
 

Specification 
Value 
Added 

 

  
Year & 
Industry 

Sample 
Size 

1 Year 0.0093 779
Differences (0.0192)
2 Year 0.0473 551
Differences (0.0277)
3 Year 0.0724 331
Differences (0.0333)
4 Year 0.0938 183
Differences (0.0228)
5 Year 0.0357 66
Differences (0.0244)
 
IV regression of 3FP growth on computer growth using a range of difference lengths (rows).  
Identical to regression in Table 4 column 1 except the difference in IDG computer stock is 
included in the instrument list.  Robust standard errors in parenthesis. 
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Appendix A: Variables and Data Construction 

 
The variables used for this analysis were constructed as follows: 
 
Sales. Total Sales as reported on Compustat [Item #12, Sales (Net)] deflated by 2-digit industry 
level deflators from Gross Output and Related Series by Industry from the BEA (Bureau of 
Economic Analysis, 1996) for 1987-1993, and estimated for 1994 using the five-year average 
inflation rate by industry. 
 
Ordinary Capital.  This figure was computed from total book value of capital (equipment, 
structures and all other capital) following the method in Hall (1990).  Gross book value of capital 
stock [Compustat Item #7 - Property, Plant and Equipment (Total - Gross)] was deflated by the 
GDP implicit price deflator for fixed investment.  The deflator was applied at the calculated 
average age of the capital stock, based on the three-year average of the ratio of total accumulated 
depreciation [calculated from Compustat item #8 - Property, Plant & Equipment (Total - Net)] to 
current depreciation [Compustat item #14 - Depreciation and Amortization].  The calculation of 
average age differs slightly from the method in Hall (1993), who made a further adjustment for 
current depreciation.  The constant dollar value of computer capital was subtracted from this 
result.  Thus, the sum of ordinary capital and computer capital equals total capital stock. 
 
Capital Rental Prices (ordinary capital).  This series was obtained from the BLS multifactor 
productivity by industry estimates “Capital and Related Measures from the Two-Digit Database” 
(BLS, 2001).  This publication was also the source of the capital deflators used in our analysis.  
These measures are based on calculations of a Jorgensonian rental price (see footnote 6) for 
major asset classes in each industry and then aggregating to obtain an overall capital rental price 
for each NIPA 2-digit industry which is then mapped to the 2-digit SIC industries in our data.  
Details on methods and calculation approaches are found in the BLS Handbook of Methods, 
Chapter 11 (BLS, 1997). 
 
Computer Capital (CII dataset definition).  Total market value of all equipment tracked by 
CII for the firm at all sites.  Market valuation is performed by a proprietary algorithm developed 
by CII that takes into account current true rental prices and machine configurations in 
determining an estimate.  This value is deflated by the BEA price series for computer capital 
(BEA, 2001). 
 
Computer Capital (IDG dataset definition).   Composed of mainframe and PC components.  
The mainframe component is based on the IDG survey response to the following question (note:  
the IDG survey questions quoted below are from the 1992 survey; the questions may vary 
slightly from year to year): 
 
"What will be the approximate current value of all major processors, based on current resale or 
market value?  Include mainframes, minicomputers and supercomputers, both owned and leased 
systems.  Do NOT include personal computers."   
 
The PC component is based on the response to the following question: 
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"What will be the approximate number of personal computers and terminals installed within your 
corporation in [year] (including parents and subsidiaries)?  Include laptops, brokerage systems, 
travel agent systems and retailing systems in all user departments and IS." 
 
The number of PCs and terminals is then multiplied by an estimated value.  The estimated value 
of a PC was determined by the average nominal PC price over 1989-1991 in Berndt & Griliches' 
(1990) study of hedonic prices for computers.  The actual figure is $4,447.  The value for 
terminals is based on the 1989 average (over models) list price for an IBM 3151 terminal of $608 
(Pelaia, 1993).  These two numbers were weighted by 58% for PCs and 42% for terminals, 
which was the average ratio reported in a separate IDG survey conducted in 1993.  The total 
average value for a "PC or terminal" was computed to be $2,835 (nominal).  This nominal value 
was assumed each year, and inflated by the same deflator as for mainframes.    This value is 
deflated by the BEA price series for computer capital (BEA, 2001). 
 
Labor Expense.  Labor expense was either taken directly from Compustat (Item #42 - Labor 
and related expenses) or calculated as a sector average labor cost per employee multiplied by 
total employees (Compustat Item #29 - Employees), and deflated by the price index for Total 
Compensation (Council of Economic Advisors, 1996). 
 
The average sector labor cost is computed using annual sector-level wage data (salary plus 
benefits) from the BLS from 1987 to 1994.  We assume a 2040-hour work year to arrive at an 
annual salary.  For comparability, if the labor figure on Compustat is reported as being without 
benefits (Labor expense footnote), we multiply actual labor costs by the ratio of total 
compensation to salary.   
 
Employees.  Number of employees was taken directly from Compustat (Item #29 - Employees).  
No adjustments were made to this figure. 
 
Materials. Materials were calculated by subtracting undeflated labor expenses (calculated 
above) from total expense and deflating by the 2-digit industry deflator for output.  Total 
expense was computed as the difference between Operating Income Before Depreciation 
(Compustat Item #13), and Sales (Net) (Compustat Item #12). 
  
Value-Added.  Computed from deflated Sales (as calculated above) less deflated Materials. 
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Appendix B:  Reconciling Firm and Industry Productivity Estimates in the Presence of 
Unobserved Output 
 
In the paper, we argue that firm-level data may be better able to capture intangible benefits that 
arise from computer use to the extent that it is due to firm-specific investments, whereas these 
benefits may be missed in industry level analyses due to aggregation error.  This section presents 
a formal treatment of that argument. 
 
Consider a single input production function in which a firm produces output by using computers 
– this is an assumption of separability and is made for convenience in this discussion. Without 
further loss of generality, we assume that this function is linear in some measure of Computers 
(C) and Output (O), normalized to mean zero for the sample, plus a conventional error term 
(i.i.d., mean zero):  O Cγ υ= + .  Assume we have observations on multiple firms (N, indexed by 
n=1…N), in M industries (indexed by m=1...M).   
 
Let output and computer inputs for each firm be comprised of a component common across a 
particular industry ( ) and a firm-specific component (,mO Cm ,o cε ε ).  These firm-specific 
components are assumed to be i.i.d. across firms and mean zero, are uncorrelated with the 
industry effects, but may have a non-zero correlation within firms.  These firm-specific 
components represent unique IT investments in the firm and the private benefits firms receive 
from these investments.21  Thus: 
  

o
mO O ε= +  

c
mC C ε= +  

 
Note that we have suppressed the firm and industry subscripts except where necessary for 
clarity. 
  
We consider two OLS estimators of the production relationship, one in firm-level data (a dataset 
with M x N observations), and an alternative industry aggregated dataset (a dataset with M 
observations representing the industry mean on each O and ). m mC
 
The OLS estimator of the productivity term in firm level data is thus: 
 

cov( , ) cov( , )ˆ
var( ) var( )

c c
m m

firm c
m

O C
C

ε εγ
ε

+
=

+
 

 
The equivalent industry-level estimate is: 
 

                                                 
21 One type of private benefit that this formulation captures is errors in firm-specific price deflators – if  a firm 
earns greater revenues for the same level of “physical” output due to unmeasured product quality, it will appear as 
additional output when revenue is deflated by a common industry deflator and is at least partially captured by oε . 
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We are interested in the conditions under which the industry-level estimate is less than the firm-
level estimate ( ˆ ˆindustry firmγ γ< ).   Substituting the equations above and rewriting slightly we get a 
condition (assuming that computers have a non-negative effect on output in these 
manipulations): 
 

var( ) var( ) cov( , ) cov( , )
1 1var( ) var( ) cov( , ) cov( , )

c c
m m m

c c
m m m

C O C

C O C
N N

ε ε o

o

ε

ε ε ε

+ +
<

+ +
 

If we note that 1 1var( ) cov( , )c

N N
c oε ε ε≥ , the inequality is preserved after deleting the right-

hand terms in the denominator, although this will tend to understate the differences in elasticity 
estimates (in the correct direction for our argument).22  Collecting terms yields: 
 

var( ) cov( , )1 1
var( ) cov( , )

c c

m mC O

o

mC
ε ε ε

+ < +  or 

 cov( , ) cov( , )
var( ) var( )

c o
m m

c
m

O C
C

ε ε
ε

<  

 
The left-hand side is simply the regression coefficient for the industry-specific components alone 
( m ind only mO Cγ υ−= + ), and the right-hand side is an analogous regression on the firm-specific 

components only ( o c
firm onlyε γ ε−= +υ

                                                

). 
 
There are two implications of this equation: 
 
1) Whenever the marginal product of the firm-specific component of computer investment 
exceeds the marginal product of the industry component, industry-level data will understate the 
benefits of computers. 
 
2) If the data has the industry-specific effects removed (such as by differencing or industry 
dummy variables in the regression), then a positive coefficient on IT is evidence of an 
incremental firm-specific benefit of computers. 

 
22 A sufficient condition is that the firm-specific component of computer investment exhibits non-increasing returns 
to scale.  If N is large, these terms can also be dropped. 
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