
Solving Constrained Horn
Clauses using Interpolation

MSR-TR-2013-6

Kenneth L. McMillan
Micrsoft Research

Andrey Rybalchenko
Technische Universität München

Abstract

We present an interpolation-based method for symbolically solving
systems of constrained Horn clauses. The method can be used to solve for
unknown predicates in the verification conditions of programs. Thus, it
has a variety of applications, including including model checking of recur-
sive and threaded programs. The method is implemented in tool called
Duality, which we evaluate using device driver verification benchmarks.

Copyright 2012 Microsoft Research. All rights reserved.

1 Introduction

Many problems of inference in program verification can be reduced to solving a
collection of logocal constraints, in the form of Horn clauses [12, 7]. In Hoare-
style program verification, we apply the rules of a program logic to obtain purely
logical proof subgoals whose validity implies correctness of a program. These
subgoals are called the verification conditions or VC’s. The VC’s generally
contain auxiliary predicates such as inductive invariants, that must be inferred.
Leaving these auxiliary predicates undefined (that is, as symbolic constants) the
problem of inference becomes a problem of solving for unknown predicates or
relations satisfying a set of logical constraints. In the simplest case, this is an
SMT (satisfiability modulo theories) problem.

For example, consider the following simple program fragment:

var i : int := 0;
while i < N invariant R(i) do

i = i+ 2;
done

assert i 6= 41;

Here, R(i) is an unknown invariant of the loop. The VC’s of this program are
the following three logical formulas:

i = 0 ⇒ R(i) (1)

R(i) ∧ i < N ⇒ R(i+ 2) (2)

R(i) ∧ ¬(i < N) ⇒ i 6= 41 (3)

These are just the three proof obligations of the Hoare logic rule for while
loops, reduced to logic. They say, respectively, that invariant R(i) is initially
true, that it is preserved by an iteration of the loop, and that it implies the
post-condition of the loop on exit. Note in particular that R(i + 2) is just the
weakest precondition of R(i) with respect to the loop body.

To prove the program, we must infer a value of the unknown predicate R that
makes the VC’s true. One such solution for R(i) is i ≡ 0 mod 2. We observe that
satisfiability of the VC’s corresponds to proof of the program. Note that this
is opposite to the typical case in model checking where satisfiability generally
corresponds to a counterexample.

One might therefore suppose that solving for R could be accomplished by
simply applying an SMT solver. However, because the variables in the VC’s
are implicitly universally quantified, traditional SMT solvers are not able to
produce models for them. Instead, we require specialized methods to solve
these formulas [12, 16]. In particular, since we want to handle non-finite state
programs, we cannot express R in extension, as a set of tuples. Rather, we need
a symbolic expression of R as s logical formula.

To solve these systems, we rely on the fact that the VC’s for proof systems
typically take the form of constrained Horn clauses (CHC’s). That is, they have

1

form:
φ ∧ P1(~x1) ∧ . . . ∧ Pk(~xk) ⇒ P (~x)

where ~x, ~xi are vectors of (universally quantified) variables, and φ is a constraint
expressed in some background theory.

Quite a variety of proof systems produce VC’s in the form of CHC’s. Thus, if
we can solve CHC’s, we can derive program proofs in a variety of proof systems.
We have just seen that the VC’s for program loops have this form. Now let us
consider procedure calls, in the way they are handled by the VC generator for
the Boogie programming language [5]. A parameter-less procedure π in Boogie
has the following form:

procedure π:
requires P (~x);
ensures Q(~xold , ~x);
σ

Here, formula P is a required precondition to enter the procedure, formula Q
is the guaranteed post-condition and statement σ is the body of the procedure.
The precondition is over the program variables ~x, while the post-condition refers
to the program variables ~x and their procedure entry values ~xold .

To generate verification conditions, Boogie replaces each call to π with the
following code:

assert P (~x);
~xold := ~x;
havoc ~x;
assume Q(~xold , ~x);

The havoc statement causes the variables ~x to take a non-deterministic value.
Thus, the transformed call to π behaves as any code satisfying the specification
of π. Now suppose π is called in the following context:

assert R(~x);
call π;
assert S(~x);

After replacing the call to π, the verification conditions we obtain from the
weakest precondition calculus are:

R(~x) ⇒ P (~x)

R(~xold) ∧Q(~xold , ~x) ⇒ S(~x)

Note that these formulas are in CHC form. They differ from the loop VC’s,
however, in that one VC has two unknown predicates on the left-hand side.
We will see that this substantially complicates the problem. The number of
unknowns on the left-hand side will be called the degree of the clause, a clause
of degree one or less will be called linear. Generally, intraprocedural proofs

2

produce linear VC’s, while modular proofs of procedures or concurrent threads
produce non-linear VC’s.

In particular, a very simple non-linear proof system for concurrent programs
is given in [13]. We are given a collection of N parallel processes of the form:

process πi:
while * do

ρi

Each process πi has a set of local variables ~xi. The processes share a set ~y of
global variables. We wish to prove in a modular way that, given some initial
condition φinit(~x1, . . . , ~xN , ~y), some error condition φerror (~x1, . . . , ~xN , ~y) is never
true. The relations to be inferred for each process i are Ri(~xi, ~y), which is the
invariant of the loop, and Ei(~y, ~y

′), which is the environment constraint. The
verification conditions for process πi are:

φinit(~x1, . . . , ~xN , ~y) ⇒ Ri(~xi, ~y)

Ri(~xi, ~y) ∧ [ρi](~xi, ~y, ~x
′

i, ~y
′) ⇒ Ri(~x

′

i, ~y
′)

Ri(~xi, ~y) ∧ Ei(~y, ~y
′) ⇒ Ri(~xi, ~y

′)

Ri(~xi, ~y) ∧ [ρi](~xi, ~y, ~x
′

i, ~y
′) ⇒ Ej(~y, ~y

′) for j 6= i

where [ρi] is the transition relation of statement ρi. These conditions state
respectively that the initial condition implies the loop invariant, the loop body
preserves the loop invariant, environment transitions preserve the loop invariant,
and the loop body (executed atomically) is an allowed environment transition
for other processes. The global correctness condition is:

R1(~x1, ~y) ∧ · · · ∧RN (~xN , ~y) ⇒ ¬φerror (~x1, . . . , ~xN , ~y)

Note again that all these proof sub-goals are CHC’s.
A final case is type inference for dependently typed functional programs.

For example, the type checking conditions in Liquid Types system [26] reduce
to CHC form [7]. Thus, we can in principle use a generic solver for CHC’s to
infer refinement types in this system. In this way, we could avoid the complex
and indirect translation of the problem to procedural program verification used
in HMC [18].

In all these cases, given an appropriate VC generator, we can reduce the
program proof problem to solving a system of CHC’s for the value of unknown
predicates. The advantage of this formulation is that it allows many program
analysis or verification problems to be handled by a generic solver. This solver
is independent of any programming language, proof system, or intermediate
code representation. By using a logical formulation, we obtain a separation
of concerns between encoding the program semantics and inference of proof
constructs. Moreover, we obtain re-use at two levels. We can re-use existing
VC generators to produce the problems, and we can re-use generic solvers for
many inference applications (and thus amortize the effort involved in optimizing
these solvers).

3

The questions remaining are how to actually perform the solving, and whether
generic logical solvers can be as efficient as tools specialized to particular infer-
ence problems. In this paper, we will approach these questions using an gen-
eralization of the Impact algorithm [21]. We note that in case of loops and
recursion, the VC’s are generally cyclic. We solve this problem by finitely un-
winding the cyclic system into an acyclic one. The acyclic system can be solved
using an interpolating SMT solver such as [20, 22, 8]. Unwinding continues until
the unwinding contains an inductive subset, meaning that a fragment of it can
be folded into a solution of the original problem. This is conceptually very much
as in Impact, which unwinds a cyclic CFG into an abstract reachability tree,
or ART [15]. The difference is that, since the constraints are not linear, the
unwinding may now be a DAG instead of a tree, which requires more general
interpolation techniques. Correspondingly, a counterexample has the form of a
tree rather than a path, as in Impact.

This generalization has several advantages. First, it allows us to apply the
Impact algorithm to a wider range of problems (including, for example, inter-
pocedural program analysis, as in Whale [2]). Second, it allows great flexibility
in encoding the proof inference problem, depending on how we generate the ver-
ification conditions. By generating VC’s at the level of procedures and loops,
we can take advantage of a modern SMT solver’s ability to search a large space
of possible execution paths efficiently (as in bounded model checking). We also
have the ability to easily change the proof rules of the system, for example,
using alternative rules for loops to aid convergence, or expressing the unknown
proof constructs in a restricted form to exploit domain knowledge we may have
about the form of the proof. We will observe experimentally that this addi-
tional flexibility does not necessarily entail a cost in performance. That is,
the approach is comparable in performance to well-established software model
checking techniques based on explicit program control flow representations.

The primary contributions of this work are:

• A purely interpolant-based approach to solving systems of CHC’s symbol-
ically.

• Extending the range of such solvers to include integer arithmetic, arrays
and quantified axioms.

• Generalizing the form of the problem to allow loop- and procedure-scale
VC’s.

• An implementation and experimental evaluation on real industrial prob-
lems.

1.1 Related work

There are two existing approaches to solving CHC’s. Both are restricted to
rational linear arithmetic constraints. The tool QArmc is based on predicate
abstraction and uses Craig interpolation for abstraction refinement [12]. On

4

the other hand, Bjorner and Höder apply property-driven reachability analysis
(PDR) to solve similar systems [16]. Both of these systems can be thought of
as generalizing existing program analysis techniques at the purely logical level.

In this paper, we generalize a different program analysis technique, based
on computing inductive invariants directly from interpolants. We obtain sev-
eral potential advantages in this way. First, we can handle a broader class of
VC’s (where the left-hand sides are not conjunctions) allowing us to exploit
the efficiency of modern SMT solvers to handle large blocks of code. Second,
the methods allows us to exploit any logics and theories that an interpolating
prover supports, including quantifiers, integer arithmetic and arrays. We will
see these advantages in our experiments, as they allow the VC’s generated by
Boogie to be handled directly, without further translation or reduction. Finally,
the method is purely interpolation-based, and does not rely on any method of
quantifier elimination.

Constrained Horn clauses can also be solved by abstract interpretation, as in
µZ [17]. However, this requires an abstract domain to be given, along with ab-
stract relational transformers. Here, we do not assume a user-provided abstract
domain. A related problem for finite universes is Datalog query answering. A
tool using symbolic model checking methods for this purpose is BDDBDDB [28].
Here, we do not restrict to the finite state case. We use first order logic to ex-
press the problem, and compute a solution expressed symbolically in first-order
logic.

There are also closely related algorithms that are specialized to particular
program analysis or model checking problems. One is, of course, Impact. Algo-
rithmically, the primary difference here is the extension to the non-linear case,
covering interprocedural program verification and related problems. A gener-
alization of Impact to the interprocedural case is WHALE. Algorithmically,
this is closely related to the present method and also differs in significant ways.
The similarities and differences will be discussed in detail in Section 5.1. In that
section we will also consider the relation to various unwinding-based techniques,
including bounded model checking techniques.

1.2 Notations

We use standard first-order logic over a signature Σ of function and predi-
cate symbols of defined arities. Generally, we use φ, ψ for formulas, a, b, c for
constants (nullary function symbols), f, g for functions, P,Q,R for predicates,
x, y, z for individual variables, t, u for terms. We will use ~x for a vector of
variables, ~t for a vector of terms, and so on. When we say a formula is valid
or satisfiable, this is relative to a fixed background theory T . A subset of the
signature ΣI ⊆ Σ is considered to be interpreted by the theory. The vocabulary
of a formula φ is the subset of Σ \ ΣI occurring in it, and is denoted L(φ). An
interpolant for A ∧ B is a formula I such that A ⇒ I and B ⇒ ¬I are valid,
and L(I) ⊆ L(A) ∩ L(B). We will write φ[X] and t[X] for a formula or term
with free variables X. If P is a predicate symbol, we will say that a P -fact is a
formula of the form P (t1, . . . , tn). A formula or term is ground if it contains no

5

variables. If R is a set of symbols, we say φ is R-free when L(φ) ∩R = ∅.

2 The relational post-fixed point problem

We now give a precise definition of the problem to be solved.

Definition 1 A constrained Horn clause (CHC) over a vocabulary of predicate
symbols R is a formula of the form ∀X.B[X] ⇒ H[X] where

• The head H[X] is a P -fact, for P ∈ R, or is R-free, and

• The body B[X] is a formula of the form ∃Y. φ ∧ ψ1 ∧ · · ·ψk where φ is
R-free and ψi is a P -fact for some P ∈ R.

The clause is called a query if the head is R-free, else a rule. A rule with body
True is a fact. The formula φ is called the constraint of the CHC.

Observe that the existential quantifiers in the body B[X] of a CHC can be
converted to universal quantifiers in prenex form. Thus, ∀X.(∃Y. B[X,Y]) ⇒
H[X] can be rewritten as ∀X,Y. B[X,Y] ⇒ H[X]. To avoid clutter, we will
generally leave the universal quantifiers implicit and write simply B[X,Y] ⇒
H[X]. If the head of clause C is a P -fact, we will write hd(C) = P .

Also, we assume that our theory T includes the standard interpretation of
equality on terms. This means that we can restrict our attention to P -facts of
the form P (~x), where x is a vector of distinct variables. For example, a rule
such as B[X] ⇒ P (f(x)) can be rewritten to B[X]∧ y = f(x) ⇒ P (y), where y
is a fresh variable.

Definition 2 A relational post-fixed point problem (RPFP) is a pair (R, C),
where R is a set of predicate symbols and C is a set of CHC’s over R.

We will refer to Σ \ R as the background vocabulary and assume that this
coincides with the interpreted vocabulary ΣI . A symbolic relation is a term of
the form λ~x. φ[~x], such that L(φ) ⊆ Σ \ R (that is, φ is over the background
vocabulary). A symbolic relational interpretation σ over R is a map from sym-
bols in R to symbolic relations of the appropriate arity. If ψ is a formula, we
write ψσ to denote ψ with σ(R) substituted for each R ∈ R and β-reduction
applied. For example, if ψ = R(a, b) and σ(R) = λx, y. x < y, then ψσ is a < b.

Definition 3 A solution of RPFP (R, C) is a symbolic relational interpretation
σ over R such that, for all C ∈ C, Cσ is valid.

A subtle point worth noting here is that solution of an RPFP depends on the
interpretation of the background symbols. If the background theory is complete
(meaning it has a unique model up to isomorphism) then this gives a unique
interpretation of R. We can therefore think of an RPFP as a special case
of SMT. If T is incomplete, however (say it includes uninterpreted function
symbols) then the solution effectively gives one interpretation of R for each

6

theory model. This allows us to leave aspects of the program semantics (say,
the heap model) incompletely defined, yet still prove the program correct.

We can also give a semantic notion of solution as follows:

Definition 4 A semantic solution of RPFP (R, C) is a map σ from models of T
to relational interpretations of R, such that for every model M of T , M,σ |= C.

The notions of semantic solution and symbolic solution do not necessarily co-
incide, as some semantic solutions may not be definable in the logic. If every
RPFP with a semantic solution also has a symbolic solution, we could say that
our theory is relatively complete for RPFP’s (i.e., we have a complete proof
system relative to an oracle for the theory). In what follows, however, we do
not require relative completeness. In cases where a symbolic solution does not
exist, our solution algorithms will simply not terminate.

2.1 Solving RPFP’s with predicate abstraction

As an introduction to the Duality algorithm, we will consider first the more
familiar approach of predicate abstraction [11], applied to CHC solving. That
is, given a set P of atomic predicates, we synthesize the strongest map from R
to Boolean combinations of P that solves the problem. Alternatively, we can
use a Cartesian predicate abstraction that allows only cubes over P (that is,
conjunctions of literals). This is the approach taken by QARMC [12].

The difficulty in this approach is mainly to discover adequate predicates P.
QARMC does this by constructing a derivation tree. The derivation tree de-
scribes a potential counterexample, that is, a proof that the RPFP has no solu-
tion.

As an example, consider the following RPFP:

x = y ⇒ P (x, y) (4)

P (x, y) ∧ z = y + 1 ⇒ P (x, z) (5)

P (x, y) ∧ P (y, z) ⇒ Q(x, z) (6)

Q(x, z) ⇒ x ≤ z (7)

We can think of these formulas as the VC’s of a program with two procedures,
P and Q. Procedure P is recursive and either returns its input (4) or calls itself
and returns the result plus one (5). Procedure Q calls P twice (6). The query
represents a specification that Q is non-decreasing (6).

To build a derivation tree that acts as a counterexample to our query, we
start with the negation of the query, that is, Q(x, z)∧¬(x ≤ z), as the root of the
tree (see Figure 1(a)). Now we proceed to derive P -facts by unifying them with
the heads of rules. For example, to derive Q(x, z), we can use rule (6). Unifying
the head of this rule with Q(x, z), we obtain P (x, y) ∧ P (y, z) ⇒ Q(x, z). Now,
using rule (4), we can derive P (x, y) by x = y ⇒ P (x, y). Using rule (5), we
derive P (y, z) from P (y, y′) ∧ z = y′ + 1 ⇒ P (y, z). Note we replaced y in (5)
with a fresh variable y′ to avoid a name clash. We continue with this process

7

𝑄 𝑥, 𝑧 ⇒ 𝑥 ≤ 𝑧 𝑃 𝑥, 𝑦 ∧ 𝑃 𝑦, 𝑧 ⇒ 𝑄(𝑥, 𝑧) 𝑥 = 𝑦 ⇒ 𝑃(𝑥, 𝑦) 𝑃 𝑦, 𝑦′ ∧ 𝑧 = 𝑦′ + 1 ⇒ 𝑃(𝑦, 𝑧) 𝑦 = 𝑦′ ⇒ 𝑃(𝑦, 𝑦′)

¬(𝑥 ≤ 𝑧) 𝑡𝑟𝑢𝑒 𝑥 = 𝑦 𝑧 = 𝑦′ + 1 y = 𝑦′
𝑓𝑎𝑙𝑠𝑒 𝑥 ≤ 𝑧 − 1 𝑥 ≤ 𝑦 𝑦 ≤ 𝑧 − 1 𝑦 ≤ 𝑦′

𝑄 𝑥, 𝑧 ∶ 𝑥 ≤ 𝑧 − 1 𝑃 𝑥, 𝑦 ∶ 𝑥 ≤ 𝑦 𝑃 𝑥, 𝑦 ∶ 𝑥 ≤ 𝑦 − 1 𝑃 𝑥, 𝑦 ∶ 𝑥 ≤ 𝑦

(a) (b)

(c) (d)

Figure 1: Predicate refinement by interpolation. (a) Derivation tree. Arrows
represent unification steps. (b) Constraint tree. (c) Interpolant for constraint
tree. (d) Extracted predicates.

until all P -facts in the tree have derivations (which means the leaves of the tree
are facts). One possible completed derivation tree for our example is shown in
Figure 1(a).

Now consider the non-root formulas in our derivation tree. Any satisfying
assignment of the constraints in these formulas gives us a proof of certain ground
facts. In our example, the non-root constraints are x = y, z = y′ +1 and y = y′

(see Figure 1(b)). One satisfying assignment is x = y = y′ = 1, z = 2. Plugging
this assignment in to the derivation tree, we obtain the following derivation:

P (1, 1)

P (1, 1) ⇒ P (1, 2)

P (1, 1) ∧ P (1, 2) ⇒ Q(1, 2)

(note P (1, 1) is derived twice). We say that each of these facts is derivable by
the corresponding sub-tree of the derivation.

Notice, however, that the fact Q(1, 2) is inconsistent with our root goal
Q(x, z) ∧ ¬(x ≤ z). In fact, when we add the root constraint ¬(x ≤ z) our
system of constraints becomes unsatisfiable. This means that our derivation
tree cannot derive any facts that refute the desired property. We can obtain
a certificate of this fact by computing a Craig interpolant for the constraint

8

tree. Figure 1(c) shows an interpolant for our example. The interpolant assigns
a formula to each node of the constraint tree. This formula is only over the
variables representing the fact being derived at that node (these are exactly
the common ones between the sub-tree rooted at that node and the rest of the
tree). Moreover, each node together with its children’s interpolants implies its
own interpolant, and the root node (the negation of the query) is contradicted.
Thus, the interpolant constitutes a bottom-up proof that our derivation tree
cannot provide a counterexample to the query.

In QARMC, atomic predicates used in the interpolants are then added as
new abstraction predicates in P. For our example, these predicates are shown
in Figure 1(d). If P was {Q(x, z) : x ≤ z}, we can now solve the problem, for
example by:

Q(x, z) ≡ x ≤ z

P (x, y) ≡ x ≤ y

When constructing a derivation tree, QARMC uses the results of the last
predicate abstraction run to build a tree that is not already ruled out by the
existing predicates. After adding the new predicates, we are guaranteed that at
least the one derivation tree is ruled out in future runs.

2.2 Derivations and interpolation

We now make the above notions more formal. We have written a rule in the
form

φ ∧ P1(~x1) ∧ · · · ∧ Pk(~xk) ⇒ P (~x).

An alternative view, however, is that the CHC represents a set of ground im-
plications satisfying the constraint φ. This view is equivalent for our purposes,
since the Herbrand theorem tells us that a first-order formula has a model ex-
actly when it has a model constructed from ground terms. We represent this
set of ground implications as follows:

P1(~x1), . . . , Pk(~xk) → P (~x) | φ

This stands for the set of ground implications

P1(~x1)σ, . . . , Pk(~xk)σ → P (~x)σ

where σ is a ground substitution and φσ is true.
We can then define a derivation tree for a set of CHC’s C as a derivation

using the following inference rule:

P1(~x1) | ψ1

. . .
Pk(~xk) | ψk

P1(~x1), . . . , Pk(~xk) → P (~x) | φ (∗)

P (~x) | φ ∧ ψ1 ∧ · · · ∧ ψk

9

where (∗) is a rule in C, possibly with variables renamed. The rule says simply
that if we can derive the antecedents of an implication, we can derive the conse-
quent (and in fact it corresponds to k instances of the standard resolution rule).
Notice that at the leaves of a derivation tree we must have facts in C (rules with
no antecedents).

In any instance of this inference rule, we will call φ the local constraint and
γ = φ ∧ ψ1 ∧ · · · ∧ ψk the global constraint. The conclusion of a derivation tree
is of the form P (~x) | γ. We can think of this as a set of ground facts P (~x)σ
where γσ is true.

A derivation tree is well-formed if in every inference, for each ψi, V (ψi) ∩
V (γ) ⊆ V (~xi). That is, the variables that each subtree has in common with
the remainder of the tree are just the parameters of its conclusion. This can
always be achieved by simply renaming variables in the tree (which corresponds
to the “occurs check” in Prolog). From here on we assume all derivation trees
are well-formed.

To create a derivation of a failure of a query, we introduce an imaginary
predicate F corresponding to failure. We then treat a query Q(~x) ⇒ ψ as a as
rule Q(~x) → F | ¬ψ. The query fails when we can derive F using this rule.
Thus we say:

Definition 5 A failure derivation for a query Q of the form φ ∧ P1(~x1) ∧ · · · ∧
Pk(~x) ⇒ ψ in an RPFP is a derivation of F using an additional failure clause:

P1(~x1), . . . , Pk(~x) → F | φ ∧ ¬ψ

Now suppose that the global constraint γ of a derivation tree is unsatisfiable.
In this case, the tree derives no facts, and we call it vacuous. For a vacuous
derivation tree, we can compute an interpolant :

Definition 6 An interpolant for a derivation tree T is a map I from inferences
in T to formulas such that, for every inference rule application n in T with
conclusion P (~x) | γ, premises m1, . . .mk and local constraint φ,

1. V (I(n)) ⊆ V (~x), and

2. |= φ ∧ I(m1) ∧ · · · ∧ I(mk) ⇒ I(n), where |= is the satisfaction relation,
and

3. if n is the root of T then I(n) = False.

By induction on the tree we have γ(n) ⇒ I(n), thus existence of an inter-
polant implies a derivation tree is vacuous. We can also show the following:

Theorem 1 If theory T admits Craig interpolation, then every vacuous deriva-
tion tree has an interpolant.

Proof By induction on the tree height, using the Craig property and well-
formedness of the derivation. Consider the root inference of the tree. We know

10

ψ1 is inconsistent with φ, ψ2, . . . ψk, and since the derivation is well-formed, that
the common vocabulary is V (~xi). Thus, there is a Craig interpolant for this pair
over ~x. Call it ι1. Replacing ψ1 with ι1, we proceed to compute and interpolant
ι2 for ψ2 and so on. For each premise mi we set the interpolant I(mi) = ιi. We
compute interpolants for each subtree by setting φi to φi ∧¬ιi. The result is an
interpolant for the derivation. ✷

If a derivation tree is vacuous, we can compute an interpolant for it using
an interpolating theorem prover. The proof of Theorem 1 shows one way to do
this. A more efficient approach is to extend the interpolating prover to compute
all the interpolant formulas in the tree at once. That is, we gather the local
constraints into a tree as in Figure 1(c). From a single refutation proof of these
constraints, the prover can derive interpolant formulas for every node of the tree.
This is done in QARMC for the simple case of conjunctions of linear constraints
over the reals. The interpolating version of the SMT solver Z3 [22] has also been
extended to do this for the first-order theory of uninterpreted functions, arrays
and linear arithmetic (AUFLIA).

3 DAG-like problems

Instead of applying predicate abstraction, the Duality algorithm constructs a
solution to an RPFP (and thus a program proof) directly from the interpolants
for its failure derivations. This is possible for a subclass of problems we will call
DAG-like.

For a given a set of CHC’s, we will say that predicate R depends on predicate
Q when R occurs in the head of some CHC in which Q occurs in the body, and
we write D(Q,R). In our example above, the dependency relation contains the
pairs (P, P) and (P,Q). As in this example, the dependency graph (R, D) is
generally cyclic, as cycles in the VC’s are induced by loops or recursion in the
program.

Definition 7 An RPFP (R, C) is simple if every relational symbol in R occurs
exactly once in the head of some constraint in C. It is DAG-like if in addition
its dependency relation is acyclic.

Our example problem is neither simple (since P occurs in the head of two
rules) nor acyclic (since P occurs in a dependency cycle). However, we can make
it DAG-like by unwinding it. For example, here is a possible unwinding:

x = y ⇒ P0(x, y) (8)

P0(x, y) ∧ z = y + 1 ⇒ P1(x, z) (9)

P0(x, y) ∧ P1(y, z) ⇒ Q1(x, z) (10)

Q1(x, z) ⇒ x ≤ z (11)

In the unwinding, we have created instances of unknown predicates by adding
subscripts. We have created corresponding instances of the CHC’s, in such a

11

way that the dependency relation is acyclic, and each unknown occurs in the
head of exactly one rule. Such a problem has exactly one failure derivation tree
for each query, since each P -fact can unify with exactly one head (if it were not
acyclic, it might have no derivation, since a top-down derivation would continue
infinitely).

At this point, a few additional notations will be helpful. A set of ground facts
P (~x) | γ can be thought of as an interpretation of P , that is, the assignment
P = {~x | γ}. Conversely, we can think of a relational interpretation σ as a set
of ground facts, that is, σ represents the set of facts {P (~t) | ~t ∈ σ(P)}. Thus, it
makes sense to write P (~t) ∈ σ to mean ~t ∈ σ(P). We can also speak of the union
and intersections of interpretation as sets of facts. Thus, if σ1(P) = λ~x.γ1 and
σ2(P) = λ~x.γ2, then (σ1 ∪ σ2)(P) = λ~x.γ1 ∨ γ2 and (σ1 ∩ σ2)(P) = λ~x.γ1 ∧ γ2.
As usual in symbolic representations, the syntactic counterparts of union and
intersection are disjunction and conjunction.

Now, suppose we construct the failure derivation tree T for a query Q.
Finding it vacuous, we construct in interpolant I for T . Consider a node n in
T whose head is P (~x) and whose interpolant is I(n). As we noted above, I(n)
can be thought of as a set of facts P (~x) | I(n) that gives an upper bound on the
facts derivable at node n. We can also think of it as an interpretation of P . This
gives us a way to derive a solution for a DAG-like problem from an interpolant
for its derivation tree. To do this, we merge the interpretations corresponding
to all the interpolant formulas into a single interpretation for R:

Definition 8 Given a derivation tree T over R and an interpolant I for T , the
conjunctive merge of I is defined as

CM(I)(P) = ∩{I(n) | hd(n) = P}

That is, the conjunctive merge takes the intersection of all the interpolants
for each P , as sets of ground facts. As noted above, this corresponds to conjunc-
tion of the formulas. Now we want to show that this in fact yields a solution of
the problem. We need the following lemma, that gives a logical characterization
of solution of a CHC by a relational interpretation:

Lemma 1 Let P, P1, . . . , Pk be predicate symbols, φ a formula, ~x, ~x1, . . . , ~xk
vectors of terms and σ a symbolic relational interpretation. Then

σ |= P1(~x1), . . . Pk(~xk) → P (~x) | φ (12)

if and only if

|= φ ∧ σ(P1)(~x1) ∧ · · · ∧ σ(Pk)(~xk) ⇒ σ(P)(~x) (13)

Proof Forward direction. Let P1(~t1), . . . Pk(~t1) → P (~t) be a ground instance of
the constraint in (12) for some ground substitution ρ. Then (12) implies that if
P1(~t1), . . . , Pk(~tk) ∈ σ, then P (~t) ∈ σ. If follows that (13) holds for ρ, and since
this is true for all ρ satisfying φ that (13) is valid. Reverse direction. Suppose

12

𝑄1 𝑥, 𝑧 ∧ ¬𝑥 ≤ 𝑧 𝑃0 𝑥, 𝑦 ∧ 𝑃1 𝑦, 𝑧 ⇒ 𝑄1(𝑥, 𝑧) 𝑥 = 𝑦 ⇒ 𝑃0(𝑥, 𝑦) 𝑃0 𝑦, 𝑦′ ∧ 𝑧 = 𝑦′ + 1 ⇒ 𝑃1(𝑦, 𝑧) 𝑦 = 𝑦′ ⇒ 𝑃0(𝑦, 𝑦′)

𝑓𝑎𝑙𝑠𝑒 𝑥 ≤ 𝑧 − 1 𝑥 ≤ 𝑦 𝑦 ≤ 𝑧 − 1 𝑦 ≤ 𝑦′
(a) (b)

Figure 2: Derivation tree for unwinding.

that P1(~t1), . . . , Pk(~tk) ∈ σ. Then by (13) we know that σ(P)(~t) holds, thus
~t ∈ σ, thus σ satisfies (12). ✷.

With this lemma, we can easily show that the conjunctive merge of the
interpolant solves our problem:

Theorem 2 Let Π = (R, C) be a DAG-like RPFP with unique query Q, let T
be the unique failure derivation for Q in Π, and let I be an interpolant for T .
Then CM(I) is a solution of Π.

Proof Let σ = CM(I) and consider a rule C with hd(C) = P . According to
Lemma 1 we must prove (13). Now consider an arbitrary node n of T such that
hd(n) = P . By interpolant property 2, we have φ∧ I(m1)∧ · · · ∧ I(mk) ⇒ I(n).
Taken together for all n these properties imply (13), thus σ satisfies C. Further,
by interpolant property 3, σ maps F to False. This implies that the query Q
is satisfied. ✷

The derivation tree for our unwound example is shown in Figure 2(a). This is
the same as the previous tree, with the exception of subscripts on the predicates.
The corresponding interpolant is shown in Figure 2(b). Its conjunctive merge
is:

P0(x, y) ≡ x ≤ y

P1(x, y) ≡ x ≤ y − 1

Q1(x, z) ≡ x ≤ z − 1

According to the theorem, this interpretation should solve the problem. In fact,
by plugging in these definitions, we can easily see that it does.

We observe here a useful duality between models and proofs. That is, sup-
pose that T is a failure derivation for a query in Π. Then satisfiability of its
global constraint γ gives us a logical proof that Π is unsatisfiable. On the other
hand, unsatisfiability of γ, as witnessed by an interpolant I for T , gives us a
solution for Π, by construing I as a relational interpretation.

We may ask at this point if it is not possible to solve the DAG-like problem
directly using interpolation, without expanding the DAG into a tree. This

13

problem is solved in [1] for the linear case (only one unknown predicate in each
body), without the assumption of simplicity. This case is special because each
derivation is just a single path (without branching). For the non-linear case,
the situation is significantly complicated, as a derivation for a DAG may require
multiple facts to be derived at each node [13, 14]. It is not clear that any more
efficient approach is possible than expansion into a tree, though this would be
an interesting topic for future investigation.

Now we consider the question of DAG-like problems with multiple queries.
It turns out this problem is straight-forward, since we can simply combine the
solutions for the individual queries:

Theorem 3 Let Π = (R, C ∪Q) be an RPFP, where C is a set of rules, and Q
a set of queries. Further, for every Q ∈ Q, let ΠQ = (R, C ∪ {Q}), and let σQ
be a solution for ΠQ. Then ∩Qσ(Q) is a solution for Π.

That is, to get a solution for an RPFP, we just take the intersection of the
solutions for the individual queries. This allows us to solve a DAG-like problem
incrementally, one query at a time.

4 The Duality algorithm

Based on our ability to solve DAG-like problems using interpolation, we now
present an algorithm for solving general (cyclic) RPFP’s. The algorithm is based
on progressively unwinding the problem into a DAG-like problem. Each time a
new instance of a query is added to the unwinding, we compute a solution for the
query and intersect it with the existing solution. Thus, we always maintain the
unwinding in a solved state. While constructing the unwinding, we search for
a subset of the predicate instances whose solution constitutes a solution of the
original problem. We will call such a subset an inductive subset. If we fail to find
an inductive subset, our failure tells us where to add another instance of a rule
or query to the unwinding. If at any point one of our failure derivations is non-
vacuous, we report the derivation as a counterexample. Otherwise, we continue
the unwinding until either a solution (a proof of the program) is obtained, or
until resources are exhausted.

4.1 Duality example

Consider again our simple example (4–7). We begin the unwinding by instanti-
ating the facts. In this case, we obtain simply

x = y ⇒ P0(x, y) (14)

Each time we add an instance, we use a fresh subscript for the head predicate.
This guarantees that the unwinding is simple. We assign σ(P0) = λx, y. True.
This guarantees that the unwinding is in a solved state. Now we try to construct
an inductive subset. Our best guess is just {P0}. From this set we construct an

14

assignment for the original cyclic problem. For each predicate P ∈ R, we take
the union (or disjunction) of its instances in the proposed inductive set. This
gives:

P (x, y) ≡ True

Q(x, z) ≡ False

That is, since we have no instances of Q, its assignment is empty. This assign-
ment fails to solve the problem, since (6) is not valid. This tells us that we need
to add an instance of (6). There is only one possible instance, and it is:

P0(x, y) ∧ P0(y, z) ⇒ Q0(x, z) (15)

That is, in the body of the instance, we must use existing predicates. In this
way, we guarantee that the unwinding is DAG-like. As before, we set σ(Q0) =
λx, z.True. Taking {P0, Q0} as our proposed inductive set, we now see that
the query (7) fails. Thus, we add an instance of the query:

Q0(x, z) ⇒ x ≤ z (16)

To satisfy this query, we construct its failure derivation, compute an interpolant
for it, and translate this interpolant back to a solution. The derivation tree and
one possible interpolant are shown in Figure 3. This gives us the following
solution:

σ(P0) = λx, y. x = y

σ(Q0) = λx, z. x ≤ z

Taking the intersection (conjunction) of this solution with our existing solution
(all True) leaves it unchanged. Now, proposing {P0, Q0} as an inductive subset,
we find that (5) fails (in fact, we chose the predicate x = y in the interpolant so
the problem would not be too easily solved). This causes us to add in instance
of (5):

P0(x, y) ∧ z = y + 1 ⇒ P1(x, z) (17)

We set σ(P1) = λx, z. True. Proposing {P0, P1, Q0} as our inductive subset
gives us

P (x, y) ≡ x = y ∨True ≡ True (18)

since we assign each predicate the disjunction of its instances. This causes (6)
to fail. Thus, we must add an instance (6). Now, however, we have a choice,
since this rule depends on P and there are two instances of P in the unwinding.
To make this choice, we apply the general principle that a failure of proof tells
us where to search for a counterexample. In this case, we can examine the
countermodel we obtain for (6) to determine which of the disjuncts of P is
responsible for the failure. From this, we discover that we need to use P1 at
least once to obtain a counterexample. Arbitrarily, we choose the following
instance:

P0(x, y) ∧ P1(y, z) ⇒ Q1(x, z) (19)

15

𝑄0 𝑥, 𝑧 ∧ ¬𝑥 ≤ 𝑧 𝑃0 𝑥, 𝑦 ∧ 𝑃0 𝑦, 𝑧 ⇒ 𝑄0(𝑥, 𝑧) 𝑥 = 𝑦 ⇒ 𝑃0(𝑥, 𝑦)
𝑓𝑎𝑙𝑠𝑒 𝑥 ≤ 𝑧 𝑥 = 𝑦 𝑦 = 𝑧

(a) (b)

𝑦 = 𝑧 ⇒ 𝑃0(𝑦, 𝑧)
Figure 3: First derivation tree for unwinding.

This in turn causes us to add a new instance of the query:

Q1(x, z) ⇒ x ≤ z (20)

Again, to satisfy this query, we construct its failure derivation. This is exactly
the tree of Figure 2. Conjoining the interpolant-based solution from this tree
to our existing solution, we now have:

P0(x, y) ≡ x = y ∧ x ≤ y

P1(x, y) ≡ x ≤ y − 1

Q0(x, z) ≡ x ≤ y

Q1(x, z) ≡ x ≤ y − 1

Now, proposing {P0, P1, Q0, Q1} as our inductive subset, we obtain the following
solution (after a little simplification of formulas):

P (x, y) ≡ x = y ∨ x ≤ y − 1

Q(x, z) ≡ x ≤ y

The reader can confirm that this is in fact a solution of our original problem.
Thus, the algorithm terminates with a proof of the program.

We can summarize the algorithm as follows. We search for a counterexample
by unwinding the problem into a DAG-like problem. When we fail to find a
counterexample, we use interpolation to construct a solution for the unwinding,
which corresponds to a proof that it contains no counterexamples to the original
problem. We then try to generalize this solution to a solution of the original
problem by proposing an inductive subset. If this in fact gives us a solution we
are done. Otherwise the failure of inductiveness tells us where to expand the
unwinding to continue the search to a counterexample.

4.2 Basic Duality algorithm

We now describe the basic duality algorithm a little more formally. The algo-
rithm takes as input an RPFP Π, and returns either a symbolic solution, or a
counterexample in the form of a failure derivation.

16

To formalize the notion of an unwinding, we will use the notion of an em-
bedding of one RPFP into another:

Definition 9 Given two RPFP’s Π = (R, C) and Π′ = (R′, C′), an embedding
h of Π′ in Π is a pair of functions (hR, hC), where hR : R′ → R and hC : C′ → C
such that, for every C ′ ∈ C′, we have hC(C

′) = C ′hR.

That is, Π′ embeds in Π if there is a renaming of the predicates that takes every
CHC of Π′ to a CHC of Π. Our example unwinding above embeds into the
original problem via the map {P0 → P, P1 → P,Q0 → Q,Q1 → Q}.

Definition 10 An unwinding U of an RPFP Π is a pair (Π′, h) such that

• Π′ is DAG-like, and

• h is an embedding of Π′ in Π.

We say σ is a solution of U if it is a solution of Π′.

The basic Algorithm is shown in Figure 4. The state of the algorithm is a
triple (Π,U , σ′), where Π is the problem to solve, U is an unwinding of Π and
σ is a symbolic solution of U . The main loop at line 4 maintains the following
invariants:

• U is an unwinding of Π, and

• σ′ is a solution of U .

The algorithm has just one basic step. We propose an inductive subset of
U at line 5 (this choice is dealt with in Section 4.3). This subset induces a
proposed solution σ for the original problem (line 6). We project the unwinding
solution σ′ onto the subset S, then substitute predicate symbols using the map
hR. In effect, each P ∈ R is assigned the disjunction of its instances in S. If
this is indeed a solution, we return it (line 7). Otherwise, we choose a failed
CHC (line 8). We then choose an instance of that clause to add to U (line 9).
If the CHC is a rule, we assign its head predicate to True (line 13). Else, it
is a query. We solve it by constructing its failure derivation (line 16). If the
derivation tree is satisfiable, we return a corresponding ground derivation as a
counterexample (line 17). Otherwise, we compute an interpolant, and use this
to strengthen σ′ so that the new query instance is satisfied (lines 18,19).

In the following, we will consider various improvements to this basic algo-
rithm.

4.3 Choosing an inductive subset by covering

The next question we must address is how to propose an inductive subset.
Clearly, this operation must be fast, since we perform it in every iteration of
the main loop. As in Lazy Abstraction [15], we do this by constructing a binary
relation ✄ on R called a covering relation. If P ✄ R, we say R covers P . This

17

Algorithm Unwind
Input: RPFP Π = (R, C)
Output: A symbolic solution σ of Π,

or a counterexample derivation T .

1 Let R′ = ∅, C′ = ∅, Π′ = (R′, C′)
2 Let σ′, hR, hC be empty maps, and h = (hR, hC)
3 Let U = (Π′, h)
4 While True do:
5 Let S = Propose-Inductive-Subset(Π,U , σ′).
6 Let σ = (σ′ ↓ S)hR
7 If σ is a solution of Π, return σ.
8 Let C ∈ C such that Cσ not valid,

where C = φ ∧ P1(t1) ∧ · · ·Pk(tk) ⇒ H.
9 Choose P ′

1
. . . P ′

k such that
6|= φ ∧ P ′

1
σ′(t1) ∧ · · ·P ′

kσ
′(tk) ⇒ Hσ(t)

10 If H of the form P (t) (* C is a rule *) then
11 Let P ′ be a fresh predicate symbol, and add it to R′.
12 Let C ′ = φ ∧ P ′

1
(t1) ∧ · · ·P ′

k(tk) ⇒ H〈P ′/P 〉
13 Let hR(P

′) = P and σ′(P) = λ~x.True

14 else (* C is query *)
15 Let C ′ = φ ∧ P ′

1
∧ · · ·P ′

k ⇒ H
16 Let T be the failure derivation for C ′ in Π′.
17 If T has a satisfying assignment ρ, return Tρ.
18 Let I be an interpolant for T .
19 Let σ′ = σ′ ∩ CM(I).
20 Add C ′ to C′ and let HC(C

′) = C
21 Done.

Figure 4: Basic unwinding algorithm.

18

is allowed when σ′(P) ⊆ σ′(R). The idea is that a node that is covered has no
effect on the solution, thus we can drop it from the proposed inductive set. We
will say that a predicate R is covered in the unwinding if it depends transitively
on a covered predicate. Our proposed inductive subset is just the uncovered
subset of the predicates R′ of the unwinding.

As in [21], we avoid infinite cycles of coverings and uncoverings by requiring
arcs in ✄ to respect a suitable total order ≺ on nodes. A suitable ordering is
order of creation. We apply the following rules to add and remove covering arcs:

• After each time σ′(R) is strengthened at line 19 of the algorithm, if there
is a P ≺ R such that σ′(R) ⊆ σ′(P), we add an arc R✄ P . This removes
R and all its dependencies from the inductive set.

• After adding a covering arc R ✄ P , we remove any covering arcs S ✄

P ′ where S depends transitively on R. In other words, we only allow
predicates in the inductive set to cover other predicates.

• After each time σ′(P) is strengthened at line 19, we recheck each existing
arc R✄ P . If σ′(R) 6⊆ σ′(P), we remove the arc.

This approach allows us to identify a potentially inductive subset of the
unwinding with relatively low overhead. The covering checks can be performed
with calls to an SMT solver, and checks can be memoized to amortize the effort.

4.4 Identifying candidate instantiations

Another aspect of the algorithm with potentially high overhead is the test for
inductiveness at line 7. Clearly, we would not like to test every CHC at every
iteration of the main loop. To avoid this, we can try to identify likely candidates
for instantiation heuristically. An instantiation candidate consists of a CHC C
and a vector of predicates P ′

1
, . . . , P ′

k to to instantiate the body of C with. An
acceptable candidate must meet the test of line 9 of the algorithm (it must cause
inductiveness to fail). We maintain a queue of likely acceptable candidates,
and a set E of expanded predicates. At line 7, if the queue is non-empty, we
remove a candidate. If the candidate is in S, the uncovered subset, and meets
the criterion of line 9, we can skip lines 7-9. If the queue becomes empty,
we look for an unexpanded predicate P ′ in S. If one exists, we produce a
set of candidates using P ′ and already expanded predicates in S. To avoid an
explosion of candidates, we consider only the maximal expanded instance of any
given predicate P according to the order ≺. This is quite important for rules C
that have a large degree, since the number of candidates would be exponential
in the size of the body of the rule. The obtained candidates are then placed in
the queue, and predicate P ′ is added to the expanded set.

The effect of this strategy is to build an unwinding that is roughly “layered”.
That is, the predicate instances divide into a sequence of layers such that pred-
icates in one layer depend only on predicates in the previous layer. At nearly
every iteration, we obtain an acceptable candidate from the queue. Thus, we
avoid frequent tests of inductiveness.

19

4.5 Improving convergence by forced covering

Duality has two ways of improving performance by re-using proofs in different
contexts. The first is called forced covering and is inherited from Impact [21].
The idea of a forced covering is that a fact proved about one instance Pi of
predicate P may be useful to prove of another instance Pj . In program proving
terms, we may imagine that a fact proved about one execution of a procedure
or loop may be true of another. By proving this fact about Pj , we allow Pi to
cover Pj . Thus, we are helping to construct an inductive subset.

Forced covering works as follows. Suppose that Pi and Pj are instances of
P in the unwinding (that is, hR(Pi) = hR(Pj) = P) and suppose that Pi ≺ Pj .
Thus, we might be able to add a covering arc Pj ✄ Pi. Now suppose that
σ′(Pi) = λ~x. φ. We want to prove the same fact of Pj , so we temporarily
add the query Pj(~x) ⇒ φ to the unwinding. We then try to satisfy the query,
as in lines 16-19 of the basic algorithm. If we obtain a counterexample, we
simply remove the query and continue. Otherwise, strengthening the solution
will result in adding a covering arc Pj ✄ Pi.

There is a heuristic question of when to try forced coverings, and what in-
stances Pi to use as potential covers. In the implementation, we try forced covers
for Pj just before it is expanded (used to generate instantiation candidates). We
use just a few of the most recently generated instances Pi of P , provided they
are not currently covered and Pi ≺ Pj , so that a covering arc may be added.

Forced covering is an important optimization to the algorithm, especially for
programs with loops and recursion. In practice, almost all of the query checks
in Duality are the result of forced covering.

4.6 Partial derivation trees

Another potentially severe performance issue in the basic Duality algorithm is
the size of derivation trees. In the worst case, a derivation tree for a DAG-
like problem is exponential-size in the size of the DAG. Moreover, since each
derivation tree represents a satisfiability problem that must be solved by an
SMT solver, we would like the derivation trees to be as small as possible. We
can greatly reduce the size of derivation trees by constructing partial derivation
trees, relative to an existing assignment. The idea is that our existing solution
represents an upper bound on the facts that can be derived at any point in the
DAG. As we construct a derivation tree, we can substitute this upper bound for
any given predicate, and thus obtain an upper bound on the possible derivable
facts. This allows us to reuse interpolants we have previously derived to reduce
the size of the derivation trees. In program verification terms, if we have derived
a specification for a procedure that is sufficient in one calling context, we may
be able to re-use it in others. This is the second form of re-use of proof effort
in Duality.

In a partial derivation tree relative to interpretation σ′, we allow the use of
an additional inference rule, as follows:

P (~x) | σ′(P)(~x)

20

That is, rather than expand the derivation tree at P , we can simply re-use a
previously computed upper bound on the derivable P facts. For example, in
the derivation tree of Figure 2, we could have re-used the assignment P0(x, y) ≡
x = y, deriving P0(x, y) |x = y.

Using this inference rule, we can define a notion of interpolant, and a obtain
result analogous to Theorem 2. That is, by intersecting interpolants obtained
for the partial derivation tree with the existing solution σ′, we obtain a solution
for the new query. On the other hand, the partial derivation tree is an over-
approximation. Therefore, we may find that it is not vacuous, when the full
derivation tree is in fact vacuous. This is because we may have included facts at
the root of the derivation tree that are not actually derivable. Thus, when the
constraint tree is satisfiable, we must extend the partial derivation tree further
at one of the approximated leaves. If the partial derivation tree becomes a
complete derivation tree, we have a genuine counterexample.

The question then arises, if the partial derivation tree is not vacuous, and
there are multiple approximated leaves, which do we choose to expand? In the
current implementation, we choose the leaf whose predicate has been strength-
ened the fewest times, on the theory that this predicate is most likely to need
strengthening. This is, however, a topic for future research.

5 Generalized Horn Clauses

In general, the formulas produced as verification conditions for a program do not
always fall into the CHC form. For example, consider this program fragment:

assert P (x);
if c then

x := A(x)
else

x := B(x);
assert Q(x);

The VC associate with this fragment would have a disjunction representing
the if-then-else construct:

P (x) ∧ (c ∧A(x, x′) ∨ ¬c ∧B(x, x′)) ⇒ Q(x′)

While we could always reduce the problem to an equisatisfiable clausal form,
there may be a significant performance disadvantage to this. Using large-grained
VC’s, our derivation trees will cover more behaviors of the code, allowing us
to take advantage of the efficiency of a modern SMT solver to search for a
counterexample within a large space of execution paths. Using large-grained
VC’s is the equivalent of using a large-block encoding in program analysis [6].

To do this, we expand our notion of Horn formula:

Definition 11 A generalized Horn clause (GHC) over a predicate vocabulary
R is a formula of the form ∀X. B[X] ⇒ H[X], where

21

• The head H[X] is either a P -fact, or is R-free, and

• The body B[X] is a formula of the form ∃Y. φ[X,Y] where φ[X,Y] is
quantifier-free, and symbols in R occur only positively in φ[X,Y].

Because the unknown predicates occur only positively in the body of the
constraints, we could in principle reduce the body to disjunctive normal form
and obtain an equivalent set of CHC’s of exponential size. Thus we do not
obtain an increase in expressiveness using GHC’s, but rather hope to obtain
efficiency by avoiding reduction to clausal form.

We now expand our notion of derivation tree to GHC’s. Whereas in the
CHC case, every P -fact in the body of a clause must be true to derive the head,
in the the GHC case, we may have to derive only a subset of the body facts. We
deal with this by introducing fresh Boolean variables. We assume the bodies of
the GHC’s have been rewritten into the form:

φ ∧ (b1 ⇒ P1(t1)) ∧ · · · ∧ (bk ⇒ Pk(tk))

The constraint φ is obtained by replacing each P -fact in the body by a corre-
sponding Boolean variable bi. Our derivation rule is:

b1 → P1(~x1) | ψ1

. . .
bk → Pk(~xk) | ψk

(b1 ⇒ P1(~x1)), . . . , (bk ⇒ Pk(~xk)) → P (~x) | φ (∗)

b→ P (~x) | (b⇒ φ) ∧ ψ1 ∧ · · · ∧ ψk

The idea of this construction is that, if bi is false, then Pi(~xi) is not needed
to satisfy the body of the clause, thus we need not derive it. We now say a
derivation with conclusion b→ P (~x) | γ is vacuous when γ〈True/b〉 is satisfiable
(since a fact is only derived when b is true). Our interpolants for a derivation now
contain the b variables. An interpolant I(n), where hd(n) = P now corresponds
to a set of facts P (~x) | I(n)〈True/b〉.

With these definitions, we can prove analogs of Lemma 1 and Theorem 2 for
GHC’s, allowing us to use GHC’s in the Duality algorithm.

5.1 Other unwinding approaches

The Duality algorithm can be viewed as an extension of the Impact algo-
rithm [21] to the non-linear case, where derivations are trees rather than paths
(thus, Impact is intraprocedural, while Duality can compute procedure sum-
maries). A significant practical difference is that Impact operates on control-
flow graph (CFG) representations of programs, at the granularity of basic blocks.
Duality abstracts away from programs and operate only on the logical verifica-
tion conditions. These may represent, for example, entire loops, procedures, or
larger program fragments. Use of a CFG representation has certain advantages
for the linear case, including the ability to easily slice program paths based on

22

data flow. On the other hand, by operating on large-grain VC’s, Duality al-
lows the interpolating decision procedure to handle the enumeration of program
paths internally. Moreover, since the interpolator “sees” more of the program,
it may produce more heuristically relevant interpolants by ignoring facts that
are true only along specific execution paths.

Another approach to generalizing Impact to procedures is that of Whale [2].
For the specific application of procedural program verification, Duality is closely
related to Whale, but differs in some important respects. Like Impact, Whale
operates on CFG’s. Like Duality, however, it is designed to operate at the gran-
ularity of procedures. In this application, Duality effectively unwinds the call
graph upwards, from callees to callers, while Whale does the reverse, unfolding
from the main procedure downward. This has several consequences. First, in
Whale, node x can cover node y when the its predicate stronger than that of y,
the reverse of Duality and Impact. This means that, in the final invariant, the
annotation of a procedure is the conjunction of the annotations of its instances
in the unfolding, rather than the disjunction. Extending downward rather than
upward also means that annotations in the unfolding are not monotonically
strengthened. Rather, extensions may require some predicates to be set back to
True. Whale does not implement forced covering, and it is unclear how this
might be done. Whale also does not implement an analog of partial derivations.
In principle it could be extended to do this, which might allow more significant
re-use of speculated summaries. At this point it is unclear what the relative
advantages of the two unwinding approaches are. Primarily, however, Duality
differs from Whale in its generality, as it applies to any problem that can be
expressed as an RPFP.

Duality is also related to various bounded verification techniques that also
perform unwinding. For example, Corral [19] incrementally unwinds the call tree
of a program in a manner very similar to the partial derivation tree construction
of Duality (we can think of the global constraint of a derivation tree as a bounded
model checking formula). FunFrog also performs bounded verification in this
way, using propositional logic [27]. It constructs interpolants and uses these
as speculated (bounded) procedure summaries for successive program versions.
Here, of course, we are concerned with unbounded verification. We use the
interpolants to construct an inductive solution. In partial derivations, however,
interpolants are re-used much as in FunFrog.

6 Implementation and experiments

We now report on some experiments to evaluate the hypothesis that a purely
logical solver for relational fixed-point problems can complete in performance
with program-specific algorithms. If this is true, then we can separate the
problem of developing core solving algorithms from the problem of interpreting
programming languages and from particular intermediate program representa-
tions such as control/data flow graphs (CDFG’s). This would in principle make
it possible to develop verification engines that are more widely re-usable, and

23

also reduce the technical barrier to entry in developing verification algorithms.
To test this hypothesis, the Duality algorithm has been implemented in a

prototype tool in the functional language F♯. Its input is an RPFP expressed
symbolically as a set of GHC’s in SMTLIB format. The background theory is
AUFLIA (arrays, uninterpreted functions and linear integer arithmetic). Sat-
isfiability checking and interpolation are performed by the interpolating prover
of [22], based on the proof-generating capability of the SMT solver Z3 [10], and
modified to compute tree interpolants.

There are a few optimizations in the implementation that are not described
above. We modified the interpolating prover to bias it toward weak interpolants.
Intuitively, since an instance of a predicate P in the unwinding is an underap-
proximation of P , we wish to generalize its specification by weakening it, and
thus to compute weak interpolants. In addition, constructing a partial deriva-
tion tree involves a sequence of satisfiability problems, as we replace approxi-
mated leaves in the tree with further expansions of the derivation. Since many
constraints are common between these instances, we use Z3 incrementally to
conserve learned clauses.

To evaluate the approach, we selected a set of 20 randomly chosen bench-
mark problems from 1941 in the Static Driver Verifier [4] (SDV) benchmark
suite. Random selection was used to avoid “cherry picking” or regression to the
mean. Each problem consists of a Windows device driver instrumented with a
property automaton. Since we are interested the application of Duality to proof
construction, we choose from the set of benchmarks in which the property is
believed to be true.

Translation path We used the tool Corral [19] to translate from the SDV
intermediate representation (IR) into the Boogie language [5]. Boogie then con-
verts the loops to tail recursion, and then generates procedure-level verification
conditions (VC’s) that are used as input to Duality. Thus each procedure in the
program generates a single GHC, whose head relation is, effectively, a summary
of the procedure (or loop, since loops are procedures). The translation to Boogie
also introduces some uninterpreted functions, and a corresponding collection of
background axioms (with quantifiers). These are passed to Duality and used as
an extension of the background theory. This relies on interpolating Z3’s ability
to generate interpolants for quantified formulas.

A key motivation of Duality is to exploit the efficiency of Z3 to allow proof
at the granularity of procedures rather than program statements. Enumeration
of execution paths is handled by the efficient backtracking mechanism in Z3. To
test this idea, we compared the performance of Duality to Yogi [25], a tool that
incrementally computes a predicate abstraction of a program. Like Duality, Yogi
constructs procedure summaries, however it does this by explicitly exploring
execution paths. In many ways, Yogi and Duality are not directly comparable.
However, since Yogi has be extensively optimized for the SDV application, it
provides a good baseline to test whether purely symbolic methods can compete
with specialized software verification tools.

In reporting performance, we exclude the time needed to translate the prob-
lem from the SDV intermediate representation into the Boogie language, as this

24

Duality Duality
Yogi Duality BMC (localized) (core)

7.89 2.62 1.40 †0.81 †0.21
1.32 2.30 4.01 0.49 0.04
0.11 2.10 3.57 0.70 0.17
0.17 7.59 6.53 1.85 0.62
0.39 2.97 4.13 0.70 0.06
58.64 *2.91 19.96 *2.02 †0.81
61.59 *2.83 20.17 *2.05 †0.60
0.16 2.88 3.40 0.70 0.23
2.28 9.78 6.40 2.74 1.10
75.76 TO 394.16 238.68 144.47
11.92 227.19 212.69 12.71 2.32

730.46 *90.93 23.88 †3.57 †0.98
0.12 1.60 2.99 0.35 0.06
0.44 128.01 6.15 3.68 0.15

821.98 *44.08 35.88 †6.75 †2.38
248.75 203.70 40.07 *11.68 *4.49
0.13 4.94 9.00 0.45 0.07
0.09 5.07 7.54 0.56 0.06
0.35 21.10 5.97 1.26 0.31
0.10 1.77 3.14 0.39 0.07

Table 1: Performance on SDV benchmarks. Run times in seconds.

is implemented in a highly inefficient manner. All solutions were verified using
Z3.

Table 1 shows the run-time results measured in seconds for the 20 bench-
marks. The first column shows Yogi and the second shows Duality, on the VC’s
generated by Boogie, with a time-out set at 1000s. A scatter plot of these
numbers is shown in Figure 5. While Yogi would be preferred overall, we note
four benchmarks where Duality shows a rough order-of-magnitude improvement
(marked with asterisks in the table).

Due the the manner of translation from IR to Boogie, the Boogie programs
have a large number of global variables (in fact, one array variable for each field
of each structure). We hypothesize that this may have a large effect on the
SMT solver performance. To test this, we use a form of proof-based localiza-
tion abstraction [24]. That is, we apply bounded model checking (BMC) using
Corral, unwinding the loops twice. Corral identifies the global variables needed
to prove these bounded instances using a counterexample-driven approach [19].
The unused globals are replaced by free variables in the program, which is then
verified by Duality.

Column 3 of the table shows the BMC run time (the time to generate the
localization abstraction) while column 4 shows the resulting Duality run time.
In fact, we observe a large improvement. There are now six cases in which

25

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

D
u

a
li

ty
 r

u
n

 t
im

e
 (

s)

Yogi run time (s)

Figure 5: Run-time comparison, Duality v. Yogi.

Duality shows an order-of-magnitude improvement over Yogi, and three where
it achieves two orders of magnitude improvement (indicated by daggers in the
table). Duality’s performance in proving the localized programs is generally
far faster than the BMC step needed to generate the localization. Thus, this
approach of localize-then-prove may be significantly sub-optimal. The Duality
results suggest, however, what might be achieved if Duality were to implement
an incremental localization technique as in [3].

Finally, column 5 of the table shows the core run time of Duality. This
is the time spent actually solving SMT problems and computing interpolants.
The remainder of the time is spent parsing files and copying formulas in F♯. We
observe that most of the time in Duality is spent on overhead of this type that
could be essentially eliminated in an efficient implementation. Figure 6 shows
a scatter plot of Duality’s core run time against Yogi. This gives a sense of the
potential improvement that could be achieved using an RPFP solver based on
an efficient interpolating SMT solver.

In cases where Duality does not perform well, it is also possible that the
procedure-grain VC’s are simply too large for Z3 to handle. An alternative would
be to generate VC’s at the granularity of procedure calls (that is, decorating
each call site with a symbolic precondition). This is roughly the same granularity
that is used in [6] and might produce better performance in some cases.

Of course this small set of experiments only shows that the approach has
potential, and may serve to motivate exploration of purely symbolic algorithms.
Addition experimentation is clearly needed to compare the approach to related
techniques such as the Impact algorithm [21], and Whale [2]. It should be
noted, though, that Duality applies to a wider class of problems than these
tools. A comparison to QARMC [12] would also be useful. A direct comparison
is difficult, however, since Duality handles a richer theory, and is intended to
apply to large-grain VC’s, while QARMC is restricted to CHC’s.

26

0.01

0.1

1

10

100

1000

0.01 0.1 1 10 100 1000

D
u

a
li

ty
 c

o
re

 r
u

n
 t

im
e

 (
s)

Yogi run time (s)

Figure 6: Run-time comparison, Duality (core) v. Yogi.

7 Conclusion

Relational fixed-point solving is a generic approach to program verification. It
treats a program’s verification conditions as a set of logical constraints to be
solved for relational unknowns. A solution corresponds to a proof of the pro-
gram. We have explored a purely interpolant-based approach to this problem, in
the style of Impact. In doing so, we extended RPFP solving to a richer theory,
and extended the problem domain to large-grain VC’s, allowing the exploitation
of highly efficient SMT solvers.

Experimentally, we explored one possible application: procedural program
verification, specifically of control properties of device drivers. Though the
results are very limited, we saw that a generic logical solver can compete in
this domain with specialized and highly tuned software model checking tech-
niques. Improvements in the efficiency of such a generic solver can potentially
be exploited across a spectrum of applications, including refinement type infer-
ence [26], threaded program verification [13], protocol verification and so on.
Termination verification, as in [9] also seems a possible application. Since the
method produces explicit proofs, with auxiliary constructs such as inductive
invariants and procedure summaries, it is also possible that its output can be
re-usable across problems in a given domain (for example, procedure summaries
might be re-usable in the verification of device drivers).

Building an efficient verification tool based on the approach remains for fu-
ture work. This will require an effective solution for localization abstraction.
It will be interesting to explore other applications, such as functional program
verification, and perhaps strengthening of manual program annotations. Inte-
gration with other methods, such as [12, 23, 17] is also an interesting possibility.
The result could be a powerful generic relational solver that is applicable to a
wide variety of problem domains.

Acknowledgments We would like to thank Akash Lal, Shaz Qadeer, Atiya

27

Nori, and the SDV team for providing tools and data used in this paper.

References

[1] Aws Albarghouthi, Arie Gurfinkel, and Marsha Chechik. From under-
approximations to over-approximations and back. In TACAS, pages 157–172,
2012.

[2] Aws Albarghouthi, Arie Gurfinkel, and Marsha Chechik. Whale: An
interpolation-based algorithm for inter-procedural verification. In VMCAI, pages
39–55, 2012.

[3] Nina Amla and Kenneth L. McMillan. Combining abstraction refinement and
sat-based model checking. In TACAS, pages 405–419, 2007.

[4] T. Ball, E. Bounimova, V. Levin, R. Kumar, and J. Lichtenberg. The static
driver verifier research platform. In Tayssir Touili, Byron Cook, and Paul Jackson,
editors, CAV, volume 6174 of Lecture Notes in Computer Science, pages 119–122.
Springer, 2010.

[5] M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and K. R. M. Leino. Boogie:
A modular reusable verifier for object-oriented programs. In Frank S. de Boer,
Marcello M. Bonsangue, Susanne Graf, and Willem P. de Roever, editors, FMCO,
volume 4111 of Lecture Notes in Computer Science, pages 364–387. Springer, 2005.

[6] Dirk Beyer, M. Erkan Keremoglu, and Philipp Wendler. Predicate abstraction
with adjustable-block encoding. In FMCAD, pages 189–197, 2010.

[7] Nikolaj Bjørner, Kenneth L. McMillan, and Andrey Rybalchenko. Program veri-
fication as satisfiability modulo theories. In SMT workshop, 2012.

[8] Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén, Alberto Griggio, and
Roberto Sebastiani. The MathSAT 4 SMT solver. In CAV, pages 299–303, 2008.

[9] Byron Cook, Andreas Podelski, and Andrey Rybalchenko. Terminator: Beyond
safety. In CAV, pages 415–418, 2006.

[10] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver.
In TACAS, pages 337–340, 2008.

[11] Susanne Graf and Hassen Saidi. Construction of abstract state graphs with pvs.
In CAV, pages 72–83. Springer-Verlag, 1997.

[12] Sergey Grebenshchikov, Nuno P. Lopes, Corneliu Popeea, and Andrey Ry-
balchenko. Synthesizing software verifiers from proof rules. In PLDI, pages
405–416, 2012.

[13] Ashutosh Gupta, Corneliu Popeea, and Andrey Rybalchenko. Predicate abstrac-
tion and refinement for verifying multi-threaded programs. In Thomas Ball and
Mooly Sagiv, editors, POPL, pages 331–344. ACM, 2011.

[14] Ashutosh Gupta, Corneliu Popeea, and Andrey Rybalchenko. Solving recursion-
free Horn clauses over LI+UIF. In APLAS, pages 188–203, 2011.

[15] T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions from
proofs. In POPL, pages 232–244. ACM, 2004.

[16] Krystof Hoder and Nikolaj Bjørner. Generalized property directed reachability.
In SAT, pages 157–171, 2012.

28

[17] Krystof Hoder, Nikolaj Bjørner, and Leonardo Mendonça de Moura. µz - an
efficient engine for fixed points with constraints. In CAV, pages 457–462, 2011.

[18] R. Jhala, R. Majumdar, and A. Rybalchenko. Hmc: Verifying functional programs
using abstract interpreters. In CAV, pages 470–485, 2011.

[19] Akash Lal, Shaz Qadeer, and Shuvendu Lahiri. Corral: A whole-program analyzer
for Boogie. Technical Report MSR-TR-2011-60, Microsoft Research, May 2011.

[20] K. L. McMillan. An interpolating theorem prover. Theor. Comput. Sci.,
345(1):101–121, 2005.

[21] K. L. McMillan. Lazy abstraction with interpolants. In CAV, volume 4144 of
LNCS, pages 123–136. Springer, 2006.

[22] K. L. McMillan. Interpolants from Z3 proofs. In FMCAD, pages 19–27, 2011.

[23] Kenneth L. McMillan. Lazy annotation for program testing and verification. In
CAV, pages 104–118, 2010.

[24] Kenneth L. McMillan and Nina Amla. Automatic abstraction without counterex-
amples. In TACAS, pages 2–17, 2003.

[25] Aditya V. Nori, Sriram K. Rajamani, SaiDeep Tetali, and Aditya V. Thakur.
The yogi project: Software property checking via static analysis and testing. In
TACAS, pages 178–181, 2009.

[26] Patrick Maxim Rondon, Ming Kawaguchi, and Ranjit Jhala. Liquid types. In
PLDI, pages 159–169, 2008.

[27] O. Sery, G. Fedyukovich, and N. Sharygina. Interpolation-based function sum-
maries in bounded model checking. In HVC, 2011.

[28] John Whaley and Monica S. Lam. Cloning-based context-sensitive pointer alias
analysis using binary decision diagrams. In William Pugh and Craig Chambers,
editors, PLDI, pages 131–144. ACM, 2004.

29

