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Abstract. The aim of this survey is to provide insight into the sequen-
tial algorithms that have been proposed to compute exact “regularities”
in strings; that is, covers (or quasiperiods), seeds, repetitions, runs (or
maximal periodicities), and repeats. After outlining and evaluating the
algorithms that have been proposed for their computation, I suggest pos-
sibly productive future directions of research.

1 Introduction

A central concern of Thue’s 1906 paper [99], the founding document of combina-
torics on words, was the occurrence (or, rather, non-occurrence) of periodicities
in infinite strings on three letters: he showed that such strings can be constructed
to contain no squares. In the intervening century, certainly thousands of research
papers have been written by mathematicians and (over the last half-century)
also computer scientists that relate in some way to periodicity, or its variants,
in strings. A word that has recently been brought into service to describe these
variants is “regularities” [52]. In this paper, to trim away most of those thou-
sands of publications, we concentrate on the computation of regularities and, to
sharpen the focus still more, with two caveats:

• We do not consider regularities that are “approximate” in any sense; for
instance, those that allow errors (such as regarding (abc)(abd) as an approx-
imation of (abc)2) or rearrangement (“Abelian” squares such as (abc)(cab)
[31, 34]), or those defined on strings that contain “don’t cares” (“wild cards”,
“holes”) [13, 14] or that contain other subsets of the alphabet (“indetermi-
nate” [98] or “degenerate” [56] strings). Thus our regularities are exact.

• We do not consider computations that are distributed or parallel; we confine
ourselves to sequential algorithms.

The main reason for avoiding these distractions (though they are important,
and deserve surveys of their own) is that the methods used to compute approx-
imate regularites or to handle parallel computation are strikingly different; by
sticking to sequential algorithms on exact regularities, at least a certain unity
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of methodology is achieved. This paper shares some common ground with the
previous surveys [7, 96, 4] and updates some of their material; also of course it
has many points of intersection with the “Bible” of combinatorics on words [73].

We consider two quite different kinds of computation:

• In Sections 3 & 4 we compute regularities that characterize the string as well
as (usually) all its prefixes. These regularities are extensions of the idea of a
“failure function” [3] or “border array” [97] that permits all the periods of
every prefix of a given string to be compactly specified by a single array of
integers. The methods used for these problems often make use of structures
equivalent to suffix trees in order to achieve efficient execution.

• On the other hand, in Sections 5 & 6, we are computing regularities that
occur within the string: essentially, repeating substrings (factors) that are
constrained to be adjacent (“repetitions”) or otherwise those that may be
nonadjacent or overlapping (“repeats”). The algorithms proposed for these
computations generally depend on preprocessing that computes the suffix
tree of the string (up until a few years ago) or else the suffix array (currently).

Having hopefully given a bird’s-eye view of these algorithms in Sections 3-6,
I provide in Section 7 one man’s perspective on directions that might be taken
to lead to faster algorithms for regularities in the future.

2 Preliminaries

A string is a finite sequence of symbols (letters) drawn from some finite or
infinite set Σ called the alphabet. The alphabet size is σ = |Σ|. We write a
string x in mathbold, and we represent it as an array x[1..n] for some n ≥ 0
called the length of x, also written |x|. For n = 0, x = ε, the empty string. If
x = uvw, then u is said to be a prefix, v a substring and w a suffix of x; if
vw 6= ε, uw 6= ε, uv 6= ε, respectively, then u, v, w is, respectively, a proper
prefix, proper substring, proper suffix of x. (What we have defined here as
a “substring” is also often called a factor.)

If x = x[1..n] has a proper (though possibly empty) prefix u that is also a
suffix of x, then u is said to be a border of x. If for some p ∈ 1..n, x[i] = x[p+i]
for every i ∈ 1..n−p, then x is said to have period p. Thus x always has the
empty border ε and trivial period n. It is well-known, and easy to prove, that
x has period p if and only if it has a border of length n−p. Of course one of
the most useful tools in dealing with periodicity in strings is the “Periodicity
Lemma” [35]. The border array β = βx of a string x is an array of length n
such that βx[i] equals the length of the longest border of x[1..i] for every i ∈ 1..n.
Since βx[i] = b > 0 implies that βx[b] is the next largest border of x[1..i], it
follows that βx specifies all the borders, hence all the periods, of every prefix of
x. A simple Θ(n)-time algorithm computes the border array of x [3, 97]. Here
for example are the maximum borders βx and corresponding minimum periods



px of the prefixes of a simple string:

1 2 3 4 5 6 7 8

x = a b a a b a b a
βx = 0 0 1 1 2 3 2 3
px = 1 2 2 3 3 3 5 5

(1)

A string x has quasiperiod q < n (and is accordingly called a quasiperi-
odicity) if and only if there exists a string u = u[1..q], called a cover of x, such
that every position of x lies within an occurrence of u. Thus a cover must also be
a border of x. If for some integer k > 1 there exists a set C = {u1,u2, . . . ,ut} of
strings, each of length k, such that every position in x lies within an occurrence
of some element of C, then C is said to be a k-cover of x, a minimum k-cover
if for fixed k, t is least possible. The string (1) has quasiperiod 3 and cover aba,
and therefore for k = 3 has a minumum 3-cover of cardinality t = 1; however x
also has a minimum 2-cover C = {ab, ba} of cardinality t = 2. In Section 3 we
discuss algorithms related to covers and k-covers.

In order to define seeds of a given string x, we consider an extension w =
x

L
xx

R
of x, where x

L
x is a left extension, xx

R
a right extension. Then

given a proper substring u of x, we say that

• u is a left seed of x if it is a cover of some right extension of x;
• u is a right seed of x if it is a cover of some left extension of x;
• u is a seed of x if it is a cover of some extension of x.

Thus any cover of x is trivially a seed with xL = xR = ε; similarly, any left or
right seed of x is trivially a seed. Observe that if u is a seed of x, then we may
assume WLOG that the length of any corresponding extension is strictly less
than |u|. In (1) abaab and ababa are left and right seeds, respectively, of x, with
xR = ab, xL = ab, respectively. Notice that a seed may provide information
about the periodicity of a string that is not available from a cover; for example,
x = abcabcabca is quasiperiodic with quasiperiod 4 and cover abca, but this does
not describe the period 3 that is implied by any of the seeds abc, bca, cab. We
discuss algorithms related to seeds in Section 4.

A repeating substring in x is a proper nonempty substring u of x that
occurs more than once — for example, u = aba in (1). A repeat in x is a tuple

Mx,u,r = {u; i1, i2, . . . , ir}, (2)

where u is the repeating substring that occurs at positions i1, i2, . . . , ir, with
1 ≤ i1 < i2 < . . . < ir ≤ n. A repeat is said to be complete if u occurs exactly
r times in x. For example,

Mx,ab,3 = {ab; 1, 4, 6} and Mx,aba,3 = {aba; 1, 4, 6}

are both complete repeats in (1). A repeat Mx,u,r is said to be nonextendible
(NE for short) if there exists no repeat Mx,v,r such that u is a proper substring
of v; otherwise, extendible. Normally, we are interested in complete NE repeats.



Perhaps of particular interest are supernonextendible (SNE) repeats: NE re-
peats Mx,u,r such that u is not a substring of any other repeating substring in
x. In (1) both Mx,aba,3 and Mx,ab,3 are complete, but Mx,aba,3 is SNE, while
Mx,ab,3 is extendible (not NE). Note that for the purpose of computer output a
repeat (2) is fully specified by an (r+1)-tuple (p, i1, i2, . . . , ir) of integers, where
p is the length of the repeating substring u. Algorithms that compute repeats
are discussed in Section 6.

A repetition in x is a repeat (2) in which the occurrences of the repeating
substring u are constrained to be adjacent (thus ij+1−ij = |u| for every j ∈
1..r−1) and maximal (thus x[i−|u|..i−1] 6= u and x[i+r|u|..i+(r+1)|u|−1] 6= u). Of
course x itself may be a repetition; if a string or substring is not a repetition, we
say that it is primitive. A repetition is fully specified by a triple (i, p, r), where
u = x[i..i+p−1] is the repeating substring, p = |u| the period of the repetition
ur, and r the number of occurrences of u (or exponent of the repetition). If
r = 2, the repetition is a square. We assume throughout this paper that the
repeating substring u is itself primitive — in other words, that |u| is the least
possible period of the repetition. Thus to describe the repetition x = aaaa, we
write (i, p, r) = (1, 1, 4) rather than (1, 2, 2).

A run [97] (or maximal periodicity [74]) in x is a 4-tuple (i, p, r, t), where
(i, p, r) is a repetition, (i−1, p, r) is not a repetition, and t ∈ 0..p−1 is the
maximum integer such that x[i+rp..i+rp+t−1] = u[1..t]. We call t the tail of the
run. In (1) both (3, 1, 2) and (1, 3, 2) are repetitions (also runs with t = 0), while
(4, 2, 2, 1) is a run that implies two repetitions (4, 2, 2) and (5, 2, 2). (Note that
(5, 2, 2, 0) is not a run because (4, 2, 2) is a repetition.) In general, computing all
the runs determines all the repetitions. In Section 5 we discuss the computation
of repetitions and runs.

We conclude this section with a brief mention of data structures that are
computed in the preprocessing phase of many of the algorithms described below.

The suffix tree STx of a string x[1..n] on an alphabet of size σ is a com-
pacted trie [43] built on the suffixes of x (Figure 1 shows the suffix tree for the
example string (1) with the starting positions of the suffixes occurring as leaf
nodes in increasing lexicographic order). Several algorithms exist [101, 80, 100]
to compute STx in time O(n log σ) (thus O(n log n) for σ ∈ O(n)), while an
impractical but influential one [33] (see also [97, pp. 126–136]), the model for
practical recursive linear-time suffix array algorithms, computes STx in O(n)
time independent of alphabet size — provided however that the letters of the
alphabet can be treated as integers and so be sorted in linear time. The suffix
tree has “myriad virtues” [6], including pattern-matching in time proportional to
pattern length, and easy access to repetitions, repeats, and the longest common
prefix of substrings; however, because of the need to use pointers and to store a
search structure at each node, the space requirement, though linear in n, is nev-
ertheless large, especially for large alphabets. In some cases space requirements
can be reduced [70, 42, 38].

The suffix array SAx of x is defined by SAx[i] = j, 1 ≤ i ≤ n, where x[j..n]
is the ith smallest suffix of x in lexicographic order. Since its introduction in 1990



1 2 3 4 5 6 7 8

x = a b a a b a b a
SAx = 8 3 6 1 4 7 2 5

LCPx = 0 1 1 3 3 0 2 2
LPFx = 0 0 1 3 2 3 2 1
QSAx = 0 0 1 1 2 4 5 6
BWTx = b b b $ a a a a
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Fig. 1. Suffix tree, suffix array, LCP/LPF/QSA/BWT arrays

[76, 77], and especially over the last 10 years, the suffix array has replaced the
suffix tree as the data structure of choice for string algorithms. Requiring just 4n
bytes of storage in uncompressed form, it gradually became clear [64, 60, 62] that
SAx could be computed both in linear time and more quickly than STx, also
that it could be used in most cases at least as efficiently in algorithms [1]. The
survey [91] gives an overview of suffix array construction algorithms (SACAs) up
to 2007; the current algorithm of choice [85] requires only 5n bytes of space (for
x and SAx), executes in linear time, and is fastest in practice [83]. Abouelehoda
et al. [1] describe an “enhanced” suffix array ESAx.

Often used in conjunction with SAx is LCPx, the longest common prefix
array, defined by

LCPx[i] = lcp{SAx[i−1],SAx[i]},

for i ∈ 2..n. See Figure 1. Like the suffix array, LCPx can be computed in Θ(n)
time [61, 78, 92, 59], but with varying working storage requirements. Perhaps
[92] at about 6n bytes provides the best trade-off between speed and storage.

A newly discovered data structure has turned out to be useful in vari-
ous contexts. The longest previous factor (LPF) array was introduced by
Crochemore & Ilie [25] (also under a different name by Franek et al. [37]): for
any position i in x, LPFx[i] is the length of the longest factor of x starting at
i that occurs previously in x. It turns out that LPF is a permutation of LCP,
also that the LZ factorization (see below) can be easily computed from LPF [25].
Associated with LPF is the quasi suffix array QSA [37]: for every position
i ∈ 1..n, QSAx[i] = 0 if LPFx[i] = 0, while for LPFx[i] > 0, QSAx[i] = j for



some j ∈ 1..i−1 such that

x[j..j+LPF[i]−1] = x[i..i+LPF[i]−1].

See Figure 1 for examples. It turns out that LPF and QSA together provide
exactly the information required to compute the LZ factorization.

A data structure useful for the computation of repeats is the Burrows-
Wheeler Transform or BWT [18]: for SAx[i] > 1, BWTx[i] = x

[
SAx[i]−1

]
,

while for i such that SAx[i] = 1, BWTx[i] = $, a special sentinel letter. See
Figure 1. Due to its many applications — for instance, to data compression, index
structures, and pattern-matching — the BWT has been intensively studied in
recent years [2].

Finally we describe a data structure originally proposed for data compression,
but that has turned out to have many other uses, especially for computing repe-
titions, but recently also for computing seeds. A factorization x = w1w2 · · · wk

is LZ (for Lempel-Ziv [71, 102]) if and only if each wj , j ∈ 1..k, is

(a) a letter that does not occur in w1w2 · · ·wj−1; or otherwise
(b) the longest substring that occurs at least twice in w1w2 · · ·wj .

We observe that w1 = x[1], further that a factor wj may overlap with its
previous occurrence in x: for the string x = abaabaab, the LZ factorization is
given by w1 = a, w2 = b, w3 = a, w4 = abaab. The recent survey by Al-Hafeedh
et al. [4] provides a comprehensive analysis and evaluation of LZ factorization
algorithms in the context of the computation of repetitions.

3 Covers & k-Covers

In 1990 Apostolico and Ehrenfeucht introduced the idea of quasiperiod [8], later
extended in [9]. Given a quasiperiodicity w = x[i..j] of quasiperiod q in x =
x[1..n] (hence covered by u = x[i..i+q−1] = x[j−q+1..j]), they defined w to
be maximal if

• there exists no other quasiperiodicity w′ = x[i′..j′] of the same quasiperiod
q such that w is a proper substring of w′; and

• for j < n, where λ = x[j+1], u′ = uλ does not cover wλ.

They described an O(n log2 n)-time algorithm to compute all the maximal qua-
siperiodicities in x. Later two other algorithms were published (Iliopoulos &
Mouchard [55], Brodal & Pedersen [17]) that solved the problem in O(n log n)
time, eventually shown by Groult & Richomme [45] to be optimal based on
the construction of an infinite set S of strings such that every z ∈ S contains
O(|z| log |z|) maximal quasiperiodicities. All the algorithms proposed to date for
this problem make use of suffix trees, and so generally require a large amount of
computer memory. This problem is the natural extension of the runs (maximal
periodicities) problem described in Section 5.

A string is said to be primitive if it is not a repetition, superprimitive
if it has no quasiperiod (not coverable by a single cover). In 1991 Apostolico



et al. [10] described a recursive O(n)-time algorithm to compute the minimum
cover of a string, if it has a cover; otherwise, to return “superprimitive”. A year
later Breslauer [15] published an on-line linear-time algorithm to compute the
minimum cover of each prefix of a string. Then Moore & Smyth [81, 82] described
a linear-time algorithm to compute all the covers of a string. Finally Li & Smyth
[72] published an on-line linear-time algorithm that computes the cover array
— an array γx , analogous to the border array, that specifies all the covers of
every prefix of a string x (zero if no cover exists). For example:

1 2 3 4 5 6 7 8 9 10

x = a b a b a a b a b a
γx = 0 0 0 2 3 0 0 3 0 5

This array tells us that x has cover u = ababa of length 5, but also, since
γ[γ[10]] = γ[5] = 3, cover v = aba of length 3.

The minimum k-cover problem was introduced in [57], where (incorrect) al-
gorithms were given for its exact solution in polynomial time. In [23] Cole et al.
showed by reduction to 3-SAT that the corresponding decision problem (whether
there exists a k-cover of x of given cardinality) is NP-complete for every k ≥ 2.
It was shown further that the decision problem is a special case of the set cover
problem, hence that the minimum k-cover can be computed to within a loga-
rithmic factor by an efficient greedy algorithm. Two such O(n log n)-time greedy
algorithms were described, each making use of Crochemore’s repetitions algo-
rithm [24] as a preprocessor. More recently, Iliopoulos et al. [53] showed by
reduction to the k-bounded set cover problem that a still closer approximation
to the k-cover could be achieved in polynomial time.

In [47] Guo et al. investigate a problem with a superficial similarity to k-
covers that however turns out to be easier: given x and an integer λ, find all
sets S of substrings of x, each of the same length, say k, that cover x, subject
to the constraint that |S| = λ. Thus it is required to find all sets of k-covers
of x of cardinality exactly λ: the λ-covers problem. Their algorithm consid-
ers pairs (λ, k) for increasing values of k and executes in time O(n2). It makes
use of successive refinement (“partitioning”), by which substrings of length
k are extended (“refined”) into substrings of length k+1; using the technique
discovered by Hopcroft [49], and as we shall see used also in Crochemore’s rep-
etitions algorithm [24], the refinement of all substrings can be accomplished in
O(n log n) time. The application of this technique is described in detail in [97,
pp. 331–340], where also it is explained that a refinement is essentially a form
of suffix tree. A significant drawback of the algorithm proposed in [47] is that
it requires the alphabet size σ to be regarded as a constant; furthermore the
constant of proportionality hidden inside the O(n2) is at least σλ.

Also in [47] Guo et al. consider a generalized λ-covers problem, where the
requirement that the λ covering substrings be all of the same length is dropped.
It turns out, surprisingly, that the time complexity is unaffected: the generalized
problem can also be solved in time O(n2), though still of course with the same
drawbacks.



4 Seeds

The seeds problem was introduced in 1996 by Iliopoulos et al. [54]. They de-
scribed an O(n log n)-time algorithm to compute all the seeds of a given string
x[1..n] (that was however completed and corrected 15 years later in [22]). The
method was again based on successive refinement, and for a long time it was
not clear that a more time-efficient solution could be found, since the number of
seeds can exceed n. For example, the 10 seeds of the string (1) of length n = 8
are

aba, abaab, baaba, aabab, ababa, (aba)2, baabab, aababa, abaabab, baababa.

In fact it took 16 years to improve on the original all-seeds algorithm. In [65]
Kociumaka et al. propose a complex algorithm that makes use of the LZ factor-
ization to compute all the seeds of x in Θ(n) time.

In [46] Guo et al. consider the λ-seeds problem, a straightforward generaliza-
tion of the λ-covers problem. Using much the same methodology, they propose
an algorithm whose time complexity is O(n2), again rather surprisingly the same
as for the original λ-covers. Again σ must be constant and the constant of pro-
portionality is at least σλ.

Very recently there has been considerable interest in analogues of the cover
array modified for (left or right) seeds; that is, arrays S[1..n] such that S[i] gives
the length of the (left or right) seed of x[1..i]. More precisely, four variants have
been considered:

• RSmax[i] is the longest right seed of x[1..i];
• RSmin[i] is the shortest right seed of x[1..i];
• LSmax[i] is the longest left seed of x[1..i];
• LSmin[i] is the shortest left seed of x[1..i].

In [21] algorithms are described to compute the RSmax and RSmin arrays in
time O(n) and O(n log n), respectively; in [22] linear-time algorithms to compute
both LSmax and LSmin are proposed. The latter paper also describes a linear-
time algorithm that uses SAx to check whether x has a seed of length k; this
algorithm is then applied to compute in O(n2) time the array Smin[1..n] giving
the shortest seed of every prefix of x.

5 Repetitions & Runs

Along with various algorithms for pattern-matching, the computation of repeti-
tions was an early focus of computer scientists. Thus there are three “classical”
repetitions algorithms, each optimal, each executing in O(n log n) time, but very
different in approach:

• Crochemore [24] (see also [97, pp. 331–340]). As mentioned earlier, this al-
gorithm makes use of a refinement technique that is essentially a suffix tree
implementation. Crochemore showed that the Fibonacci string fr (f0 = b,



f1 = a, fr = fr−1fr−2 for r > 1) contains O(|fr| log |fr|) repetitions,
thus establishing the optimality of his algorithm (see also [97, pp. 76–85]).
The data structures required for implementation are complex and space-
consuming; however, careful implementation [38] not only reduces additional
space to 13n words (integers), but permits output of all the runs and all the
distinct squares in x as a byproduct. The implementation [39] executes in
linear time on strings that occur in practice (for example, DNA, protein se-
quences, English text, source/executable code, Internet webpages) and may
indeed be faster than any other runs algorithm proposed to date.

• Apostolico & Preparata [11]. This algorithm computes STx, which is
used to construct a data structure called the leaf tree. The alphabet is con-
strained to be finite.

• Main & Lorentz [75] (see also [97, pp. 340–347]). In some respects the
most interesting of these algorithms, the Main & Lorentz approach uses a
divide-and-conquer technique that recursively splits each string into halves.
At each step three kinds of repetitions are identified: those beginning and
ending in the first half, those beginning and ending in the second half, and
those that overlap. The output consists of repetitions and some of their cyclic
shifts, thus foreshadowing the idea of a run or maximal periodicity. Unlike
the other two repetitions algorithms, it is not required that the alphabet be
ordered.

One might imagine that with three optimal algorithms for repetitions, there
would be little more to say. But in 1989 Main [74] published an algorithm that
computed “leftmost” runs in linear time. Ten years later Kolpakov & Kucherov
[66, 67] (see also [97, pp. 350–358]) showed how to compute the remainder of
the runs in time proportional to their number, and furthermore proved that the
total number of runs in x[1..n] was at most k1n−k2

√
n log n for some constants

k1, k2. In other words, all repetitions could implicitly be reported in linear time.
The trouble was, the proof of the linearity of the runs was not constructive,

and so the magnitudes of k1 and k2 are not specified in any way, even though [67]
provided convincing experimental evidence (and conjectured) that the maximum
number of runs (usually denoted ρ(n)) was at most n. The upper bound on
ρ(n)/n has since been successively shown to be 5.0 [93], 3.48 [88], 1.60 [26], 1.49
[44], and finally 1.029 [29], the last achieved with the aid of three years of CPU
time on a network of high-performance computers. Meanwhile, the lower bound
has gone from 0.92705 [40] to 0.9445756 [79], then to 0.944575712 [95]. More
important from an algorithmic point of view, Puglisi & Simpson showed [87]
that the expected value of ρ(n)/n is about 0.4 for a binary alphabet, less than
0.05 for English text. Runs in strings are normally sparse.

Despite this sparsity, available methods for computing runs use heavy prepro-
cessing that makes no use of combinatorial insights that might lead to algorithmic
short cuts. As [4] explains in considerable detail, all competitive algorithms that
compute the runs in a string x first compute LZx by constructing some form of
the suffix array — SAx, ESAx or QSAx — followed usually by LCPx or LPFx.
Over all the LZ algorithms considered [1, 19, 20, 25, 28, 27, 86], the preprocess-



ing consumes at least 80% of the time required to compute LZx. Once the LZ
factorization has been computed, the runs are then computed by applying the
algorithms of Main [74] and Kolpakov & Kucherov [67], as noted above; the time
required for these procedures is also small with respect to preprocessing time.
For more precise descriptions of LZ algorithms we refer the reader to [4].

In Section 7 we discuss approaches based on combinatorial analysis that
might lead to greatly improved algorithms for computing runs.

6 Repeats

We identify four problems, the first two general in nature, the final two motivated
particularly by applications in bioinformatics:

P1 Compute all NE (nonextendible) repeats in a given string x.
P2 Compute all SNE (supernonextendible) repeats in x.
P3 Compute all NE repeats in x that satisfy some constraint on the “gap”

between repeating substrings.
P4 Compute all NE repeats in a set of strings (“multirepeats”) that may also

be required to satisfy a gap constraint.

In terms of this classification, the contributions to date include the following:

P1.1 In 1997 Gusfield [48, pp. 143 ff.] described an algorithm that, using STx,
computes all pairs of NE repeats in x in time O(σn+ q), where q is the
number of pairs output.

P1.2 In 2004 Abouelhoda et al. [1] solve the same problem with the same time
complexity but using SAx rather than STx, thus less space. In 2003 Franek
et al. [41] compute complete NE repeats in Θ(n) time, but their algorithm
requires computation of suffix arrays both for x and the reversed x, and
though the output is O(n), the repeats are not specified in their natural
left-to-right order in x.

P1.3 In 2007 Narisawa et al. [84] published a Θ(n)-time algorithm that uses
SAx to compute all “substring equivalence classes”, including the complete
NE repeats, in x.

P1.4 In 2008 Puglisi et al. [89, 90] published four variants of an algorithm
that uses SAx, LCPx and BWTx to compute complete NE repeats Mx,u,r

such that the repeating substring u has a length that is at least some user-
prescribed minimum. According to experiments described in [90], all variants
are faster than previous algorithms; two of them are guaranteed to execute
in linear time independent of alphabet size. Their output consists of ranges
of positions in the suffix array; they propose postprocessing to reexpress the
output (particularly on the DNA alphabet of four letters) into pairs or other
convenient arrangements.

P1.5 Very recently Ilie & Smyth [50] have provided a different perspective on
repeats. They establish a duality between minimum-length unique substrings
(that is, those whose every substring is repeating) and maximum-length re-
peating substrings (that is, those whose every superstring is unique) in a



string x. They show how minimum unique substrings and maximum repeat-
ing substrings cover any string, and they describe very simple, linear-time
algorithms that use SAx and LCPx to compute one or the other.

P2.1 [48] and [1] also describe efficient algorithms to compute SNE repeats
using STx and SAx, respectively; the former requires time O(n log σ), the
latter O(n+σ). For σ ∈ O(n), these times become O(n log n) and O(n2),
respectively.

P2.2 In [90] two SNE repeats algorithms are described, both very fast, both
based on precomputation of SAx, LCPx and BWTx; one of them, slightly
slower in practice, guarantees Θ(n) processing time independent of alphabet
size.

P3.1 In 2000 Brodal et al. [16] described an algorithm that used a modified
SAx (“binary suffix tree”) together with binary search trees to compute all
pairs of substrings u of x such that
• uvu is a substring of x; and
• the gap |v| ∈ r1..r2, where r1, r2 are given such that 1 ≤ r1 ≤ r2 ≤ n−2.

Their algorithm executes in time O(n log n+ q), where as above q is the
number of output pairs u; if no upper bound is specified (r2 = n−2), the
time reduces to O(n+q) plus O(n log σ) suffix tree construction time. Since
in bioinformatics applications, σ = 4, the overall time in practice is O(n+q).

P3.2 Also in 2000 Kolpakov & Kucherov [68], using quite different methods,
described an O(n+q)-time algorithm to compute all u such that uvu is a
substring of x for some fixed |v| = r. They employ the LZ factorization of x
[4] together with a modification of the [75] divide-and-conquer all-repetitions
approach (see above, Section 5) and KMP pattern-matching [63].

P4.1 Iliopoulos et al. [51], Bakalis et al. [12], and Antoniou et al. [5] use various
forms of “generalized” suffix tree (over multiple strings) to extend the gap
problem P3 to a set S = {x1,x2, . . . ,xk} of strings, also to the output of
complete NE repeats rather than pairs. Making use of appropriate padding
with a special character, it may be supposed that each xj , j = 1, 2, . . . , k, is
of length n. For each xj these authors compute uv1uv2 · · ·vmj−1u, where
mj is the number of occurrences of u accepted in xj . We call this the gapped
complete NE repeat problem on multiple strings.

Various constraints may be applied:
• gap lengths |vi| may be bounded as in P3;
• multiplicities mj of the NE repeat may be required to satisfy a lower

bound;
• the number q of strings in which an acceptable repeat occurs may be

required to satisfy a lower bound q0 (no output unless q ≥ q0).

P4.2 In [58] Iliopoulos et al. apply suffix arrays rather than suffix trees to this
problem.



7 Future Challenges

In this section I outline some possible research directions for the future:

Covers & k-Covers

(1) The computation of maximal quasiperiodicities has apparently not been at-
tempted using suffix arrays instead of suffix trees; such an algorithm, if it
existed, would no doubt use much less space and perhaps also execute faster.

(2) Furthermore, in view of the results achieved to date in bounding the number
of runs and the expected number of runs (see Section 5), it could well be
of interest to try to estimate more precisely the number of maximal qua-
siperiodicities that can occur in any string of given length n. More exact
combinatorial knowledge might lead to the design of algorithms that could
avoid massive preprocessing (see also below, item (7)).

(3) The restrictions on the λ-covers algorithm are significant; it would be de-
sirable to find an approach that would avoid them, even if the complexity
remained at O(n2). Moreover, it appears that it should be possible to de-
sign an algorithm with lower complexity, in view of the fact that the λ-seeds
problem can also be handled in time O(n2).

Seeds

(4) An improvement to λ-covers would presumably have a spillover effect on the
λ-seeds algorithm.

(5) It remains an open problem whether the shortest right seed array RSmin
can, like its counterparts, be computed in linear time. Moreover, it appears
at least possible that an o(n2) algorithm exists to compute the shortest seed
array Smin.

(6) More generally, to what extent can the cover array of [72] be extended to
seeds — that is, giving all the seeds of every prefix of x?

Repetitions & Runs

(7) It has been established that the maximum number ρ(n) of runs in x[1..n] is
relatively small, but the result comes primarily from computation, not from
combinatorial knowledge. However, if one could establish that whenever two
squares begin at nearby locations, it must as a result follow that at some
other location no square begins, then one could formulate an amortization
argument that therefore ρ(n)/n ≤ n. This simple observation has prompted
a sequence of research papers over the last few years [32, 94, 69, 36] that
has greatly extended previous combinatorial insight into squares in strings
(“The Three Squares Lemma” [30]), and that may well have algorithmic con-
sequences. The case that has been considered to date involves two squares
u2 and v2, |u| < |v| < 2|u|, at the same position, with a third square w2,



u1 u2 u1 u1 u2 u1 u2 u1 u1 u2

� -u
� -v

k w(1) w(2)

� -x[k + 1 . . . k + 2w]

Fig. 2. Overlapping Squares

|v|−|u| < |w| < |v|, located k positions to the right, 0 ≤ k < |v|−|u|.

Since many subcases need to be considered (Figure 2 shows one of them),
the combinatorics are complicated, but what seems to be true is that three
such squares cannot exist — more precisely, they can exist only trivially
because the string breaks down locally into a repetition of small period that
is easily recognized in a left-to-right scan. Of course there are other cases to
be considered than the one specified above — and these have not yet been
well defined — but the possibility exists that with precise combinatorial
knowledge about the existence of squares, an algorithmic approach could be
devised that would greatly reduce the time required to compute runs. One
man’s hobby-horse, perhaps.

Repeats

(8) It appears that the suffix tree/array technology is challenged by the diffi-
culty of the problem P4. There seems to be much scope for new ideas and
approaches in this context.
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