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Abstract 

Computing Rigorous Bounds on the Solution of an Initial Value Problem for an 

Ordinary Differential Equation 

Nediako Stoyanov Nedialkov 

Doctor of Philosophy 

Graduate Department of Computer Science 

University of Toronto 

1999 

Compared to standard numerical methods for initia1 value problems (IVPs) for ordi- 

nary differential equations (ODEs), validated (aiso called interval) methods for IVPs for 

ODEs have two important advantages: if they return a solution to a problem, then (1) 

the problem is guaranteed to have a unique solution, and (2) an enclosure of the true 

solution is produced. 

To date, the only effective approach for computing guaranteed enclosures of the solu- 

tion of an IVP for an ODE has been interval methods based on Taylor series. This thesis 

derives a new approach, an interval Hermite-Obreschkoff (IHO) method, for cornputing 

such enclosures. 

Compared to interval Taylor series (ITS) methods, for the same order and stepsize, 

our IHO scheme has a smaller truncation error and better stability. As a result, the 

IHO method allows Iarger stepsizes than the corresponding ITS methods, thus saving 

computation time. In addition, since fewer Taylor coefficie~its are required by IHO than 

ITS methods, the IHO method performs better than the ITS methods when the function 

for cornputing the right side contains many terms. 

The stability properties of the ITS and IHO methods are investigated. We show 

as an important by-product of this analysis that the stability of an interval method is 

determined not only by the stability funct ion of the underlying formula, as in a standard 



method for an IVP for an ODE, but aIso by the  associated formula for the truncation 

error. 

This thesis also proposes a Taylor series rnethod for validating existence and unique- 

ness of the solution, a simple stepsize control, and a program structure appropriate for a 

large class of validated ODE solvers. 
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Chapter 1 

Introduction 

1.1 The Initial Value Problem 

We consider the set of autonomous initial value problems (IVPs) 

where t E [to, Tl for sorne 7' > to. Here to and T E W, f E C"'(V), 73 C Rn is open, 

f : V + Rn, and [go] C. The condition (1.1.2) permits the initial value y ( to )  to be in 

an interval, rather than specifying a particular value. We assume that the representation 

of f contains only a finite number of constants, variables, elementary operations, and 

standard functions. Since we assume f E Ck-' (D), we exclude functions that contain, 

for example, branches, abs, or min. For expositional convenience, we consider only 

autonornous systems. This is not a restriction of consequence since a nonautonomous 

system of ordinary differential equations (ODES) can be converted into an autonomous 

system. Moreover, the methods discussed here can be extended easily to nonautonomous 

systems. 

We consider a grid to < t l  < --• < t ,  = T ,  which is not necessarily equally spaced, 

and denote the stepsize from t j  to tj+1 by hj (h j  = tj+i - t j ) -  The step from t j  to tj+' 



is referred to as the ( j  + 1)st step. We denote the solution of (1.1.1) with an initial 

condition yj  at t j  by y ( t ;  tj, yj)- For an interval, or an interval vector in general, [ ~ j ] ,  we 

denote by y( t  ; tj, [ ~ j ] )  the set of solutions 

Our goal is to compute interval vectors, [yj], j = 1,S, . . . , m, that are guaranteed to 

contain the solution of (1.1.1-1.1.2) at t  l ,  t 2 ,  . . . , t,. That is, 

Standard numerical methods for IVPs for ODEs atternpt to compute an approximate 

solution t hat satisfies a user-specified tolerance. These met hods are usually robust and 

reliable for most applications, but it is possible to find examples for which they return 

inaccurate results. On the other hand, if a validated rnethod (also called an interval 

method) for IVPs for ODEs returns successful~y, it not only produces a guaranteed bound 

for the true solution, but also verifies that a unique solution to the problem esists. 

There are situations when guaranteed bounds are desired or needed. For example, 

a guaranteed bound of the solution could be used to prove a theorem [6S]. Also, some 

calculations may be critical to the safety or reliability of a system. Therefore, it may be 

necessary or desirable to ensure that the true solution is within the computed bounds. 

One reason why validated solutions to IVPs for ODEs have not been popular in the 

past is that their computation typically requires considerably more time and memory 

than the computation of standard methods. However, now that "chips are cheap", it 

seems natural to shift the burden of determining the reiiability of a numerical solution 

from the user to the computer. 

In addition, there are situations where interval methods for IVPs for ODEs may not 

be computationally more expensive than standard methods. For example, many ODEs 

arising in practical applications contain parameters. Often these parameters cannot be 

measured exactly, but are known to lie in certain intervals, as for example, in economic 



models or in robot control problems. In these situations, ô user might want to compute 

solutions for ranges of parameters. If a standard numerical method is used, it has to 

be executed rnany times with different parameters, while an interval method can easily 

"capture" al1 the solutions a t  essentially no extra cost . 

Significant developments in the area of validated solutions of IVPs for ODEs are 

the intervd methods of Moore [48], [49], [50], Krückeberg [40], Eijgenraam [19], and 

Lohner [Il, [44], [46]. Al1 these methods are based on Taylor series. One reason for the 

popularity of the Taylor series approach is the simple form of the error term. In addition, 

the Taylor series coefficients can be readily generated by automatic differentiation, the 

order of the method can be changed easily by adding or deleting Taylor series terms, 

and the stepsize can be changed without doing extra work for recomputing Taylor series 

coefficients. 

Usually, Taylor series methods for IVPs for ODEs are one-s tep met hods, where each 

step consists of two phases: (1) validate existence and uniqueness of the solution with 

sorne stepsize, and (2) compute a tight enclosure for the solution. An algorithm to 

validate the existence of a unique solution typically uses the  Picard-Lindelof operator 

and the Banach fixed-point theorem. The computation of a tight enclosure is usually 

based on Taylor series plus remainder, the mean-value theorem, and various interval 

transformations. 

The main difficulty in the first phase is how to validate existence and uniqueness with 

a given stepsize. The constant enclosure method [19] is the most commonly used method 

for validation [44], [69]. However, the stepsizes allowed by this method are restricted to 

"Euler steps"; thus, reducing the efficiency of any method using it. The main obstacle in 

the second phase is how to reduce the so-called "wrapping effect." Currently, Lohner's 

QR-factorization method is the standard scheme for reducing it. 

Recently, Berz and Makino [7] proposed a method based on high-order Taylor se- 

ries expansions with respect to  tirne and the initial conditions that substantially reduces 



the wrapping effect (see also [8]). Their approach uses Taylor polynomials with real 

floating-point coefficients and a guaranteed error bound for the remainder terrn. Then, 

the arithmetic operations and standard functions are executed with such Taylor polyno- 

mials as operands, thus establishing a functional dependency between initial and final 

conditions. This dependency can be used to reduce the wrapping effect. 

1.2 Contributions 

This thesis makes the following contributions to the area of computing guaranteed bounds 

on the solution of an N P  for an ODE. 

Met hod Development 

0 Taylor series has been the only effective approach for implementing interval methods 

for IVPs for ODEs. We have developed an interval Hermite-Obreschkoff (IHO) 

method for computing tight enclosures of the solution. Validated methods based on 

the Hermite-O breschkoff formula [28], [55 ] ,  [56] have not been derived or considered 

before. Although explicit Taylor series methods can be viewed as a special case 

of the more general Hermite-Obreschkoff methods, the rnethod we propose is an 

implicit met hod wit h predictor and corrector phases. 

0 We have devised a method for validating existence and uniqueness of the solution 

based on the Taylor series approach proposed by Moore [50] and revisited by Coriiss 

and Rihm [13]. While the underlying idea is not new, there has not been an 

implementation in the framework of a complete validated ODE solver, with a good 

met hod for comput ing tight enclosures. 

0 We suggest a simple stepsize control strategy and a structure of a progrsm for corn- 

puting validated solutions of IVPs for ODEs. This structure combines algorithms 



for validation, computing a tight enclosure, and selecting a stepsize. However, the 

methods we propose are still constant order. 

Theoretical and Empirical S t udies 

We have studied and compared, both theoretically and empirically, our new interval 

Hermite-O breschkoff method with the Taylor series based interval rnethods. 

We show that compared with ITS methods, for the same stepsize and order, our IHO 

scheme has a smaller truncation error, better stability, and rnay be [ess expensive 

for many problems, particularly when the code list of f (y) contains many arithmetic 

operations and elementary functions. 

We believe that we have made an important step towards a better understanding of 

the stability of interval methods for IVPs for ODEs. We show that the stability of 

the ITS and IHO methods depends not only on the stability function of the under- 

lying formula, as in the standard numerical methods for IVPs for ODEs, but also 

on the associated formula for the truncation error. In standard numerical methods, 

HermitoObreschkoff methods are known to be suitable for stiff systems [22], [24], 

[77], [78], but in the interval case, they still have a restriction on the stepsize. To 

develop an interval method for stiff problems, we need not only a stable formula for 

advancing the step, but also a stable associated formula for the truncation error. 

We have shown empirically that a solver with a Taylor series method for validating 

existence and uniqueness of the solution c m  reduce the total number of steps, 

compared to the constant enclosure method used in the past. 

Software Development 

We have implemented an object-oriented design of a validated solver, called 

VNODE (Validated Numerical ODE), for IVPs for ODEs. This design embod- 



ies the current developments in object-oriented technology for numerical software. 

The VNODE package incorporates different techniques used in validated ODE solv- 

ing in a systernatic and flexible way. The structure of VNODE is modular; thus; 

allowing us to  change the code easily and to experiment conveniently with different 

methods. 

1.3 Thesis Outline 

An outline of this thesis follows. 

Chapter 2 contains background material that we need later. We introduce interval- 

arithrnet ic operations on real intervals, interval vectors, and interval matrices. We also 

define interval-valued functions, interval integration, and discuss a method for efficient 

generation of Taylor series coefficients. 

In Chapter 3, we briefly survey Taylor series methods for cornputing guaranteed 

bounds on the solution of an IVP for an ODE. We consider the constant enclosure 

method for validating existence and uniqueness, explain the wrapping effect, and describe 

Lohner's algorithm for computing a tight enclosure of the solution. We also discuss the 

wrapping effect in generating Taylor coefficients and the overestimation in one step of 

interval Taylor series methods. 

In Chapter 4, we derive the interval Hermite-Obreschkoff rnethod for computing a 

tight enclosure of the solution and give an algorithmic description of this method. Then, 

we study it theoreticaily in the constant coefficient and general cases and compare it with 

interval Taylor series methods. We also discuss the stability of these methods. 

Chapter 5 presents a Taylor series method for validating existence and uniqueness of 

the solution. 

Chapter 6 discusses est imating and controlling the overestimation of the interval 

containing the solution in the methods considered in this thesis and proposes a simple 



stepsize control. 

Chapter 7 describes the structure of a program that incorporates algorithms for vali- 

dating existence and uniqueness, computing a tight enclosure of the solution, and select- 

ing a stepsize. 

Chapter 8 contains numerical results. First, we compare the IHO method with ITS 

rnethods on both constant coefficient and nonlinear problems. Then, we show numerical 

results comparing these methods when the validation phase uses constant enclosure and 

Taylor series met hods. 

Conclusions and directions for further research are given in Chapter 9. 

Appendix A provides estimates for the number of arithmetic operations required to 

generate Taylor coefficients. 

Appendix B presents the design of VNODE. First, we discuss the goals that we have 

set to achieve with the design of VNODE, software issues related to the implernertation, 

and the choice of C++ to irnplement VNODE. Then, we describe the structure of 

VNODE and illustrate how it can be used. 



Chapter 2 

Preliminaries 

2.1 Interval Arithmetic 

The set of intervals on the real line R is defined by 

If = a then [a] is a thin interval; if g 3 O then [a] is nonnegative ([a] 2 0); and if = -a 

then [a] is symmetn'c. Two intervals [a] and [b] are equal if a = b and ü = 6. 

Let [a] and [b] E IR and O E {+, -, *, /}. The interval-arithmetic operations are 

defined [50, pp. 8-91 by 

which can be written in the equivalent form (we omit * in the notation): 

[a] + [b] = [a + b, a + 61 , 
- 

[a] - [b] = [a - 6, a - b] , 

[a] [b] = [min {go, a&, ab, ab}  , max {ab, -6, ad, ab)] , 

[ a ] / [ b ]  = [o,al [ l / O / b ]  O W I -  

We have an inclusion of intervals 

[a] [b] > and a 5 b 



We also define the following quantities for intervals [50]: 

a width w ([a]) = à - a;  

a midpoint m ([a]) = (a + 412; 

The interval-arit hmetic operations are inclusion monotone. That is, for real intervals 

[a], [al], [b], and [bl] such that [a] C [al] and [b] C [bill we have 

Although interval addition and multiplication are associative, the distributive law 

does not hold in general [2, pp. 3-51. That is, we can easily find three intervals [a], [b], 

and [cl, for which 

However, for any three intervals [a]! [b], and [cl, the subdistributive iaw 

does hold. Moreover, there are important cases in which the distributive law 

[al (Pl + [cl = [al [bl + [al [cl 

does hold. For example, it holds if [b] [cl 2 O, if [a] is a thin interval, or if [b] and [cl are 

symmet ric. 

Some other useful results for interval arithmetic follow. For [a] and [6] E IR, 



[2, pp. 14-17]. If [a] is symmetric, then 

From (2.1.4) and (2.1.6), if [a] is a symmetric interval, then 

for any [a'] with w ([a']) = w ([a]). 

2.2 Interval Vectors and Matrices 

By an interval vector we mean a vector with interval components. By an intenta1 rnatrix 

we mean a rnatrix with interval components. We denote the set of n-dimensional real 

interval vectors by IRn and the set of n x m real interval matrices by IRnXm. The  

arithmetic operations involving interval vectors and matrices are defined by using the 

same formulas as in the scalar case, except that scalars are replaced by intervals. For 

example, if [A] E IRnxn has components [aij], and [b] E IRn has components [bk], then 

the components of [cl = [A] [b] are given by 

An inclusion for interval matrices (and vectors) is defined component-wise by 

The m a x i m u m  n o m  of an interval vector [a] E I[W is given by 

and of a matrix [A] by 



We also use the symbol 1 1 - 1 1  to denote the maximum norm of scalar vectors, scalar ma- 

trices, and functions. 

Let A and B c Rn be compact non-empty sets. Let q(A,B) denote the Hausdorff 

distance between A and XI: 

(A, B) = max rnax min llx - yll, max min 1 1 ~  - YI/} 
XEA yEB YECJ XEA 

The distance between two intervals [a] and [b] is 

and the distance between two interval vectors [u] and [v] E IRn is 

Let [A] E IRnxm. We define the following quantities component-wise for interval 

matrices (and vectors): 

midpoint 



Addition of interval matrices is associative, but multiplication of interval matrices is 

not associative in general [53, pp. 50-811. Also, the distributive law does not hold in 

general f ~ r  interval matrices [53, p. 791. That is, we can easily find [A] E ItRnxm and [BI 

and [Cl E IRmxP, for which 

[Al ([BI + [CI) # [Al [BI + [Al [Cl 

However, for any [A] E IRnXm and [BI and [Cl E IRmXP, the subdistributive law 

does hold. Moreover, there are important cases in which 

does hold. For example, the distributive law holds if [bij] [qj] 2 O (for al1 i, j ) ,  if [A] is a 

point matrix, or if al1 cornponents of [BI and [Cl are symmetric intervals. 

Some ot her useful results for interval matrices follow. Let [A] and [BI E IIRnx". Then 

[2, pp. 125-1261. Let the components of [BI be symmetric intervais. Then 

w ([Al [BI) = I[All ([BI) and 

([Al [BI 5 ([Al P'1) 

for any [B'] with w ([B']) = w ([BI). 

Let [cl E ItRn be a symmetric vector (al1 components of [cl are symmetric intervals). 

Then 



Throughout this thesis, we assume exact real interval arithmetic, as described in this 

subsection. In floating-point implementation, if one or both end-points of a real interval 

are not representable (which is often the case), then they must be rounded outward to 

the closest representable floating-point numbers. Interval arithmetic is often called a 

machine, or rounded, interval arithmetic. A discussion of its properties can be found in 

WI- 

2.3 Interval-Valued Funct ions 

Let f : Rn + W be a continuous function on Ir) C Rn. We consider functions whose rep- 

resentations contain only a finite number of constants, variables, arithmetic operations, 

and standard functions (sin, cos, log, exp, etc.). 

We define the range of f over an interval vector [a] C 2) by 

A fundamental problem in interval arithmetic is to compute an enclosure for R (f ;  [a]). 

We want this enclosure to be as tight as possible. For example, in our work, we are 

interested in f being the right side of a differential equation. The naive interual-anthme tic 

evaluation off  on [a] ,  which we denote by f ([a]), is obtained by replacing each occurrence 

of a real variable with a corresponding interval, by replacing the standard functions with 

enclosures of their ranges, and by performing interval-arithrnetic operations instead of the 

real operations. In practice, f ([a]) is not unique, because it depends on how f is evaluated 

in interval arithmetic. For example, expressions that are rnathematically equivalent for 

scalars, such as  x(y+z)  and xy+xz, may have different values if x, y, and z are intervals. 

However, since we are interested in the interval-ôrithmetic evaluation of f on a cornputer, 

we can assume that f ([a]) is uniquely defined by the code list, or computational graph, 

of f.  No rnatter how f ([a]) is evaluated, it follows from the inclusion monotone property 



of the the interval operations that 

R (f; [al) C f ([al). 

If f satisfies a Lipschitz condition on V C Rn7 then for any [a] C D, 

for some constant ci 2 O independent of [a],  where q (-, -)  is defined by (2.2.2), [50, p. 

341, [2]. 

Mean-value form 

If f : Rn + R is continuously differentiable on 2) 2 Rn and [a] 2 D, then for any y and 

b E [al, 

[50, p. 471. The expression f (b) + f'([a])([a] - b) is called the mean-value form of f. 

Mathematically, fkI is not iiniquely defined, but it is uniquely determined by the code 

list of f' and the choice of 6.  If, in addition, f' satisfies a Lipschitz condition on V, then 

for any [a] 2 D, 

for some constant CL> 2 O independent of [a], [53, pp. 55-56]. Therefore, the mean-value 

evaluation is quadratically convergent in the sense that the distance between R (f;  [ a ] )  

and fM([a]  , 6) approaches zero as the square of I l  w ([a]) 1 1 ,  as Ilw ([a]) 1 1  approaches zero. 

Similar results apply to functions from Rn to Rn. 

Integration 

Let f : D + Rn be a continuous function on V C R and [a] C 2). Then, 



2.4 Automat ic Generation of Taylor Coefficients 

Moore [50, pp. 107-1301 presents a method for efficient generation of Tayior coefficients. 

Ra11 [58] describes in detail algorithms for automatic differentiation and generation of 

Taylor coefficients. He also considers applications of automatic differentiation, includ- 

ing applications to ordinary differential equations. Two books containing papers and 

extensive bibliographies on automatic differentiation are [9] and [23]. 

Since we need point and interval Taylor coefficients, we briefly describe the idea of 

tiieir recursive generation. Denote the ith Taylor coefficient of u ( t )  evaluated at  some 

point t j  by 

where u(')( t)  is the i th  derivative of u(t) .  Let ( u ~ ) ~  and ( ~ j ) ;  be the ith Taylor coefficients 

of u ( t )  and v ( t )  at tj. It can be shown that 

(:)- v~ t = : { ( ~ j ) i - k ( v j ) ~ ( : )  V J  r=l i-r } -  
Similar formulas can be derived for the generation of Taylor coefficients for the standard 

functions [50, p. 1141. 

Consider the autonomous differential system 

We introduce the sequence of functions 



Using (2.4.18-2.4.20), the Taylor coefficients of y ( t )  at  t j  satisfy 

where (f ( y j ) )  i-, is the (i - 1)st coefficient of f  evaluated at yj- By using (2.4.15-2-4-17), 

similar formulas for the Taylor coefficients of the standard functions, and (2.4.23), we can 

recursively evduate ( y j ) ; ,  for i 2 1. It can be shown that if the nurnber of the arithmetic 

operations in the code list of f is N, then the number of arithmetic operations required 

for the generation of k Taylor coefficients is between Nk and N k ( k  - 1 ) /2 ,  depending 

on the ratio of additions, multiplications, and divisions in the code list for f, [50, pp. 

1  11-1 121 (see also Appendix A). 

Let y ( t j )  = gj E [yj]. If we have a procedure to compute the point Taylor coefficients 

of y ( t )  and perform the computations in interval arithmetic with [y j]  instead of y j ,  we 

obtain a procedure to cornpute the interval Taylor coefficients of y ( t ) .  We denote the ith 

interval Taylor coefficient of y ( t )  at t j  by [y j];  = f [ " ( [ y j ] ) -  



Chapter 3 

Taylor Series Methods for IVPs for 

ODEs 

In most validated methods for IVPs for ODEs, each integration step consists of two 

phases [52]: 

ALGORITHM 1: Cornpute a stepsize hi and an a priori enclosure [cj] of the solution such 

that y ( t ;  tj, yj) is guaranteed to exist for al1 t E [tj7 tj+l] and all yj E [yj], and 

ALGORITHM II: Using [ci], compute a tighter enclosure [ Y ~ + ~ ]  of ~ ( t j + ~ ;  to,  [y,]). 

Usually, the algorithm to validate the existence of a unique solution uses the Picard- 

Lindelof operator and the Banach fixed-point theorem. In Taylor series met hods, the 

computation of a tighter enclosure is based on Taylor series plus rernainder, the mean- 

value theorem, and various interval transformations. 

We discuss a constant enclosure method for implementing Algorithm 1 in 83.1. In 

53.2, we present the basis of the ITS methods for implementing Algorithm II, illustrate 

the wrapping effect, and explain Lohner7s method for reducing it. We also consider the 
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wrapping effect in generating interval Taylor coefficients and the overestirnation in one 

step of ITS methods. 

Surveys of Taylor series and other interval methods can be found in [4],  [14], [15]; 

[ j l ] ,  [54], [60], [70], and [71]. These papers give a "high-level" description of existing 

methods. A more detailed discussion of Taylor series methods c m  be found in [52]. 

3.1 Validating Existence and Uniqueness of the 

Solution: The Constant Enclosure Method 

Suppose that at t j  we have an enclosure [y j ]  of y ( t j ;  t,, [y,]). In this section, we consider 

how to find a stepsize h j  > O and an a priori enclosure [Gj] S U C ~  that for any y j  E [ y j ]  

has a unique solution y ( f ;  t j ,  y j )  E [C j ]  for t E [ t j ,  t j+ l ]*  

The constant enclosure method [19, pp. 59-67], [44, pp. 27-31] for validating exis- 

tence and uniqueness of the solution is based on the application of the Picard-Lindelof 

operator 

to an appropriate set of functions and the Banach fixed-point theorem. 

THEQREM 3.1 Banach fixed-point theorem. Let O : Y -+ Y 6e defined on a complete 

non-empty metric space Y with a metrie d (-, -). Let y satisfy O 5 7 < 1, and let 

for ail x and y E Y .  Then Q has a unique fixed-point y* E Y .  

Let h j  = t j + ~  - t j  and [Qj]  be S U C ~  that 
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(yj E [gj])  Consider the set of continuous functions on [tj,  tj+1] with ranges in [yj], 

For aj > 0, the exponential norm of a function E Co[tj7 tj+l] is defined by 

The set U is complete in the maximum norm and therefore in the exponential norm. 

By applying the Picard-Lindelof operator (3.1.2) to u E U and using (3.1.4), we 

obtain 

T maps U into itself. 

Let Lj  = 118 f ([cj])/dyll . It can be shown that the Picard-Lindelof operator is a 

contraction on U in the exponential norm with aj > Lj7 which implies y = L j / a j  < 1, 

[19, pp. 66-67] (see also [44, pp. 27-29]). 

Therefore, if (3.1.4) holds, and we can compute d f ([ej])/By7 then T has a unique 

fixed point in U. This fixed point, which we denote by ~ ( t ;  tj, yj), satisfies (3.1.1) and 

y(t; tj, yj) E [yj] for t E [t;, tj+l]. Note that to prove existence and uniqiieness of the 

solution of (3.1.1), we do not have to compute y < 1 such that the operator T is a 

contraction. Note also that in bounding the kth Taylor coefficient over [cj] in Algori t hm II 

(see §3.2), we evaluate f ik1 ([cj]). Because of the relation (2.4.22), if we cannot evaluate 

a f ([cj])/ay, then we are not able to evaluate f [ k I ( [ ~ j ] ) .  

Let h j  m d  [ej] be S U C ~  that' 

We use superscripts on vectors to indicate different vectors, not powers. 
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Then (3.1.4) holds for any yj E [ y j ] ,  and (3.1.1) has a unique solution y ( t ;  t j ,  y j )  that 

sat isfies 

for al1 t E [tj, t j c i ]  and al1 yj E [ y j ] .  Furthermore, since f ( [ $ ] )  f ( [ C j ] ) ,  we have 

for d t E [t j7t j+i]  md a11 yj E [ y j ] -  

In (3.1.6), we should require [y j ]  C [Y j ]  and [ y j ]  # [cj]- If [ Y ~ ]  = [ci], then (3.1.6) 

becomes 

which implies either hi = O or f ( [ y j ] )  = [O, O ] .  If none of the corresponding endpoints of 

[ y j ]  and [ijj] are equal, the stepsize, h j ,  can always be taken small enougli such that the 

inclusion in (3.1.6) holds. In some cases, such a stepsize can be taken when some of the 

endpoints of [y j ]  and [y j ]  coincide. 

The inclusion in (3.1.6) can be easily verified. However, a serious disadvantage of the 

method is that the stepsize is restricted to Euler steps, even when high-order methods are 

used in Algorithm II to tighten the a priori enclosure. One can obtain better methods by 

using polynomial enclosures [45] or more terms in the Taylor series for validation [50, pp. 

100-1031, [13], [52]. We do not discuss the polynomial enclosure method in this thesis, 

but propose in Chapter 5  a Taylor series method for validating existence and uniqueness. 

In 58.4, we show by numerical experiments that our Taylor series method for validation 

enables larger stepsizes than the constant enclosure method. 



3.2 Computing a Tight Enclosure 

Suppose that at the (j + l )s t  step we have computed an a priori enclosure [ y j ]  such that 

In this section, we show how to compute in Algorithm II a tighter enclosure [ y j c l ]  E [III7 

Consider the Taylor expansion 

where yj E [ y j ]  and f [Y(y;  t j 7  t j + i )  denotes f ik] with its [th component evaluated at y ( t j i ) ,  

for sorne Ej l  E [ t j ,  t j + l ] .  If (3.2.1) is evaluated in interval arithmetic with yj replaced by 

[ y j ] ,  and f [ k l ( y ;  t j ,  t j+1) replaced b y  f 'k'([ i j j ] ) ,  we obtain 

With (3.2.2), we can compute enclosures of the solution, but the width of [ y j ]  always 

increases with j ,  even if the true solution contracts. This follows from property (2.1.3) 

applied to (3.2.2), 

where an equality is possible only in the trivial cases h j  = O or ~ ( f ' ' l ( [ ~ j ] ) )  = 0, 

i = 1 , .  . . k - 1, and w ( f W ( [ i j ] ) )  = O. 

If we use the mean-value evaluation (2.3.13)  for cornputing the enclosures of the ranges 

R (f [q; [ I J ~ ] ) ,  i = 1 ,  . . . , k- 1, ins tead of the direct evaluation f [d ( [ y j ] ) ,  we can often obtain 

enclosures with smaller widths than in (3.2.2) [60]. By applying the mean-value theorem 
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where J (f['l; yj ,  ijj) is the Jacobian of f[d with its [th row evaluated at yj + B i r ( c j  - ~ j )  

for sorne Bii E [O, 11 ( l  = 1, . . . , n). Then from (3.2.1) and (3.2.3), 

This formula is the basis of the interval Taylor series methods of Moore [4S], [49], [50], 

Eijgenraam [19], Lohner [l], [44], [46], and Rihm [61] (see also [52]).  Before we explain 

how (3.2.4) can be used, we consider in 53.2.1 a major difficulty in interval methods: the 

wrapping effect. 

3.2.1 The Wrapping Effect 

The wrapping effect is clearly illustrated by Moore's example [50], 

The solution of (3.2.5) with an initial condition y0 is given by y ( t )  = A ( t ) y o ,  where ( cos t sin t ) 
- sin t cos t 

Let y0 E [yo]. The interval vector [yo] E 1W2 c m  be viewed as a rectangle in the ( y l ,  y2)  

plane. At t l  > to ,  [yo] is mapped by A(tl)  into a rectangle of the same size, as shown in 

Figure 3.1. If we want to enclose this rectangle in an interval vector, we have to wrap it by 

another rectangle with sides parallel to the yi and y2 axes. This larger rectangle is rotated 

on the next step, and so must be enclosed in a still larger rectangle. Thus, a t  each step, 

the enclosing rectangles become larger and larger, but the set {A( t ) yo  1 y0 E [yo] , t > t o }  

remains a rectangle of the same size. Moore [50, p. 1341 showed that at t = 27r, the 

interval inclusion is inflated by a factor of e2" x 535, as the stepsize approaches zero. 
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Figure 3.1: Wrapping of a rectangle specified by the interval vector ([-1,1], [lO,ll])T. 

The rotated rectangle is wrapped at t = qn, where n = 1, . . . ,4. 

Jackson [32] gives a definition of wrapping. 

DEFINITION 3.1 Let T E RnXn, [XI E IRn, and c E Rn. Shen the wrapping of the 

parallele piped 

is the tightest interval vector containing P.  

It can be easily seen that the wrapping of the set {TI + c 1 x E [ X I )  is given by T [ X I  + c, 

3.2.2 The Direct Method 

A straightforward method for computing a tight enclosure [yj+1] at tj+1 is based on the 

evaluation of (3.2.4) in interval arithmetic. From (3.2.4), since 
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we have 

Here, [y j ]  is an a priori enclosure of y ( t ;  t j ,  [ y j ] )  for al1 t E [ t j ,  t j+l] ,  [y j ]  is a tight enclosure 

of the solution at t j ,  and J (f[d; I Y j ] )  is the Jacobian of f ['l evaluated at [ y j ] .  We choose 

Co to be the midpoint (we explain later why) of the initial interval [yo]. Then, we choose 

That is, ijj+l is the midpoint of the enclosure of the point solution at  t j+l starting from 

9,. For convenience, we introduce the notation (j  2 0) 

k-1 

[vj+ï] = G j  + C h ;  fril(,) + hr f W ( [ i j j ] )  and 
i= 1 

Using (3.2.8-3.2.9), (3.2.6) can be written in the form 

By a direct method we mean one using (3.2.6), or (3.2. IO), to compute a tight enclosure 

of the solutiun. This method is summarized in Algorithm 3.1. Note that from (3.2.7- 

3.2.8) and (3.2.10), ijj+l = m ( [ ~ j + ~ ] )  = m ( [ ~ j + ~ ] ) .  This equality holds because the 

interval vector [S j ] ( [y j ]  - i j j )  is symmetric. 



Algorithm 3.1 Direct ~ e t h o d  

Computing [Sj] 

We show how the matrices [Si] can be computed [l]. Consider the variational equation 

It can be shown that 

where ~ [ d  is defined in (2.4.19-2.4.20), and J (f ['l; y) is the Jacobian of j[iI. Then, from 

the Taylor series expansion of I( t )  and (3.2.11-3.2. 12), we have 

Q(tj+i) = I + C hi J (f [d; y ( t j ) )  + (Remainder Term). 
i= 1 

the interval matrices [Sj] can be computed by computing the interval Taylor series (3.2.14) 

for the variational equation (3.2.11). 

Alternatively, the Jacobians in (3.2.14) can be computed by differentiating the code 

list of the corresponding fal, [5], [6]. 
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Wrapping Efïect in the Direct Method 

If we use the direct method to compute the enclosures [y,], we might obtain unacceptably 

large interval vectors. This can be seen from the following considerations [60]. 

Using (3.2.10), we compute 

[~ j+ l I  = [vj+lI + IsjI ([YjI - G j )  

= Ivj+lI + [SjI ([vjI - Yj) 

+ [Sjl ([Sj-il (IV,-il - Yj-1)) 

+... 

+ [Sj] ([Sj-11- - *.([Sl] ([SOI ([vo] - CO))) . ), 
where [vol = [yo]. Note that the interval vectors [vil - cl (1 = O , .  . . , j )  are symmetric, 

and denote them by [&] = [ut] - cl- Let us consider one of the summands in (3.2.16), for 

example, the last one, 

[sj] ([Sj-l] - . - ([SI] ([SO] [JO])) . . ) -  (3.2.17) 

To simplify our discussion, we assume that the matrices in (3.2.17) are point matrices 

and denote them by Sj ,  Sj-17.. . , So. We wish to compute the tightest interval vector 

that contains the set 

This set is the same as 
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which is wrapped by the interval vector 

(see 53.2.1). In practice, though, we compute 

and we can have wrapping at each step. That is, we first compute So [JO], resulting in 

one wrapping, then we compute Sl(So [JO]), resulting in another wrapping, and so on. 

We can also see the result of the wrapping efFect if we express the widths of the interval 

vectors in (32.18) and (3.3.19): 

Frequent ly, w ((SjSj-l - - Si So) [do]) < w (Sj(Sj-1 - (Si (So [do])) - - - )) for j large, and 

the direct method often produces enclosures with increasing widths. 

By choosing the vectors Yi = rn ([vil), we provide symmetric intervals [vil - c l ,  and 

by (2.2. IO), we should have smaller overestimations in the evaluations of the enclosures 

than if we were to use nonsymmetric interval vectors. 

Contracting Bounds 

Here, we consider one of the best cases that can occur. If the diagonal elements of 

J ( f I i J ;  are negative, then, in many cases, we can choose h j  such that 

That is, [yj] - ijj propagates to a vector [Sj]([yj] - cj) at tj+1 with smaller norm of the 

width than Il ~ ( [ y j ] )  11. 



CHAPTER 3. TAYLOR SERIES METHODS FOR IVPS FOR ODES 

3.2.3 Wrapping Effect in Generat ing Int erval Taylor 

Co efficients 

Consider the constant coefficient problem 

In practice, the relation (2.4.22) is used for generating interval Taylor coefficients. With 

this relation, we compute interval Taylor coefficients for the problem (3.2.20) as follows: 

Therefore, the computation of the i th Taylor coefficient may involve i wrappings. In 

general, this irnplies that the cornputed enclosure of the kth Taylor coefficient, f['.l([~j]), 

on [tj, tj+i] may be a significant overestimation of the range of ~ ~ ( " ( t ) / k !  on [tj, tj+t]. As 

a result, a variable stepsize control that controls the width of h ; ~ [ ~ ] ( [ i j ~ ]  may impose a 

stepsize limitation much smaller than one would expect. In this example, it would be 

preferable to compute the coefficients 

which involves at most one wrapping. 

directly by 

In the constant coefficient case, we can easily avoid the evaluation (3.2.21) by using 

(3.2.22)) but generally, we do not know how to reduce the overestimation due to the 

wrapping effect in generating interval Taylor coefficients. 
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3.2.4 Local Excess in Taylor Series Methods 

We consider the overestimation in one step of a Taylor series method based on (3.2.4). 

The Taylor coefficient f [kI(y; tj, tj+l) is enclosed by f [kI([fij])- If [Gj]  i~ a good enclosure 

of y(t; tj, [yj]) on [tj, tj+t], then Ilw ([Gj]) I I  = O(hj), asuming I[w([yj])l[ = O(hS) for 

some r 2 1. From (2.3.12)? the overestimation in f [kI([gj]) of the range of f tk] over [Qj] is 

O(IIW ([fij]) 11) = O(hj). Therefore, the overestimation in hf f[kI([~j]) is 0(h tc ' ) .  

The matrices J (f Id; y j ,  ijj) are enclosed by J (f [.l; That is, by evaluating the 

Jacobian of f [q on the intervd [yj]- As a result, the overestimation frorn the second line 

in (3.2.4) is of order 0(hjll~([~j])l12)7 [19) pp. 87-90]. This may be a major difficulty 

for problems with interval initial conditions, but should be insignificant for point initial 

conditions or interval initial conditions with srnall widths, provided that the widths of 

the computed enclosures remain sufficiently srnall throughout the computation. 

Hence, if f [ k I ( y ;  t j ,  tj+i) and J (f[q; yj, ijj) are enclosed by f[kj([&]) and J ( f[']; [TJ~]), 

respectively, the overestimation in one step of Taylor series methods is given by 

We refer to this overestimation as local excess and define it more formally in 56.1. Ad- 

vancing the solution in one step of Taylor series methods usually introduces such an 

excess (see Figure 3.2). 

We should point out that by computing h: f[kI([gj])7 we bound the local truncation 

error in ITS methods for al1 solutions y(t;tj,yj) with yj E [yj]. Since this includes al1 

solutions y ( t ;  to, yo) with y, E [Y,], we are in effect bounding the global truncation error 

too. Thus, the distinction between the local and global truncation errors is sornewhat 

blurred. In this thesis, we cal1 h; f[kl([ijj]) the truncation error. A similar use of the 

truncation error holds for the IHO method discussed later. 
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Figure 3.2: If [ ~ j ]  is an enclosure of the solution at t j ;  then the enclosure [zJ~+,] at tj+l 

contains y(tj+i; t j7  [ y j ] )  and the Local excess. 

3.2.5 Lohner's Met hod 

CVe derive Lohner's method from (3.2.4) in a d ifferent way t han in [l] , [44], and [46 

show how [y,] and [y,] are computed and then give the algorithm for any [ y j ] .  

Let 

where [Sj] is defined in (3.2.9). Also let 

Ao = 1, 90 = = ([yo]) , and r o  = y, - Co E [ro] = [yo] - go, 

where I is the identity matrix. 

Using the notation (3.2.24-3.2.28), we obtain from (3.2.4) 
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where AI E RnXn is nonsingular and 

We explain later how the matrices Aj ( j  2 1) can be chosen. 

Similarly, 

where A2 E RnXn is nonsingular and 

Continuing in this fashion, we obtain Lohner's method. 
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Alaorit hm 3.2 Lohner's Method 

The Parallelepiped Method 

If Aj+1 = m ([Sj] -4j), then we have the parallelepiped method for reducing the wrapping 
h 

effect. Let Sj = rn ([Sj]) and [S,] = + [Ei] Shen 

Since 

if IIg;l[~j] 11 is small and cond(Aj) is not too large, then AZ1 ([Sj] Aj) x I .  AS a result, 

there is no large overestimation in the evaluation of (A$~([S~]  Aj)) [rj]. However, the 

choice of Aj+l does not guarantee that it is well conditioned or even nonsingular. In fact, 

may be il1 conditioned, and a large overestimation rnay arise in this evaluation. 
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The QR-factorization Method 

We describe Lohner's QR-factorization method, explain how it works, and illustrate i t 

with a simple example. 
CI n 

Let E [Sj] Aj, and let Aj+l = -Zj+ipj+i, where Pj+1 is a permutation rnatrix. 

We explain Iater in this subsection how Pj+1 is chosen. We perform the QR-factorization 
h 

Aj+l = Qj+lRj+17 where Qj+1 is an orthogonal rnatrix, and Rj+1 is an upper triangular 

matrix. If Aj+l is chosen to be Qj+1 in Algorithm 3.2, we have the QR-factorization 

method for computing a tight enclosure of the solution. 

We now give an intuitive explanation of how this method works. At each step, we 

want to compute an enclosure of the set 

that is as tight as possible. Consider first the set 

If IIA;iiII is not much larger than 1, then 

will not be much larger than Ilw ([zj+i]) 1 1 .  In this method, A;:, = Q$, = Q L l  is 

orthogonal, so I[AZl 1 1  5 fi In addition, w ([zj+1]) can be made small by reducing the 

stepsize or changing the order of the Taylor series. Therefore, the set (3.2.30) can be 

enclosed in the interval vector 

whose width can be kept small. 

Consider now the set 
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in (3-2.29). If Aj+l E { S j ~ j  1 Sj E [Sj] )  [Sj] Aj md tü ([Sj]) is small, then 

From (3.2.31) and (3.2.32), we have 

Note that Aj+i [rj] iç the wrapping of the set 

while ( ~ ~ ~ A j + ~ ) [ r ~ ]  is the wrapping of the set 

which is the set {r j  E [rj])  mapped by Aj+t and then the result mapped by Qg, 
The vector corresponding to the first column of Qjti  is parallel to the vector corre- 

h 

sponding to the first column of The matrix Q j+l induces an orthogonal coordinate 

system, where the axis corresponding to the first column of Qj+1 is parâllel to those edges 

of the parallelepiped (3.2.34) that are parallel to the first colurnn of Âjci- Intuitivelx 

we can expect an enclosure with less overestimation in the coordinate system induced by 

Qj+1 than in the original coordinate system. Furthermore, if the first column of Qjt1  is 

parallel to the longest edge of the parallelepiped in (3.2.34), we can expect a better result 

than if this column were parallel to a shorter edge. This is the reason for rearranging the 
- 

columns of Aj+1 by the permutation matrix Lohner suggests that Pj+l be chosen 

such that the first column of Âj+1 corresponds to the longest edge of (3.2.34), the second 

column to the second longest and so on. 
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N - 
If II - Il2 is the Euclidean n o m  of a vector, Aj+lYi is the ith column of Aj+i7 and [rjli 

is the i th  component of Irj], then the lengths of the edges of (3.2.34) are given by 

Let 1 = (11, 12r , ln)T.  The matrix Pj+1 is such that the components of lTPj+l are 

in non-increasing order (from 1 to n). As a result, the vector corresponding to the first 
n N 

column of Aj+1 = Aj+1 Pj+1 is parallel to the longest edge of (3.2.34), and the first column 

of Qj+l is parallel to that edge as well. 

Example Let 

A =  (' 2 ') 1 and [r]= (;::::). 
The QR-factorization of A is 

Consider the set 

{ ~ r  1 r E [r]). (3.2.37) 

The parallelepiped specified by [r] (see Figure 3.3(a)) is mapped by A into the paral- 

lelepiped shown in Figure 3.3(b). The filled part in Figure 3.3(b) is the overestimation 

of (3.2.37) by A[r] .  However, if the set in (3.2.37) is wrapped in the coordinate sys- 

tem induced by Q, we obtain a better enclosure (less overestimation) of this set (see 

Figure 3.3(c)). 

Consider now the set 

{ Q - ' A ~  1 r E [ r ] ) .  (32.35) 

The matrix Q-' maps (3.2.37) into a parallelepiped with its shorter edge parallel to the 

original x a i s .  As a result, the wrapping of (3.2.38) is (Q-lA)[r] (see Figure 3.3(d)). 
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Figure 3.3: (a) The set {r ( r E [r]). 

(b) { ~ r  r E [r] ) enclosed by A [r] . 

(c) { ~ r  1 r E [ r ] )  enclosed in the coordinate system induced by Q. 

(d) {(Q-'A)T 1 r E [r]) enclosed by (Q-' A) [TI. 

(e )  { A T  1 r E [r]) enclosed in the coordinate systern induced by 0. 

(f) { ( @ ' ~ ) r  1 r E [r] ) enclosed by (@'A) [î]. 
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Now, interchange the columns of A, denote the new matrix by Â, and cornpute the 

QR-factorization 

If we wrap the set (3.2.37) in the coordinate systern induced by Q (see Figure 3.3(e)), rve 

obtain a better enclosure than in the coordinate system induced by Q. In Figure 3.3(f), 

the parallelepiped { ~ r  1 r  E [ r ] )  is rotated by 0-1. The longest edge of the rotated 

parallelepiped is parallel to the x axis, and the overestirnation in (0-'A)[T] is smaller 

than in (Q-'A)[r] and A[r] .  

To summarize, let A E IRnXn, [r] E ERn, and A = QR, where Q is an orthogonal 

matrix and R is an upper triangular rnatrix. Normally, if we wrap t h e  parallelepiped 

{ A r  1 r E [ T I }  in the coordinate system induced by Q, we obtain a better enclosure than in 

the original coordinate system. Moreover, if we rearrange the columns of A, as described 

in this subsection, before computing Q, we usually obtain a better enclosure than without 

rearranging t hose columns. 



Chapter 4 

An Interval Hermit e-Obreschkoff 

Method 

In this chapter, we derive an interval Hermite-Obreschkoff (IHO) method and compare 

it with the "standard" interval Taylor series methods. 

Hermite-Obreschkoff methods are usually considered for computing an approximate 

solution of a stiff problern [22], [24], ['El, [78]. Here, we are not interested in obtaining 

a method that is targeted specifically to solving stiff problems-our purpose is to  obtain 

a general-purpose method that produces better enclosures at a smaller cost than the 

explicit validated methods based on Taylor series. 

Hermite-Obreschkoff methods have smaller truncation errors and better stability than 

Taylor series methods with the same stepsize and order. AIso, for the same order, the 

IHO method needs fewer Taylor coefficients for the solution to the IVP and its variational 

equation than an ITS method. However, the former requires that we enclose the solution 

of a generally nonlinear system, while the latter does not. The extra cost of enclosing 

such a solution includes one matrix inversion and a few matrix-matrix multiplications. 

The method that we propose consists of two phases, which can be considered as a 

predictor and a corrector. The predictor cornputes an enclosure of the solution at 



( 0 )  t j + ~ .  Using (Y~+,], the corrector computes a tighter enclosure [yjil] C at tjiL. 

In the next section, we derive the interval Hermite-Obreschkoff method; in 54.2, we 

give an algorithmic description of it; and in 54.3, explain why the IHO method may 

perform better than ITS methods. 

4.1 Derivation of the Interval Hermite-Obreschkoff 

Method 

First, in 84.1.1, we show how the point Hermite-Obreschkoff method can be obtained. 

Then in s4.1.2, we outline our new IHO method. Fioally, in 54.1.3, we derive it: we 

describe how to improve the predicted enclosure and how to represent the improved 

enclosure in a rnanner that reduces the wrapping effect in propagating the solution. 

4.1.1 The Point Method 

Let 

4 . p  = q! ( q + p - i ) !  , and 
( P + Q ) !  ( 9 - i l !  

where p 2 O, q 2 0 ,  O 5 i 5 q, and g ( t )  is any ( p  + q + 1) times differentiable function. 

If we integrate J,' ~,,~(s)~(p+q+~)(s) ds repeatedly by parts, we findL 

If y ( t )  is the solution to the IVP 

IThis derivation is sometimes attributed to Darboux [16] and Hermite [28]. 



where y j + ~  = y ( t j  + h;), and the functions f are defined in (2.4.19-2.4.20)- Also, 

where the lth component of y(p+q+l)(t; tj, tj+') i~ evaluated at some Cji E [tj, tj+l]. 

From (4.1.4) and (4.1.7-4.1.9), 

For a given yj, if we solve the nonlinear (in general) system of equations 

for yj+l, we obtain an approximation of local order O(hpCq+') to the solution of (4.1.5). 

The system (4.1.11) defines the point (q, p) Hermite-Obreschkoff method [22], [24], [27, 

1. If p > O and q = O, we obtain an explicit Taylor series formula: 

I L j  

yj+i = C hif[il(yj) + y(p+ "(t; tj; tj+'). 
;=O (P + 1)! 



2. If p = O and q > O, then (4.1.10) becomes an implicit Taylor series formula: 

Therefore, we can consider the Hermite-Obreschkoff methods that  we obtain from (-2.1.10) 

as a generalization of Taylor series methods. 

4.1.2 An Outline of the Interval Method 

Suppose that we have computed an enclosure of the solution a t  t j -  The idea behind our 

IHO method is to compute bounds on the solution at  tj+l, for d l  yj  in the solution set at 

t j ,  by enclosing the solution of the generally nonlinear system (4.1.10). We enclose this 

solution in two phases, which we denote as a predictor and a corrector. 

PREDICTOR: Cornpute an enclosure of the solution at  tj+l using an interval Taylor 

series method of order (p + 1). 

CORRECTOR: Improve this enclosure by enclosing the solution of (4.1.10). 

In the corrector, we perform a Newton-like step to tighten the bounds computed by 

the predictor. From (4.1.10), we have to bound the (p + q + 1)st Taylor coefficient on 

[tj7 tj+i]. We can enclose this coefficient by generating it with the a priori enclosure 

computed in Algorithm 1. This computation is the same as enclosing the remainder term 

in ITS methods (see 53.2). 

4.1.3 The Interval Method 

Suppose that we have computed [yj], Cj, Aj, and [rj] a t  t j  S U C ~  that 



where ej = m ( [ y j ] ) ,  Ai E Rn'" is nonsingular, and [rj] E IRn. The interval vectors [y j ]  

and ijj + Aj[rj] are not necessarily the same. We use the representation {ij, + Ajrj 1 rj E 

[ r j ] )  to  reduce the wrapping effect in propagating the solution and the representation 

[ y j ]  t o  compute the coefficients for the solution to the variational equation (see $32.2) .  

Suppose also that we have verified existence and uniqueness of the solution on [ t j7  t j+1]  

(0) and have computed an  a priori enclosure [i,] on [tj7 tj+i] and an enclosure 5 [Ij] a t  

t j+1 .  We show in 54.2.2 how to compute in the predictor. Here, we describe how 

to  constmct a corrector based on (4.1.10). 

Our goal is to cornpute (at t j c1)  a tighter enclosure [yj+,] of the solution than 

and a representation of the enclosure set in the form 

(0) for some y0 E [yo], and gzl = rn ( [y j+l] ) .  Since 

we can apply the mean-value theorem to the two sums in (4.1.10) to obtain 

where J ( ~ ( 4 ;  yj+i, Gol) is the Jacobian of f['l with its lth row evaluated a t  yj+i + 
~ i l ( $ : = ) ~  - yj+i) for some Bi, E [O, 11, and J (f ['l; yj7 cj) is the Jacobian of f fil with its Zth 

row evduated at  yj + vii(ej - y j )  for some E [O, 11, 1 = 1 , .  . . , n. 



Using (4.1.14), we show how to compute a tighter enclosure than at t j + l .  

Let 

With the notation (4.1.15-4.1.23), we write (4.1.14) as 

there exists rj E [rj] S U C ~  that yj - cj = Ajr j .  Therefore, we c m  transform (4.1.24) into 



h 

For small h j ,  we can compute the inverse of Sj+1,-. Then from (4. L -25) and using (4.1 .l5- 

4.1 .Z), 

We compute an interval vector that is a tight enclosure of the solution at tj+l by 

[ ~ j + l I  = ($;Tl + [BjI [rj] + [cj] [vj] + 3~:':l,- [ ~ j +  L I )  [el] 3 (4.1-27) 

tvhere "n" denotes intersection of interval vectors. For the next step, we propagate 

Cj+l = ( [ y j + ~ I )  7 (4.1.28) 

which is the Q-factor from the QR-factorization of m ([Bi]) ,  and 

Remarks 

1. Since we enclose the Taylor coefficient 



the overestimation in the t e m  h?+'+l f '+'+']([ijj]) is of ~(h;+'+'), provided t hat 

II~([@j])ll = O(hj); see 53.2.4. Therefore, the order of the IHO method is ( p + q +  1). 

Note that in the point case, the order of an Hermite-Obreschkoff method is (P + q). 

In 58.2, we verify empirically that the order of an IBO method with p and q is 

indeed (p + q + 1). 

2. We have explicitly used the inverse of gj+l,- in our rnethod. This is due in part 

to the software available to us. It may be useful to consider other ways to perform 

this computation at a Iater date. 

A 

3. We could use the inverse of the interval matrix [Sj+1,-] instead of Sj;', -. However, 

it is easier to compute the enclosure of the inverse of a point matrix than of an 

interval matrix. In fact, computing a tight enclosure of the inverse of an interval 

matrix is N P  hard in general 1631. 

h 

4. In (4-1-27), we intersect ~2~ + [Bj][rj] + [Cj][vj] + S;:L,-[dj+i] and As a 

result, the computed enclosure, [ ~ j + ~ ] ,  is always contained in 

Therefore, we can never compute a wider enclosure than [y,!=)l]. 

( 0 )  5. Once we obtain [ Y ~ + ~ ] ,  we can set [Yj+l] = [yj+1] and compute another enclosure, 

hopefully tighter than [yj+l], by repeating the same procedure. Thus, we can 

improve t his enclosure iteratively. The experiments that we have performed show, 

however, that this iteration does not improve the results significantly, but increases 

the cost. 

6. If we intersect the cornputed enclosure as in (4.1.27), it is important to choose 

A (0) + E [yj+i]. If we set Cj+l = yj+,, it rnight happen that cj+l = 62, $ [yj+1], 



( 0 )  because is the midpoint of [yj,,], which is generally a wider enclosure than 

l ~ j + i l -  

7. The interval vectors [rj]  ( j  > 0) are not symmetric in general, but they are sym- 

metric in Lohner's method (see 53.2.5). 

4.2 Algorithmic Description of the Interval Hermite- 

Obreschkoff Method 

In this section, we show how to compute the coefficients and c:". Then, we describe 

the predictor and corrector phases of the IHO method in a form suitable for implemen- 

tation. 

4.2.1 Computing the Coefficients < l q  and c;lP 

From (4.1.2) 

Since c;lP = 1, we can compute the coefficients c;J for i = 1 , .  . . , q by (4.2.1). In a similar 

way, we compute Cvq for i = 1,. . . ,p. 

4.2.2 Predict ing an Enclosure 

( 0 )  We compute an enclosure [yj+,] for the solution at tj+l by Algorithm 4.2, which is part 

of Lohner's method (see 83.2.5). 



Algorithm 4.1 Compute the coefficients c $ ' ~  and 

COMPUTE: 

CQJ' .- 
(-, .- 1; 

for i := 1 to q  

cf" := - i f  l ) / ( q + p  - i +  1); 

end 

GTq := 1; 

for i  := 1 to p 

4" := <21(p  - i + l ) / ( q  + p - i + 1); 

end 

OUTPUT: 

for i = O,. .. , p ;  

cOppl for i  = O,. .. q. 

Algorithm 4.2 Predictor: cornpute an enclosure with order q + 1. 



4.2.3 Improving the Predicted Enclosure 

Suppose that we have cornputed an enclosure of y ( t j+1 ;  to, [%]) with Algorithm 4.2. 

In Algorithm 4.3, we describe an algorithm based on the derivations in 54.1.3 for improv- 

Remarks 

1. We could use the a priori enclosure [g j ]  from Algorithm 1 instead of computing 

( 0 )  (0) [ Y ~ + ~ ] .  We briefly explain the reasons for computing [yj+,]. 

( a )  The a priori enclosure [ij,] rnay be too wide and the corrector phase may not 

produce a tight enough enclosure in one iteration. As a resuft, the corrector, 

which is the expensive part, may need more than one iteration to obtain a 

tight enough enclosure (see 58.3.2, p. 110). 

(b) Predicting a reasonably tight enclosure is not expensive: we need to 

generate the terrns and [Fjt i] ,  for i = 1, . . . , q. We need them in the cor- 

rector, but for i = 1,. . . , p. Usually, a good choice for q is q € {P, p + 1, p + 3) 

(see 54.3.1). Therefore, we do not create much extra work when generating 

these terms in Algorithm 4.2. 

2. Algorithm 4.3 describes a general method. If, for example, the problem being 

solved does not exhibit exponential growth of the widths of the enclosures due to 

the wrapping effect, we do not have to compute a QR-factorization and represent 

the enclosure as in (4.1.13). 

3. The matrix Aj+1 is a floating-point approximation to an orthogonal matrix. Since 

is not necessarily equal to the transpose of Aj+1, A$, must be enclosed in 

interval arithmetic. 



Algorithm 4.3 Corrector: improve the enclosure and prepare for the next step. 

INPUT: 

p, q, < ' q f o r i = 0 , . . . , p 7  c:"fori=O ,..., q; 

(0) hj, Y j ,  Aj) [rj])  [ ~ j + l I ;  

f i i  f o r i = 1 7  ..., g; 
[ Z j + l ]  := h,P+qf l f  [P+ q f  11 ( [ g j l )  -- 



4. It is convenient to cornpute the terms hi f [ ' J ( [ ~ j ] )  for i = 1 ,2 , .  . . , ( p  + q + 1) in 

Algorithm 1 (see Chapter 7). Then, we do not have to recompute h j f l  f [ q ' l l ( [ i j j ] )  

in the predictor and hjpfq+l f h q f  l l ([ i j j ] )  in the corrector. 

4.3 Cornparison with Interval Taylor Series Methods 

We explain why the fHO method may perform better than the ITS rnethods. First, in 

$4.3.1 and 54-32, we show that on constant coefficient problems, the IHO method is more 

stable and produces smaller enclosures than an ITS method with the same stepsize and 

order. Then, in 54.3.3, we study one step of these methods in the general case and show 

again that the IHO should produce smaller enclosures than the ITS methods. Finally, in 

$4.3.4, we consider the amount of work in one step of each of these rnethods. 

In this section, we assume that both methods have the same order of the truncation 

error. That is, if the order of the Taylor series is k, we consider an IHO method with p 

and q such that p + q + I = k. 

4.3.1 The One-Dimensional Constant Coefficient Case. 

Instability Results 

Consider the problem 

where X E R and X < 

DEFINITION 4.1 We say that an interval rnethod for enclosing the solution of &.KI) 

with a constant stepsize is asymptotically unsta6le, if 

'Since we have not defined complex interval arithmetic, we do not consider problems with X complex. 



In this and in the next subsection, we consider methods with constant stepsize h for 

simplicity of analysis. 

The Interval Taylor series method 

Suppose that at t j  > O, we have computed a tight enclosure [y:TS] of the solution with 

an ITS method, and [ij:TS] is an a priori enclosure of the solution on [tj7 t j+ l ]7  for al1 

and let 

Using (4.3.2-4.3.3), an interval Taylor series method for computing tight enclosures of 

the solution to (4.3.1) can be written as 

cf. (3.2.4). Since w([~j '~' ] )  2 ~([~j'*~]), we derive from (4.3.2-4.3.4) 

Therefore, the ITS met hod given by (4.3.4) is asymptotically unstable for stepsizes h 

such that 

This result implies that we have restrictions on the stepsize not only from the function 

Tk-l(Xh), as in point methods for IVPs for ODES, but also from the factor IXhlk/b! in 



the remainder term. Note also that the stepsize restriction arising from (4.3.5) is more 

severe than the one that would arise from the standard Taylor series methods of order k 

or k + 1 .  

The Interval Hermite-Obreschkoff method 

Let yj E [ y i H o ] ,  where rve assume that is computed with an IHO method and 

r H 0  
[y0 ] = [ y0 ] .  Frorn (4.1.10), the true solution yj+l corresponding to the point yj satisfies 

where [ E [ t j ,  t j + i ]  Let 

-. 

i=O 

where c;lp ( C P V q )  are defined in (4 .1 .2) .  Also let 

(k = p + q + l), where [$Ho] is an a priori enclosure of the solution on [ t j ,  t j+ l ]  for any 

yj E IyjlH01. 

Let y,, = q ! p ! / ( p  + q)!. From (4.3.6-4.3.9), we compute a tight enclosure [Yiff'] by 

r H 0  I H O  7 ~ ~ 9  I H O  
bj+l  I = %,q(Xh)[yj 1 + (-1)' 

Qp,q(Xh) 
[%+L 1- 

From (4.3.9-4.3.10), 



Therefore, the IHO method is asymptoticalIy unstable for h such that 

In (4.3.5) and (4.3.11), 

are approximations to ez of the same order. However, &,,,(z) is a rational Padé approxi- 

mation to ez (see for example [59]). If z is complex wit h Re(=) < 0, the following results 

are linown: 

(see also [42, pp. 236-2371). Consider (4.3.5) and (4.3.11). For the ITS method, 

ITk-l(Ah)l < 1 when Ah is in the stability region of Tk-'(2). However, for the IHO 

rnethod with X E R, X < O ,  IR,,,(Xh)l < 1 for any h > O when q 2 p, and &,,(Ah) + O 

as Ah -t -00 when q > p. Roughly speaking, the stepsize in the ITS met hod is restricted 

by both 

l Ahlk ITk-l(Xh)l and - 
k!  ' 

while in the IHO method, the stepsize is limited mainly by 

Since yplq/ 1 QpA(Xh) 1 is usually much smaller than one, I x ~  l k / l c !  < 1 implies a more severe 

restriction on the stepsize than (4.3.12). Thus, the stepsize limit for the IHO method is 

usually much larger than for the ITS method. 

An important point to note here is that an intervai version of a standard numerical 

method that is suitable for stiff problems may still have a restriction on the stepsize. To 



obtain an interval method without a stepsize restriction, we must find a stable formula 

not only for advancing the step, but also for the associated truncation error. 

Consider again (4.3.4) and (4.3.10). From (4.3.4), we can derive 

The width of [y::f] is 

We derive from (4.3.10), 

The width of is 

and if we assume that 

r H 0  
w ([yo!) = O and [zi ] x [ z ! ~ ' ] ,  

then from (4.3.13) and (4.3.14), 

for i = 1,2, . . . j +  1, 

(4.3.15) 

That is, for X < O and small h, the widths of the intervals in 

proximately / 1 Qplq (Ah) 1 < 1 times t h e  corresponding widths 

by the ITS method. As the stepsize increases, I~k-l(r\h)l + 1 

the IHO method are ap- 

of the intervals produced 

~ h l ~ l k !  becomes greater 



than one. Then, the ITS method is asymptotically unstable and produces intervals with 

increasing widths. For the same stepsizes, the IHO method may produce intervals with 

decreasing widths when q > p. 

In Table 4.1, we give approximate values for yplq = q ! p ! / ( p  + q)!, for p = 3,4, , . . . ,13 

and q E {p, p + 1, p + 2). As can be seen from this table, the error constant q ! p ! / ( p  + q)! 

becomes very small as p and q increase. 

In 58.3.1, we show numerical results comparing the ITS and IHO rnethods on (4.3.1) 

for X = -10. 

Table 4.1: Approximate values for 79,,,, p = 3,4,. . . 13 ,  q E {p, p + 1, p + 7). 



4.3.2 The n-Dimensional Constant Coefficient Case 

Coasider the IVP 

where B € Etnxn and n > 1. 

We compare one step of an ITS method, which uses Lohner's technique for reducing 

the wrapping effect, and one step of the IHO method, which uses a similar technique 

for reducing the wrapping effect. Then, we compare the enclosures after several steps of 

these methods. We assume that in addition to an enclosure [ y j ]  of the solution at t j 7  we 

also have a representation of the enclosure in the form 

where cj E [yj], Aj E RnXn is nonsingular, and [rj] E IRn. We also assume that we have 

an a priori enclosure [&] of the solution on [tj, tj+l]7 where h = tj+i - t j .  

Enclosures &ter One Step 

The Interval Taylor Series Method Using (4.3.3)' we can write an ITS method, 

with Lohner's coordinate transformation, as 

where 



The Interval Hermite-Obreschkoff method Using (4.3.7-4.3.5) and (4.3.19), the 

IHO method can be expressed by 

IHO 
[yj+l I = %JI (hB)Gj + ( % q ( h ~ ) ~ j )  [rj] + (-1)'~~., (Q , , ' (~B) )  -' [r j+~]  - 

(Note that for h small, we can compute the inverse of the rnatrix Qp,q(hB).) The width 

of [yip] is given by 

w([yj:HPI) = IRp,q(h~)~jIw([r i I )  + %,q 1 ( Q P . ~ ( ~ B ) ) - '  I W ( [ ~ ~ + ~ I ) -  (4.3.21) 

Comparing (4.3.21) and (4.3.20), we see that in the IHO method we multiply the 

width of the error terrn, Z U ( [ Z ~ + ~ ] ) ,  frorn the ITS method by y p , q l  (Q,, , (~B))- '  1. If, for 

example, p = q = S1 then 

y8.8 z 7.8 x 10-~ 

(see Table 4.1). Consider ( Q , , ~ ( ~ B ) ) - '  and suppose that q > O. For small h, 

This implies that for small h,  multiplying by the rnatrix 1 (QPpq(h B ) )  -' 1 does not sig- 

nificantly increase ~ ( [ z j + ~ ] ) .  Furthermore, it often happens that II (Q, , , (~B) )  -' Il < 1. 

Hence, multiplying by this matrix may reduce w([zj+l]) still further. 

In Lohner's method, we propagate ( T ~ - ' ( ~ B ) A ~ )  [ri], where Tk-1 ( h  B )  is an approxi- 

mation of the matrix exponential of order k: 

In the IHO method, we propagate ( & , q ( h B ) ~ j )  [ri], where &,,,(hB) is a rational approx- 

imation to the matrix exponential of order k: 

If h  B is small, then 



Enclosures after Several Steps 

Now, we study how the enclosures propagate after several steps in the ITS and the IHO 

methods. For simplicity, we assume that the matrix B in (4.3.16) is diagonalizable and 

can be represented in the form 

where D = diag(Xl, XÎ, . . . , A,) and {A1, X2, . . . , A n )  are the eigenvalues of B. 

DEFINITION 4.2 We Say that an interval method for enclosing the solution of (4.f.16) 

with a constant stepsize is asymptotically unstable, if 

The Interval Taylor series method We compute [yiTS] by 

where 

and is an a priori enclosure of the solution on [t;, ti+l] for al1 2/i E Then, 

instead of representing the enclosure at t l  in the form of a parallelepiped as in (4.3.17) 

m d  computing an enclosure a t  t2  by the formula (3.3.18), we assume that we compute 

where there may be wrappings in the evaluation of ( ~ k - 1  (h B ) ) ~  [yo] and Tk-1 ( h B )  [-.il. 

Following this procedure, we assume that we compute [ y j r ; f ]  by 



We make this assumption to obtain a simple formula for in terms of [yo] and [z!~'] ,  

i = 1, . . . , (j + 1). Otherwise, if we had used (4.3.18), we would have products involving 

the transformation matrices Aj and a more complicated formula to analyze. The formula 

(4.3.22) gives, in general, tighter enclosures than (4.3.18) (see 332.2). 

The width of is given by 

The Interval Hermite-Obreschkoff method Similar to the considerations in $4.3.1 

and in the previous paragraph, we can derive for the IHO method 

j+i 

I H O  
b j + i  I = (%q ( h B ) ) j f L  [YOI + (-l)'yp,q C ( & l q ( h ~ ) ) j + l - i  ((Q,,, ( h  B )  ) - l  [ z I ~ o ] )  

where 

Consider (4.3.23) and (4.3.24) and suppose that Re(Xi) < O for i = 1 ,  ..., n. The 

matrices Tk-1 ( h  D) and & , , q ( h  D) are diagonal with diagonal elements Tk-1 (hX;) and 

&,,(hXi), respectively, where X i  is an eigenvalue of B. As h increases, IITk-l(hD)II will 

eventually becorne greater than one, and then the ITS method is asymptotically unstable. 

However, for any h > O ,  IIRp,q(hD)II < 1 for q = p, p + 1, or p + 2, and II&,q(hD)II -t O 



as h t w for q = p + l or q = p + 2 (see 54.3.1). Therefore, if we ignore the wrapping 

effect, the IHO method does not have stability restrictions from the associated stability 

function l$,,q(z) when q = {p, p + 1, p + 2). However, it still has a restriction from the 

formula for the truncation error. 

We can show for the ITS method that 

and for the IHO method that 

These two inequalities suggest that the restriction on the stepsize in the IHO method 

occurs at  values significantly larger than in ITS methods. 

As in the previous subsection, if w([yo]) = O, then for small stepsizes and small h B, 

we should expect 

Moreover, for larger stepsizes and eigenvalues satisfying Re(Xi) < O, i = 1, .... n, the IHO 

with q = p, p + 1, or p + 2 is more stable than the ITS method. 

In 58.3.1, we show numerical results comparing the two met hods on a two-dimensional 

constant coefficient problem. 

4.3.3 The General Case 

Comparing an ITS method with the IHO rnethod in the nonlinear case is not as simple 

as in the constant coefficient case. We can easily compare the corresponding remainder 

terms on each step, but we cannot make precise conclusions, as in the constant coefficient 

case, about the propagation of the set { ~ j r ~  1 rj E [ r j ] ) .  However, we show by numerical 

experiments in 58.32 the advantages of the IHO method over ITS methods on some 

nonlinear problems. 



The interval Taylor Series Method 

The Interval Hermite-Obreschkoff Method 

From (4.1.26), we compute a tight enclosure by the formula 

For simplicity in the discussion, we do not intersect with as in 

an intersection produces an enclosure [yj+l] C [y:F]. Therefore, Our conclusions are 

valid for [zJ~+~]. The width of is3 

([YZYI) = I (321,- [ s j ,+ l )~ j lw([ r j l )  + 1321.- I W ( [ J ~ + ~ I )  

( 0 )  + Ir - g21,- [sj+l,-1 I W ( [ Y ~ + ~ I ) *  

Let again k = p + q + 1 and consider the terms in (4.3.27). 

h 

The term ISzl,- 1 ~([6,+1]). Since Z U ( [ ~ ~ + ~ ] )  = w ( [ c ~ + ~ ] ) ~  (see (4.1.23)), 

h h 

Is,*ll- lw([6j+l]) = ISj*l ,-I~([i+ll)  = ( ~ p , q l S j ; l l , -  l ) h ~ ~ ( f ' ~ I ( [ ~ j l ) ) *  (4-3-25) 

Cornparing the terms involving hrw( f [kI([ijj])) in (4.3.26) and (1.3.28), we see that 
h 

in (4.3.28) the reduction is roughly assuming that the components of 1 s$,,- 1 
are not large (which is the case if h j  is sufficiently small). This situation is similar 

to the n-dimensional constant coefficient case. 

31f [rj! is symmetric, then for an interval rnatrix [A], w([A][rj]) = I[A]lw([rj]) (cf. (2.2.10)). The 
interval vector [rj] ( j  > O )  is symmetric in Lohner's method, but it is generally nonsymmetric in the 
IHO method. Assurning [yj] symmetric, ive obtain a simple formrila as in (4.3.27). 



h 

The term Ii - sZl,- [sj+l,-] l . ~ ( [ y ( i " ~ ] ) .  Let 

h 

[Si+,,-] = sj+l,- + [-Ej+i Ej+t] 7 

h 

where Ej+1 is a point matrix, and Sj+,,- = rn ( [S j+ l , - ] ) ;  cf. (4.1.15). Then 

1 ^, 
2 

af (O) 

- h ~ l ~ i i + l ~ - l ~  ( G ( [ y j + l l ) )  

If I I W ( [ & ! ~ ] ) ~ ~  = ~ ( h ; ' ~ )  (see -4lgorithm 4.2 and 53.2.4) then 

If, for example, p = q = (k - 1)/2, then ~ ( h : ~ + ~ )  = ~ ( h : + ~ ) ,  which is two orders 

higher than the order of the truncation error in the ITS method. 

The term 1 (Sj:,,- [sj,+]) A ~ ~ w ( [ T ~ ] ) .  In the IHO rnethod, 

while in the ITS method, 

Assuming that the Jacobian d f /dy does not change significantly from step to step, 

we have from (4.3.30) and (4.3.31), 



(cTpP + grq = 1). Therefore, we should expect 

Comparing (4.3.26) and (4.3.27), and taking into account (4.3.28), (4.3.29), and (4.3.32), 

we conclude that the propagation of the set {yj - ijj = Ajrj  1 rj E [ri]) is similar in the 

IHO and Lohner7s methods, but the truncation error can be much smaller in the former 

than in the latter. 

4.3.4 Work per Step 

We briefly discuss the rnost expensive parts of the ITS and IHO methods: generating 

high-order Jacobians, matrix-matrix multiplications, and enclosing the inverse of a point 

matrix. We measure the work by the number of floating-point operations. However, the 

time spent on memory operations may not be insignificant for the following reasons. 

0 The packages for automatic differentiation are often implemented through oper- 

ator overloading [5], [6], [25], which may involve many memory allocations and 

deallocat ions. 

0 In generating Taylor coefficients, there may be a significant overhead caiised by 

reading and storing the Taylor coefficients, f [d, and their Jacobians [Z]. 

Generating High-Order Jacobians 

To obtain an approximate bound for the number of floating point operations to generate 

(k - 1) Jacobians, 6' f[d/dy for i = 1,. . . , (k - 1), we assume that they are computed 

by differentiating the code list of the corresponding f[d and using information from the 

previously cornputed 3 f [']/ay, for Z = 1, . . . , (i - 1). The FADBADITADIFF [5], [6] and 

IADOGC [31] packages compute a f ['7/ôy by differentiating the code list of f ri] (IADO L- 

C is an interval version of ADOL-C [25]). We also assume that the cost of evaluating 

d f [d/dy is roughly n tirnes the cost of evaluating f [d, 1221. 



For simplicity, suppose that f contains only arithmetic operations. If N is the number 

of operations, and cf  2 O is the ratio of multiplications and divisions to additions and 

subtractions in t hese N operations, then to generate k coefficients f i l ,  i = 1, . . . , k, we 

need c f N k Z  + O ( N k )  operations [50, pp. 111-1121 (see Appendix A). 

Let Ops (f [d) be the number of arithrnetic operations in the code list for evaluating 

fEil from the already computed Taylor coefficients. In -4ppendix A, we show that 

Ops ( f [ q )  = 2cf Ni + O(N) ,  for i > 0. 

to generate k - 1 Jacobians in an ITS method, we use 

arithmetic operations. Let p = q and k = p + q + 1. In the IHO method we generate 

p = (k- 1 ) / 2  terms for the forward solution and q = p = (12- 1)/2 terms for the backward 

one. The corresponding work is 

That is, the IHO method requires about half as rnuch work as the ITS method of the 

same order to generate high-order Jacobians. 

Matrix Inverses and Matrix-Matrix Multiplications 

In Lohner's method and in the IHO method with the  QR-factorization technique, we 

compute an enclosure of the inverse of a point matrix, which is a floating-point approx- 

imation to an orthogonal matrix. However, in the IHO method, we also enclose the 

inverse of a point matrix (see 54.1.3). In generd, enclosing the inverse of an arbitrary 



point matrix is more expensive thon enclosing the inverse of a floating-point approxima- 

tion to an orthogonal matrix. However, we can still enclose the inverse of an arbitrary 

point matrix in 0 ( n 3 )  operatioos [2]. 

Lohner's method has 2 matrix-matrix multiplications, while the IHO method has 6 

matrix-matrix multiplications. 

To summarize, in the IHO method, we reduce the work for generating Jacobians, but 

increase the nurnber of matrix operations. Suppose that N n2. This number can be 

easily achieved if each component of f contains approximately n operations, as happens, 

for example, in N-body problems. Then, (4.3.33) and (4.3.34) become 

c f n 3 k 2 + 0 ( n 3 k )  and c f n 3 k 2 / 2 + O ( n 3 k ) .  

Therefore, we should expect the IHO rnethod to outperform ITS methods in terms of 

the amount of work per step when the right side of the problem contains many terms. If 

the right side contains a few terms only, an ITS method may be less expensive for low 

orders, but we expect that the IHO method will perform better for higher orders. Note 

also that we expect the IHO method to allow larger stepsizes for methods of the same 

order, thus saving computation time during the whole integration. In addition, the IHO 

method (with p = q) needs half the memory for storing the point Taylor coefficients and 

the high-order Jacobians. 

In 58.3.2, we study empirically the amount of work per step on Van der Pol's equation. 



Chapter 5 

A Taylor Series Method for 

Validation 

We introduce a Taylor series method that is based on the validation test suggested by 

Moore [50, pp. 100-1031 (see also [13] aud [52]) for proving existence and uniqueness 

of the solution. Our goal is to obtain a method that validates existence and uniqueness 

with the supplied stepsize, if possible, or a stepsize that is not much srnaller than the 

supplied one. Furthermore, we want to avoid as many stepsize reductions in this method 

as possible. 

Usually, a Taylor series method for validation enables larger stepsizes than the con- 

stant enclosure method, which has been used in the past [44], [69]. As we pointed out 

in 53.1, the constant enclosure method restricts the stepsizes to Euler steps. We also 

combine better algorithms for computing tight enclosures, such as Lohner's method and 

the IHO method, with our algorithm for validating existence and uniqueness. As a result , 

we obtain a method that behaves similarly to the traditional numerical methods for IVPs 

for ODES in the sense that the stepsize is controlled more by the accuracy requirements 

of Algorithm II than by restrictions imposed by Algorithm 1. 

Section 5.1 defines the validation problem; Section 5.2 describes how to compute an 
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initial guess for the a priori enclosure; and Section 5.3 gives an algorithmic description 

of the method we propose. 

5.1 The Validation Problem 

Let yj E [y,] and no component of yj is an  endpoint of the corresponding component of 

unique solution 

i= 1 

For an interval [ y j ] ,  the condition (5.1.1) translates to 

k-1 

k Ikl [ Y ~ I  + C(t-tj)'f"'([~j]) + ( t - t j )  f ( [ G j I )  C [GjI-  
i= 1 

TO find the Iargest tji1 > t j  S U C ~  that (5.1.2) holds for al1 t E [ t j l t j+l] ,  

(5.1.1) 

yj has a 

(5.1.2) 

we have 

to compute rigorous lower bounds for the positive real roots of 2n algebraic equations, 

which are determined from (5.1.2). This task is not trivial to carry out. 

However, since t - t j  E [O ,  hj] for t E [ t j ,  t j+i] ,  if hj is S U C ~  that 

holds, then (5.1.2) holds for al1 t E [ t j ,  tj+i]. Verifying (5.1.3) is not difficult, and Our 

validation procedure is based on (5.1.3). Given [y j ]  at t j  and a stepsize h j 7  we want to 

find [ y j ]  such that (5.1.3) is satisfied. Usually, h j  is predicted from the previous step. In 

the validation step, we try to verify existence and uniqueness with this h j .  If we cannot 

verify with h j )  we try to verify with a smaller stepsize than h j .  
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Before we consider how to implement a method based on (5.1.3), we illustrate this 

approach with a few examples. 

Consider 

and let [Go] = [ l ,  21. Then (5.1.3) on (5.1.4) with [go] = [ l ,  21 gives 

which is satisfied if 

For k = 1 and 3, (5.1.5) holds for ho 2 0.5 and ho 5 0.63, respectively. 

Now, let [go] = [l, 81. The inclusion (5.1.3) holds if 

For k = 1 and 3, (5.1.6) holds for ho 5 0.875 and ho 5 1.48, respectively. 

Here, we can compute larger stepsizes with wider a priori bounds. With a variable 

stepsize control, we normally control the local excess per unit step (LEPUS), such that 

LEPUS is less than some tolerance (see Chapter 6). Depending on the tolerance, we 

can afford wider a priori bounds. For example, suppose that Algorithm II uses Taylor 

series of order k = 15. Then, LEPUS is given by (hA4/15!)w([ijo]). With ho = 0.63 

and [go] = [1,2], LEPUS E= 1.2 x 10-15, and with ho = 1.48 and [Co] = [ l ,  SI, LEPUS 

x 1.3 x IO-'. If the tolerance is 1 0 - ~ ,  we can use ho = 1.48 and [GO] = [l, QI. 

Consider 

and let [CO] = [0.5,1.5]. For k = 1, we obtain from (5.1.3) the constant enclosure method: 

1 + [O, ho][-1.5, -0.51 C [0.5,1.5], 
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from which we determine ho 5 113. 

For k = 2, (5.1.3) becomes 

which is satisfied for ho 5 0.5. 

For k = 3, (5.1.3) becomes 

1 - [O,  ho] + [O, hg121 - [O,  hg/6][0.5,1.5] Ç [0.5,1.5], 

which is satisfied for ho 5 0.47. 

In this exarnple, the maximum stepsize with E = 3 is srnaller than with k = 2. The 

reason is t hat we ensure (5.1.1) by verifying (5.1.3). If we solve (5.1.1) direct ly, then we 

are often able to verify existence and uniqueness on larger intervals. For example, (5.1.1) 

for problem (5.1.7) and k = 3 reduces to 

which holds for t satisfying 

1 - t + t 2 / 2  - 1.5t3/6 2 0.5 and 1 - t + t 2 / 2  - 0.5t3/6 < 1.5. (5.1 . S )  

These inequalities are true for t 5 0.63. Note that the inequalities in (5.1 .S) are more 

sirnilar to stability conditions than Euler-type stepsize restrictions. 

TO sumrnarize, by computing tj+i such that (5.1.2) holds for al1 t E [tj ,  t j+l],  we 

can often take larger stepsizes than with the constant enclosure method. The stepsize 

restriction imposed by (5.1.2) is more a "stability-type" than an Euler-type restriction. 

To implement (5.1.2) is more difficult than to implement (5.1.3). The latter often allows 

larger stepsizes than the constant enclosure rnethod, although the stepsizes are generally 

smaller t han the ones permitted by (5.1.2). 



5.2 Gi-essing an Initial Enclosi-re 

Suppose that we have computed pj] such that 

where 

Then, using (5.1.3) and (5.2.1), 

Therefore, if [OI,] is such that (5.2.1) holds, then (5.1.2) is satisfied, and there exists a 

unique solution 

How t o  compute an approximation for [Pj]  

Let yj E l y j ]  and t E [O, h j ] .  Consider the nonlinear system of equations for P,, 

Ideally, we want to find an enclosure of the set of values for pj such that (5.2.3) holds for 

al1 yj E [ y j ]  and t E [O, hjj. In practice, computing such a set may be expensive. 
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Here, we suggest a simple method for computing an approximation to this set. From 

and therefore, 

Since we are interested 

can compute from (5.2.5), 

in computing an approximation to the set containing ,Bi, we 

Since [pi] is an approximation1, in the algorithm that we describe in the next section, we 

inflate [pj] to reduce the iikelihood of failure in (5.2.1). 

In (5.2.4), we could have used the approximation 

which is perhaps a better approximation than (5.2.4). However, if we use (5.2.6), we 

have to generate the coefficients a f [d/dy evaluated at  Lyj] + [O, hj] f Ld([yj]), for i = 

1, . . . , k, while in (5.2.4), we need f [kI/dy evaluated at  [yj], which coefficients can be 

reused in Algorithm II (see the next section). 

=Note that [Pj] is a guess for the enclosure of the kth Taylor coefficient, not a rigorous enclosure. 
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5.3 Algorit hmic Description of the Validation 

Method 

The method that we propose is described in Algorithm 5.1. Here, we explain some of the 

decisions we have made in designing it. 

Input part If we use an ITS method with order k. of the Taylor series, we have to 

cornpute the coefficients f[il([yj]) and d f[iI([yj])/dy7 for i = 1, . . . , k - 1, in Algorithm II. 

Therefore, we can use f['l([yj]), for i = 1, . . . , k - 1, in Algorithm 1 without doing addi- 

tional work to generate them. However, we have to compute fLk]([yj]) and d f[k'([yj])/dy- 

If we use a (p,q) IHO method, we have to generate, in addition to the coefficients 

f[q([z~j]) for i = 1,. . . ,q, the coefficients f"l([yj]) for q = i + 1 , .  . . , k and df[kl([yjj])/dy. 

Compute part In line 7, we M a t e  [p,]. Since it is already an approximation to the 

enclosure of the kth Taylor coefficient on [tj7 tj+i], by inflating [/3j], we hope to enclose 

this coefficient on [tj, tj+l]. We choose E = 1, but we can use other values instead. With 

E = 1, we add [- 1 , Ioj l ]  to [p;]. Since [pj] is multiplied by [O, hr] ,  adding [- IPj 1 , lfljl] 
to pj] does not contribute significantly to the widths of the components of [$jO']. 

If the condition in line 11 is satisfied, then we have verified existence and uniqueness 

with the computed [$:] in line 9. Otherwise, in line 15, we compute a new guess [Gy] for 

the initial enclosure. Then, in the second while loop (line 18), we try to validate with 

order s := 1 5 k. If we succeed, then in the third while loop (line 29), we try to improve 

the enclosure with the order s, with which we have verified existence and uniqueness. 

Otherwise, in line 38, we reduce the stepsize. If this is the second reduction, we start 

the computations from the beginning (line 4); otherwise, we repeat the while loop at line 

18 with a smaller stepsize. The reason for starting the computations al; line 4 after the 

second stepsize reduction is to try with a new guess for the a priori enclosure, before 

cont inui.ng wit h furt her stepsize reductions. 
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Algorithm 5.1 Validate existence and uniqueness with Taylor series. 

INPUT: 

1 [y j ] ,  hj ,  k, hmi,, a = 0.8, E = 1; 

2 for i = 1, . . . , (k - 1) .  
ay 

COMPUTE: 

3 Verif i ed  := false ; 

4 while h j  2 hm;,., and not Verified do 

14 end-if 

15 [gjO'] := [ ~ j ]  + [O,  h;] f Lk1 ( [ g y ) ] ) ;  

16 Generate f ([#y)]) , for i = 1, . . . , k; 
17 Reduced := 0; 

18 while not Verif i ed  and Reduced < 2 do 

19 for 1 = 1 to k do 

break ; 

end-if 

26 end-for 
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Algorithm 5.1 Continued 

if Verif i e d  t hen 

Improving := true ; 

while Improving do 

Generate f for i = 1, . . . , s; 

fmproving := fdse ; 

end 

end- w hile 

hj  := ahj;  

Reduced := Reduced + 1; 

end-if 

end-while 

if h j  < hm;, then 

print "Stepsize too small: cannot verify existence and uniqueness"; 

exit ; 

end-if 

Cornpute hi f [d ( [ y j ] ) ,  for i = 1,  . . . , k. 

We do not halve the stepsize, but reduce it by rnultiplying by a, which we choose to 

be 0.8. As with E ,  the value that we choose for a is somewhat arbitrary, but we want it 

to be closer to 1 than to 0.5. We have not thoroughly studied the influence of the choice 

for e and cr on the performance of Algorithm 5.1. 



Chapter 6 

Estimating and Controlling the 

Excess 

In 53.2.4, we considered the local excess in one step of the ITS methods discussed in this 

thesis. The IHO method has the same sources of local excess as the ITS methods, but in 

the IHO method, we also enclose the solution of the nonlinear system (4.1.10). Since the 

excess that arises frorn enclosing the solution of this nonlinear system is usually small 

(see 54.3.3), we do not disruss the local excess in the IHO method. 

In 56.1, we define local and global excess and discuss controlling the global and 

estirnating the local excess. In 56.2, we propose a simple stepsize control based on 

controlling an approximation of the local excess. 

6.1 Local and Global Excess 

Let the set Uj be an enclosure of the solution at  tj. In this thesis, Uj is represented by 

an interval vector or a paralïelepiped. W e  define local and global excess by 



CHAPTER 6. ESTIMATING AND CONTROLLING THE EXCESS 76 

respectively [19, p. 87, p. 1001, [71], where q(-, -) is the Hausdorff distance between two 

sets given by (2.2.1). 

6.1.1 Controlling the Global Excess 

Similar to the standard numerical methods for IVPs for ODES, our approach in VNODE 

is to allow the user to specify a tolerance Tol. Then the code tries to  produce enclosures, 

at  points tj7 such that 

yj CjTol for j 2 1, (6.1.3) 

where C j  is an unknown constant that depends on the problem and the length of the 

interval of integra.tion, but not Tol. We try to achieve (6.1.3) by controlling the local 

excess per unit step (LEPUS) [71]. That is, we require 

on each step. Eijgenraarn shows [19, p. 1151 that 

where cr is a constant depending on the problem. This constant may be negative since 

the logarithmic norm is used in its definition [19, p. 461. Using (6.l.4), we obtain from 

(6.1.5) that 

ea( '~- ' l ) ( t j  - to)Tol, if a > 0; 
T j  L 

( t j  - to )To l ,  i f a  5 0 .  

Therefore, by controlling LEPUS, we can obtain a bound for the global excess. In this 

sense, by reducjng Tol, we should compute tighter bounds. 

6.1.2 Estimating the Local Excess 

From 53.2.4, the local excess in an  ITS method is given by 

O(hj  llw([Yj]) 11 2 ,  + 0(h:+') + (higher-order terrns). 
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To cornpute an estimate of the local excess, we have to determine the dominating term in 

(6.17) O bviously, if point initial conditions are specified, w ( [ ~ ~ ] )  = 0, the excess in each 

component of the computed solution at tl is a t  most ht  1 1  w (f Ik1 ([go]) 11. Unfortunately, even 

if we start the integration with point initial conditions, [yj] is usually a non-degenerate 

interval vector ( 1 1  w ([y;]) I I  > O) on the second and al1 succeeding steps. If Il~([y~]) 1 1  is not 

small, then hjllw([yj])l12 may be the dominating term in (6.1.7). Because of this term, 

the methods discussed in this thesis are first order methods if hjI[~([yj])11~ is dominating. 

Eijgenraam shows an example for which the overestimation on each step is at least 

~hjll w(IYj]) I l 2 ,  for some constant c > O 119, pp. 127-1251. We discuss his example in the 

next subsection. 

6.1.3 Worst Case Example 

Consider the IVP problem 

with initial conditions 

At t = ho > 0, the set of solutions of (6.1.8-6.1.9) is 

(see Figure 6.1). Suppose that we use a convex set yl to enclose y(h0; O, [yo]). Since for 

each two points in a convex set, the line connecting them must be in the set too, we have 
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Figure 6.1: If we use an interval vector to enclose the solution, the overestimation mea- 

sured in the Hausdorff distance is at  least choll w([yo]) Il2. 

It can be shown that 

= min max(p, h o ~ 2  - hop2) 
o < p g  

where ho $ hm,, and hm, is the rnaximumstepsize taken during the integration. There- 

fore, if we use a convex set to enclose the set of solutions at t = ho > O, we have an 

overestirnation that is at Ieast choll w ( [ ~ ~ ] )  I l2 ,  independently of the method used for com- 

put ing the enclosing set. 

If we use an interval vector to enclose the solution of (6.1.8-6.1.9) at ho, the tightest 

enclosure we can have is 

luil = ([-*JI)  , 
ho [O, A*] 
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which gives an overestimation of at least cho 11 w ( [ ~ ~ ] )  II 2. The reason for t his pessirnistic 

result is that by using intervals, we treat each of the components of the solution of (6.1.S- 

6.1.9) independently, while the second component of the true solution depends on the 

first one. 

The approach of Berz [7] uses multivariate high-order Taylor series with respect to 

time and the initial conditions to keep functional dependencies. As a result, his methcd 

is a higher order method with respect to the propagated enclosures. However, it requires 

ai thmetic  with Taylor polynomials, which involves significantly more work and memory. 

In the example discussed, n-e cannot control LEPUS based on estimating the local 

excess in the Hausdorff distance. For example, if hm, = ho = 0.1 and X o  = 0.1. then 

using (6.1.10), LEPUS at ho is 

independently of the stepsize ho. Here, if the tolerance is small, an interval method may 

give up. 

6.2 A Simple Stepsize Control 

We assume that we solve problems with either point initial conditions or interval initial 

conditions with sufficiently small widt hs. 

Let the enclosure of the remainder term on the j th  step be given by 

where 7 > O is a constant. (y = 1 for ITS methods, and 7 < 1 for the IHO method.) 

Then, we approximate the local excess on each step by 

Given a tolerance Tol ,  we try to control LEPUS by requiring 



CHAPTER 6. ESTIMATING AND CONTROLLING THE EXCESS 

on each step. 

6.2.1 Predicting a Stepsize after an Accepted Step 

Suppose that the j th  step was accepted, and we predict a stepsize for the next step by 

Assuming that 

lIw(f [k1(L9j-ll))ll l l~ ( i '~~( [Gj l ) )  11 7 

and using (6.2.1), we have for the escess with hj,O7 

In practice, we predict the stepsize by 

where we aim at 0.5Tol and choose a "safety" factor of 0.9. 

Algorithm 1 may reduce the stepsize hjDo. In which case, Algorithm II has to use a 

smaller stepsize h j  $ h j,o. 

6.2.2 Computiiig a Stepsize after a Rejected Step 

If e r r j  > h j - l T ~ l ,  we compute a new stepsize hj-i,l by using the equality 
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from which we determine, 

Therefore, if the stepsize is rejected, we compute a new stepsize by 

Since we reduce the stepsize, we can use the same f[kl([~j-l]): it is an enclosure on 

the interval [O, hj-l] and so must also be an enclosure over the smaller interval [O, hj-i,i]. 

Therefore, we can compute a tight enclosure with hj-1,i. Because of (6.2.5), we know 

that (6.2.2) holds. 

Remark 

If we want the inequality (6.2.2) to hold rigorously, we have to use directed roundings 

or interval arithmetic to compute (6.2.2) and (6.2.6). Otherwise, we can execute (6.2.2) 

and (6.2.6) in "regular" floating-point arit hmetic. 



Chapter 7 

A Program Structure for Computing 

Validated Solut ions 

In this chapter, we describe a program structure for computing validated solutions of IVPs 

for ODES. It combines algorit hms for validating existence and uniqueness, cornput ing a 

tight enclosure, and selecting a stepsize. 

First, in 57.1, we specify the ODE problem. Then, in ST.2: we describe one step of 

an integration procedure. A probiem can be integrated by a repeated execution of the 

code implementing one step. The structure that we propose in 57.2 is somewhat similar 

to the one discussed in [29]. 

7.1 Problem Specification 

As in the classical methods, we have to specify the problern we want to integrate. A 

minimum set of parameters is: 

n - number of equations; 

f - function for computing the right side; 

to - initial point; 
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[yo] - initial condition at to; 

T - end of the interval of integration; and 

Tol - tolerance. 

In addition to specifying the problem being integrated, we need functions for com- 

puting the Taylor coefficients f[q and their Jacobians af[q/dy, for i > O. In VNODE, 

such functions are generated by an automatic differentiation package (see Appendix B). 

7.2 One Step of a Validated Method 

Our goal is to structure the integrator function such that parts of it can be replaced 

without changing the rest. In Algorithm 7.1, we show a general 

for irnplernenting one step of a validated method. Functionally? 

into three modules, which are responsible for the following tasks 

structure of a program 

we divide our program 

MODULE 1 : Validating existence and uniqueness and simdtaneously computing an a 

priori enclosure of the solution on [ t j ,  t j+ l ]  (Algorithm 1). 

MODULE 2: Tightening the enclosure at t j+ i  (Algorithm II). 

MODULE 3: Preparing for the next step, which includes estimating the excess, accepting 

or rejecting a step, and predicting a new order and stepsize. 

At this stage, we do not have an order control strategy, but we include "order" in Module 3 

to show where an  order selection method would fit. 

The VNODE package described in Appendix B implements the structure in Figure 7.1. 

Here, we briefly describe the modular structure. 



CHAPTER 7. PROGRAM STRUCTURE FOR COMPUTING V~LIDATED SOLUTIONS 84 

Algorithm 7.1 One step of a validated rnethod. 

INPUT: 

t j ?  hj.0, hrnin, [y j] ,  Qj, Aj, [rj];  

Tol ,  k (p and q in a n  IHO method, k = p + q + 1). 

Try to validate existence and uniqueness with hj,* and k. 

if successful t hen 

end-if 

Estirnate the excess. 

if the excess is acceptable then 

select hj+l,o for the next step; 

break ; 

select new hjVl < hj;  

end-if 

end-while 

if hj  < hmin then 

print "Stepsize too smali" ; 

exit ; 

end-if 
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Module 1 

We try to validate existence and uniqueness with a stepsize hjlo. If the validation is 

successful, we have as an output of this procedure a stepsize hj7 which can be smaller 

than hj,o, an enclosure (ii] of the solution on [tj7 tj+hj], and an enclosure of the kth Taylor 

coefficient rnultiplied by h;, [ ~ j + ~ ]  = h: f [kI([ijj])- In our implementation. hj  5 hjto since 

hj,0 is predicted such that the predicted error satisfies some tolerance. If the validation is 

unsuccessful, the code should print a message and exit the integration. For example, on 

the problem y' = y2, y(0) = 1, a rnethod for vaiidating existence and uniqueness would 

norrndly start taking smaller and smaller stepsizes as t  approaches 1. When the stepsize 

becomes smaller than a prescribed minimum, this rnethod should stop and inform the 

user that it cannot continue (see Aigorithm 5.1). 

Remarks 

1. If it is a first step, hoPo is a predicted initial stepsize; otherwise, hjlo is selected from 

the previous step. The algorithms for predicting an initial stepsize and selecting 

one after a successful step may differ. 

2. It is convenient to return h; f lk] ([ci]) since it is used in computing [ ~ j + ~ ] .  In addition, 

if the stepsize is rejected, and we compute â new one hj,1 < /zji we can make the 

excess term smaller by the scaling [z;+,] = ( h  j,i / h  j )  [ ~ j + ~ ] .  

3. It is also convenient to have the terms hi f[d([ijj]), for i = 1,. . . k, available to 

Module 2. For example, the predictor and the corrector in the IHO rnethod need 

h;+l f b+lI ([Cj]) and h: f [kj ( [ij]), respect ively. 

Module 2 

We use [Gj] and [ z ~ + ~ ] ,  from Module 1, to compute a tight enclosure of the solution a t  

tj+l = t j  + hj .  In the ITS methods, the locd excess is approximated by hSll w( f P I  ([ijj])) 1 1 .  
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In the IHO method, i t  is approximated by yhrllw( f[k'([cjJ))lly for some constant 7, which 

depends on the p and q of the method. In the latter case, forming the terrn f [kI([cj]) 
in this module is more convenient than in the f i s t  one. 

Module 3 

In VNODE, we estimate the Local excess and compute new stepsizes as discussed in 56.2. 

Note that, if the step is not successful, we repeat the computation, but starting from 

Module 2. The reason is that we have already validated existence and uniqueness, and 

we have to compute an enclosure with a smaller stepsize. That is, we can use the output 

hff["([ijj]) and scale it to h:,, f ' " I ([c j])?  where hjrl < hj .  



Chapter 8 

Numerical Result s 

With the numerical experiments described in this chapter, we study the behavior of our 

IBO method and compare it with the ITS methods. 

In 58.1, we describe the tables shown in this chapter and introduce some assumptions. 

In 88.2, we verify empirically that the order of the IHO method is p + q + 1, which 

is the order of the truncation error. We also show empirically that the order of an ITS 

method with k = p + q + 1 terms is k.  

In 88.3, we examine the stability of these two methods on constant coefficient prob- 

lems. Then, we compare the methods on nonlinear problems. 

In 58.4, we compare the ITS and IHO methods again: first, by using a constant 

enclosure method in Algorithm 1, and second, by using the Taylor series enclosure method 

(from Chapter 5). We also show that the Taylor series enclosure method enables larger 

stepsizes t han the constant enclosure method. 

8.1 Description of the Tables and Assi-mptions 

Description of the Tables 

We describe briefly some of the columns of the tables shown in this chapter. 



h constant stepsize used during the integration. 

Excess global excess at the end of the interval of integration. 

If a point initial condition is specified, the global excess yj at a point t j  is measured 

by the norm of the width of the enclosure; that is, 

( j  2 1). If an interval initial condition is given, and a closed form solution is known, 

then 

where q ([yj]7 [yjeZa"]) is defined in (2.2.3). That is, we measure the global excess 

by the distance between [yj] and where [y;ra"] is computed from the true 

solution. We assume that [yYaCL] is the tightest interval enclosure of the solution 

that can be obtained. 

Time Total CPU time in seconds spent in Algorithm II. Since we are mainly interested 

in the performance of the rnethods implementing Algorithm II, we report only this 

time. Note that if the timing results are of order 1 0 - ~  or 10-~,  they rnay not be 

accurate. We have not measured the performance of Algorithm 1 because we have 

not yet optimized the Taylor series method from Chapter 5 to reuse the coefficients 

needed in Algorithm II. 

H constant stepsize that is an input on each step to Algorithm 1. This algorithm may 

reduce the stepsize in order to verify existence and uniqueness. 

Steps number of steps used during the integration. 



Assumpt ions 

a We denote an ITS method with k terms by ITS(k) and an IHO method with 

parameters p and q by IHO(q, p). In al1 of the examples in this chapter, we use 

p = q with k = p + q + 1. Thus, we compare methods with truncation errors of the 

same order. 

a If necessary, both methods use Lohner's QR-factorization technique to reduce the 

wrapping effect. The ITS method with the QR-factorization is essentially Lohner7s 

met hod. 

a In the experiments with a variable stepsize control, we use Eijgenraam's method [19, 

pp. 129-1361 for select ing initial stepsize. 

a The implementation of the constant enclosure method (in Algorithm 1) is as de- 

scribed in [19, pp. 59-67]. This implementation uses the Jacobian of f for corn- 

puting an initial guess for the a priori enclosure. 

a We compiled VNODE with the GNU C++ compiler version 2.7.2 on a Sun Ultra 

212170 workstation with an 168 MHz UltraSPARC CPU. The underlying interval- 

arithmetic and automatic differentiation packages are PROFIL/BIAS [3S] and 

FADBADITADIFF [5], [6], respectively (see 5B.4.1 and sB.4.2). 

8.2 Observed Orders 

In this section, we determine empirically the error constants and orders of the ITS and 

IHO methods on a scalar (58.2.1) and two-dimensiond (58.2.2) nonlinear problem. We 

have chosen nonlinear problems, because in the IHO method we have to enclose the 

solution of a nonlinear system, while we do not have to do that in the constant coefkient 

case. Our goal is to verify that the excess arising from solving such a system (see 54.3.3) 

does not reduce the order of the method. 



For simplicity, we consider the case with point initial conditions. If [ijj] is a good 

enclosure of y(t; tj7 [yj]) on [ t j7  t j+l] ,  then the overestimation in h: f [kI([yj]) is of order 

O ( h k f  ') (see 53.2.4). Assuming that the cornputed intervals are small, the local excess 

in an ITS rnethod and in an IHO method, with k = p + q + 1, is O ( h k f  ') and the global 

excess should be O(hk) .  

For a given problem and method, we compute an error constant c and order r by a 

linear least squares fit determined from the conditions 

where Excess; is the global excess at the endpoint obtained by integrating the problem 

with constant stepsizes hi, i = 1,2,.. . , S. 

Before we present our numerical results, we should note that the order of a validated 

method can be sensitive to the tightness of the a priori bounds. That is7 for the same 

order of the truncation error of the underlying formula and ranges of stepsizes, depending 

on how tight the a priori bounds are, we may obtain different values for the order. For 

example, we rnay cornpute an order that is higher by two or three than that predicted 

t heoretically. 

To make the procedure for cornputing the order more deterministic, we can assume 

that we can obtain the tightest possible a priori bounds. Since in this thesis we use 

constant enclosures for the solution, the tightest constant enclosure on [tj7 tj+i] has com- 

ponents 

[ min ~i ( t ; t j7gj ) ,  max yi(t; t j 7  yj)], for i = 1,. . . , n. 
f€[tj J j + i ] ,  YJ EIYjI tE[t jmtj+i I  Y, E[yj j  

Note that in practice, it is normdly difficult to compute such bounds. However, for the 

examples in the next two subsections, we use such optimal bounds. 



8.2.1 Nonlinear Scalar Problem 

We integrated 

on [O, 121 with an ITS method with k = 7 and k = 11 and with an IHO rnethod with 

p = q = 3 and p = q = 5, respectively (k = p + q + 1). We computed a priori enclosures 

of the solution on each step by the formula 

which is obtained from the true solution, and used constant stepsizes h = 0.1,0.2,. . . ,0.6. 

Here and in 58.22, we select the endpoint, T, to  be a multiple of the stepsizes. By 

cornputing a priori enclosures from the formula for the true solution, we eliminate the 

need to reduce the stepsize or to compute too wide (for this problem) a priori enclosures 

in Algorithm 1. 

Tables 8.1 and 8.2 show the excess at T = 12, the excess divided by h' and hl1, 

respectively, and the CPU time used in the ITS and 1130 methods. By using a least 

squares fit, we have computed in Table 8.3 the error constants and orders corresponding 

to k = 7 and k = 11. For k = 7 and k = 11, we compute the base-10 logarithm of the 

data and plot in Figure 8.1 the excess versus the stepsize and the time versus the excess. 

Rom Table 8.3, we observe higher orders for both methods than we would expect. 

Moreover, the observed orders of the IHO method on this example are bigger than the 

corresponding orders of the ITS method (for k = 7 and 11). From Figures 8.1(a) and 

8.l(b), we see that for the same stepsizes, the IHO method produces enciosures that are 

of order 10-2 times tighter than the enclosures produced by the ITS method. 



h Excess Excess/h7 Time 

ITS IHO ITS IHO ITS IHO 

Table 8.1: ITS(7) and IH0(3?3) on y ' =  -y2,  ~ ( 0 )  = 1, t E [0,12!- 

h Excess Excess /hl1 Time 

ITS IHO TTS IHO ITS IHO 

Table 8.2: ITS(11) and IH0(5,5) on y' = -y2, y(O) = 1, t E [O, 121. 



ITS IHO 

Table 8.3: Error constants and orders of the ITS and IHO methods on y' = -y2, y(0) = 1, 

t E [O, 121. The excess and stepsizes used in the least squares fits are frorn Tables 8.1 

(k = 7) and 8.2 (k = 11). 

-3 . I I 1 1 l I 

-4 - rrs -a--- 
IHO -4- 

-5 - 
ui -6 - 
v) 

Y 

- 

-1 -0.9 4.8 4.7 -0.6 -0.5 -0.4 4.3 -0.2 

Stepsize 

(a) ITS (7),  I H 0  (3 ,3)  

ITS -8- - 
IHO -e- 

(c )  ITS (7)) IH0 (3,3)  

4 -  1 , L I I I 

-6 - ITS -a--- 
IHO + 

-8 - 

Stepsize 

(b) ITS(11), I H 0  (5,5) 

(d) ITS (1 1) , IH0 (5,5) 

Figure 8.1: ITS and IHO on y' = -y2, y(O) = 1, t E [O, 121. 



8.2.2 Nonlinear Two-Dimensional Problern 

We integrated 

y; = Y2 + ~ l ( l  -Y: -Y;) 

y; = -Y1 + YZ(~ - Y: - 9;) 
[66, p. 411 for 

with the ITS(7) and IH0(3,3) methods. We used a constant enclosure method for 

validating existence and uniqueness of the soiution and stepsizes h = 0.1,0.2,0.4, and 0.8. 

We could have computed a priori bounds from the formula for the true solution, but in 

this case, the constant enclosure rnethod does not reduce the input stepsizes. Moreover, 

it produces tighter a priori bounds than if these bounds were computed by evaluating the 

formula for the true solution in interval arithmetic. Since the solution rotates in phase 

space, both methods use QR-factorization to reduce the wrapping effect. 

Table 8.4 shows the excess at T = 0.48, the excess divided by h7, and the CPU time. 

In Figure 8.2, we plot (by first cornputing log IO of al1 relevant values) the excess versus 

the stepsize and the CPU time spent in these methods versus the excess. In Table 5.5, 

we have computed a least squares fit to the error constants and orders. 

h Excess Excess/ h7 Time 

ITS IHO ITS IHO ITS THO 

Table 8.4: ITS(7) and IH0(3,3)  on (8.2.1) with (8.22). 



ITS IHO 

Table 8.5: Error constant and order of the ITS and IHO rnethods on (5.2.1) with (82.2). 

Stepsize 

-0.4 
-0.5 - ITS -EI--- - 
-0.6 - IHO - 
-0.7 - 
-0.8 - 
-0.9 - 

-1 - 
-1.1 - - 
-1.2 - 
-1.3 - -_ 
-1.4 - b - 
-1.5 5 

-13 -12 -1 1 -10 -9 -8 -7 -6 -5 -4 

Figure 8.2: ITS(7) and IH0(3,3)  on (8.2.1) with (52.2). 

In this example, we have a behavior similar to the one from the previous example: 

slightly higher orders of both methods, than the expected k = 7, and slightly higher 

order of the IHO method than of the ITS method (see Table 8.5). In both examples, we 

computed tighter enclosures with the IHO method than with the ITS method, for the 

same stepsizes and orders of the truncations error. 

For the same stepsizes, the IHO method is more expensive than the ITS method, 

but produces smaller excess (see Table 8.5). As a result, the IHO method is slightly less 

expensive for the same excess (see Figure 8.2(b)). As we shall see later, the ITS method 

con be less expensive for low orders if the work is measured per step. 



8.3 Interval Hermite-Obreschkoff versus Interval 

Taylor Series Met hods 

8.3.1 Constant Coefficient Problems 

Scdar Problem: Constant Stepsizes 

We integrated 

first with y(0) = 1 and then with y(0) E [0.9,1.1] for t E [O? 101. (At t = 10, the true 

solution of (8.3.1) with y(0) = 1 is e-'Oo = 3.7 x  IO-^^.) To avoid possible stepsize 

reductions in Algorithm 1, we computed a priori enclosures on each step by 

In Algorithm II, we used the ITS(17) and IH0(8,8) methods. 

For constant stepsizes 0.2,0.3, .  . . , O S ,  Tables 8.6 and 8.7 show the excess at T = 10, 

the ratio of the excess of the IHO method to the excess of the ITS method, 4 a , 8 ~ ~ 1 0 h )  , 

and the CPU time spent in Algorithm II (Q&) is defined in (4.3.8)). We compute the 

base-10 logarithm of the data and plot in Figure 8.3 the excess versus the stepsize and 

the time versus the excess. We do not show the corresponding graphs for Table 8.7 since 

they are almost the same as in Figure 8.3. 

Consider Table 8.6 and Figure 8.3(a). For "small" stepsizes, h = 0.2,0.3,0.4, the 

excess in the IHO method is approximately y8,s/Q8,a(-10h) = times the excess in 

the ITS method, which confirms the theory in 54.3.1. As h increases beyond 0.4, the 

ITS method produces enclosures with rapidly increasing widths, while the IHO method 

cornputes good enclosures for t hose stepsizes . 



h Excess Reduc tions Time 

ITS IWO IH0/ITS QaP8 (-lob) ITS IHO 78.8 

Table 8.6: ITS(17) and IHO(8,S) on y' = -10y7 y(0) = 1, t E [O:  101. 

- - - - -- 

h Excess Reductions Time 

ITS IHO Ta ,a 

IH0/ITs Q S , ~  (-10h) ITS IWO 

Table 8.7: ITS(17) and IH0(8,8) on Y' = -10y7 y(0) E [0.9,1.1], t E [O, 101. 
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Figure 8.3: ITS(17) and IH0(8,8) on y' = - 1 0 ~ ~  ~ ( 0 )  = 1, t € [O, 101. 

Variable Stepsizes 

We integrated (8.3.1) with y(0) = 1 for t E [O, 100] with the stepsize selection scheme 

from 56.2. We used an absolute tolerance of 10-'O. In Figure 5.4, we plot the stepsizes 

against the step number for the two methods. With the ITS method, the solver takes a 

small stepsize in the last step to hit the endpoint exactly. 

The ITS method is asymptotically unstable for stepsizes h such that 

(see 54.3.1). For h = 0.695, 

For the IHO method, the stepsize oscillates around 1.875, which is about 2.7 times bigger 

than 0.695, the stepsize limit for the ITS method. For h = 1.875, 

Although the IHO method permits larger stepsizes, they are still limited by its local error 

term. This observation confirms the theory in 54.3.1. 
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Figure 5.4: ITS(17) and IH0(8,8) on y' = -IOy, y(0) = 1, t E [O, 1001, variable stepsize 

control with Tol = 10-'O. 

Two-Dimensional Problem 

We compare the ITS(17) and IH0(8,8) methods on the system 

[44]. This system is interesting because the solution components tend to zero rapidly, 

but still, we have to deal with the wrapping effect. For example, if 

then the true solution of (8.3.2-8.3.3) is given by 

As t increases, both yl(t) and yz(t) become approximately 5e-t .  In the phase plane, 

the solution becomes almost parallel to the line y2 = yl. If the solution is enclosed by a 

pardelepiped, as in the direct method (see §3.2.2), there is a large overestimation, which 

increases with the steps taken. 

Constant Stepsizes We integrated (8.3.2) on [O, 501 first with an initial condition 

y(0) = (1, - I ) ~  and then with an initial condition y(0) E ([0.9,1.1], [-0.1,0.1])*. We 



used constant stepsizes h = 1.2,l.4, . . . ,3.4 and computed a priori enclosures of the 

solution on each step by 

which is obtained from the true solution 

The results are shown in Tables 8.8 and 8.9. Corresponding to Table 8.8, we cornpute 

the base-10 logarithm of the data and plot in Figure 8.5 the excess versus the stepsize 

and the CPU time spent in Algorithm II versus the excess. Since the results for Table 8.9 

are similar, we do not show the corresponding graphs. 

In the ITS method, the widths of the computed enclosures increase rapidly with h 

for h 2 2.8. We would expect a blow up to occur for stepsizes not much smaller than 

3.66, which is determined from the condition [Tl6(-2h)l < 1 (The eigenvalues of B are 

-1 and -2.). The reason for this "early" blow up is that the a priori enclosures are 

not tight enough, and as a result, the local excess in the ITS method is not as small 

as it should be. However, the IHO method produces good enclosures for al1 stepsizes 

considered ( h  = 1.2,1.4,. . . ,3.4).  From the fourth column in Table 5.8, the excess in 

the IHO method is (roughly) at least times the excess in the ITS method (see also 

54.32, (4.325))- 



h Excess Reduct ions Time 

ITS IHO IHO/ITS Q(h B) ITS IHO 

- 

Table 8.8: ITS(17) and IH0(8,8) on (8.3.2), y@) = (1, - I ) ~ ,  t E [0,50], 

Q(W = rsd ( ~ s , s W ) ) - '  II. 

Excess 

Figure 8.5: ITS(17) and IH0(8,8) on (8.3.2), y(0) = (1, - I ) ~ ,  t E [O, 501. 



h Excess Reductions Time 

ITS IHO IHOfITS Q(h B )  ITS IHO 

-- 

Table 8.9: ITS(17) and IHO(8,S) on (8.3.2), y(0) E ([0.9,1.1], [-O. 1, O. I I ) ~ ,  t E [O, 501, 

Q ( h B )  = 78,811 ( ~ 8 , d h ~ ) )  -'II- 

Variable Stepsizes We integrated (8.3.2) with y(0) = (1, -1)* for t E [O, 4001 with 

a variable step control with Tol = 10-'' . In Figures S.G(a-d), we show how the stepsize 

depends on how the a priori bounds are computed and whether they are intersected with 

the tight bounds. 

If the a priori enclosures are computed from (8.3.4), then these enclosures are normallÿ 

wider than the tight bounds. Since the intersection of the a priori and tight enclosures 

produces intervals that are the same (or almost the same) as the tight bounds, the stepsize 

shows sirnilar behavior, whether or not these bounds are intersected; see Figures 8.6(a- 

b). Because of the additional stability restriction from the remainder terrn, the stepsize 

in the ITS cannot reach the value 3.66 and oscillates around 2.9. Recall that 3.66 is 



determined from ITkdi (-2h) 1 < 1. The stepsize in the IHO method is restricted mainly 

by the associated formula for the truncation error. If the a priori bounds are computed 

by 

O therwise, 
(5.3.5) 

we observe a different behavior; see Figures S.G(c-d). With (8.3.5), we compute tighter a 

priori bounds for t > 1 than with (8.3.4). 

In Figure 8.6(c), the stepsize in the ITS method oscillates slightly below 3.66. In a 

standard method with a stability restriction on the stepsize of 3.66, we would expect 

these oscillations to occur at about 3.66, but here, they are shifted down because of the 

restriction on the stepsize from the remainder term. In this figure, the oscillations of the 

stepsizes in the ITS method and the IHO method occur at larger values of h than in 

Figure S.6(a). The reason is that we compute tighter bounds for the truncation error. 

In Figure 8.6(d), the stepsize in the ITS method reaches a value greater than 3.66 

and then stays at  this value. Taking stepsizes outside the stability region of T k J h  B) 

seems strange, but this phenomenon can be explained as follows. 

As the stepsize increases towards 3.66, the ITS method becomes unstable for some 

hj  < 3.66. Suppose that the solver has accepted [ y j ]  at  t j  > 1 and computes [ Y ~ + ~ ]  

with the ITS method and such hj .  Because of instability, w ( [ ~ ~ + ~ ] )  > w(LYj]). Since the 

true solution components tend to zero as t increases, we can assume that [ y j c i ]  contains 

(O, o ) ~ .  Then the tight and a priori bounds are intersected, and the solver accepts 

For the next step, it determines a stepsize so that [Ot g j ]  satisfies the tolerance require- 

ment. In our example, such a stepsize is greater than 3.66. The ITS produces again a 

tight bound that is wider than the a priori one, which is again [O, ijjb Thus, the solver 
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Figure 8.6: ITS(17) and IHO(8,S) on (5.3.2), y(0) = (-1, l ) ,  t E [0,400], variable stepsize 

control with Tol = 10"". 

keeps taking the same steysize and accepting [O, ijj], which satisfies the accuracy require- 

ment. The situation is similar with the IHO method, except that the stepsize reaches a 

much larger value and stays at it. 

It is important to note on this example that although Algorithm II becomes unstable, 

the integration essentially continues with Algorithm 1. Here, we knew how to compute 

good a priori bounds in Algorithm 1 for large stepsizes, but this is rarely the case. 



8.3.2 Nonlinear Problems 

Example 1 We integrated [39] 

with constant stepsizes 0.2,0.3,0.4, and 0.5. In autonomous form, this equation is 

We computed a priori enclosures from 

tvhich is determined from the true solution 

and used the ITS(17) and IH0(8,8) methods with the direct method, described in 53.2.2 

(without the QR-factorization, described in 93.2.5). 

As can be seen from the resuIts in Tables 8.10 and 8.1 1 and Figure 8.7, for the same 

stepsizes, the IHO method produces much better enclosures in less time than the ITS 

method. In these tables, we have also shown the maximum excess during the integration. 

In Table 8.12, we show results produced with the ITS(17) and IH0(8,8) methods with 

the QR-factorization and wit hout rearranging the columns of the transformation matrix 

(see 53.2.5). It is interesting to note that in this case, the solver computed wider bounds 

than the ones reported in Table 8.1 1, which are obtained without QR-factorkation. The 

reason is that by computing the interval vectors [rj], j 2 1 (see 53.2.5 and §4.1.3), the 

initial excess in the second component of the solution is introduced into the first one. 

Then, the excess in the first component propagates, as we integrate towards the endpoint. 



h Excess Max Excess Time 

ITS IHO ITS IHO ITS IHO 

Table 8.10: ITS(17) and IH0(8,8) on y' = t ( l  - y) + (1 - t ) ë t ,  ~ ( 0 )  = 1, f E [O, 201- 

Stepsize 

Figure 8.7: ITS(17) and IH0(8,8) on y' = t(1 - y) + (1 - t ) ë t ,  ~ ( 0 )  = 1, t E [O, 301- 



h Excess Max Excess Time 

ITS IHO ITS IHO ITS IHO 

Table 8.11: ITS(17) and IH0(8,8) on y' = t ( l  - y)  + (1 - t)e-', ~ ( 0 )  E [0-999,1-001], 

t E [O,20]. 

h Excess iMax Excess Time 

ITS IHO ITS IHO ITS Il30 

Table 8.12: ITS(17) and IHO(8,S) on y' = t ( l  - y)  + (1 - t)e-', y(0) E [0.999,1.001], 

t E [O, 201, QR-factorization. 



Example 2 Two-Body Problem 

We integrated the two-body problem 

with the ITS(17) and IH0(8,8) methods. L i e  used a constant enclosure method in 

Algorithm 1 and input stepsizes 0.1, 0.15, 0.2 to this method. For input stepsize 0.1 to 

the validation procedure, the IHO method produces slightly better enclosures for slightly 

less work, Table 8.13. However, when the stepsize is 0.15 or 0.2, the excess of the iHO 

method is significantly s m d e r  than the excess of the ITS method. 

H Steps Excess Time 

ITS IHO ITS IHO ITS IHO 

Table 8.13: ITS(17) and IH0(8,8) on the two-body problem, constant enclosure method. 

Since Algorithm 1 usually reduces the input stepsize, in Figure 8.8, we plot the stepsize 

against the step number. The stepsizes reductions a t  the end of the plots occurs because 

the solver takes a small stepsize to hit the endpoint (in time) exactly. 
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(f) Input stepsize 0.2, IHO (e) Input stepsize 0.2, ITS 

Figure 8.8: ITS(17) and IH0(8,8) on the two-body problem, constant enclosure method. 



Example 3 Lorenz system 

We integrated 

Y: = 4 ~ 2  - Y1 

Y: = Y ~ ( P  - 93) - Y2 

Y; = Y I Y ~  - B Y ~ ,  

y(0) = (15,15,36)*, t E [O, 101: 

where c = 10, p = 28, and ,û = 813, with the ITS(17) and IHO(8,S) methods and used 

a constant enclosure method in Algorithm 1. The input stepsizes for Algorithm 1 are 

0.01,0.05,0.1. The results are shown in Table 8.14, and the stepsizes versus step number 

are shown in Figure 8.9. As in the two-body problem, the IHO method produces tighter 

enclosures in less time, than the ITS method. 

H Steps Excess Time 

ITS IHO ITS IHO ITS IHO 

Table 8.14: ITS(17) and IHO(8,S) on the Lorenz system, constant enclosure method. 

We also tried the IHO method with the a priori bounds from Algorithm 1 as an input 

to the corrector, instead of computing bounds with the predictor from 54.2.2. With 

H = 0.01 and T = 0.8, the excess a t  T = 0.8 was 26.8. Therefore, if we want to eliminate 

the predictor step, we have to perform at least one more step of the corrector, which is 

more expensive than the predictor. 

In the next two examples, we compare the ITS and IHO methods with a variable step- 

size control (see 56.2) and our version of a Taylor series method for validating existence 

and uniqueness of the solution (see Chapter 5). 



Step nurnber 

(a) Input stepsize 0.01, ITS 

Step nurnber 

(c) Input stepsize 0.05, ITS 

0.015 t I I I I 

O 50 100 150 200 250 

Step number 

(e) Input stepsize 0.1, ITS 

Step number 

(b) Input stepsize 0.01, IHO 

Step nurnber 

(d) Input stepsize 0.05, IHO 

Step number 

(f) Input stepsize 0.1, IHO 

Figure 8.9: ITS(17) and IH0(8,8) on the Lorenz system, constant enclosure method. 



Example 4 Van der Pol's equation 

We integrated Van der Pol's equation? written as a system, 

with 

for t E [0,20], where p = 5. We used the ITS(11) and IH0(5,5) methods and tolerances 

1w8, . . . , 10-12. 

From Table 8.15 and Figure 8.10, we see that, for approxirnately the same excess, 

VNODE using the IHO method took fewer steps than it did using the ITS method, thus 

saving cornputation time. In Figure 8.10, we plot the logarithms of the excess, tirne, and 

tolerance. In Figure 8.10(d), the stepsize corresponding to the IHO method is not as 

smooth as the one corresponding to the ITS method. In the regions where the stepsize 

is not smooth, the Taylor series method for validation could not verify existence and 

uniqueness wit h the supplied stepsizes, but verified with reduced stepsizes. Note also 

that we control the local excess per unit step and report the global excess in Table 5.15. 

Thus the global excess can be larger than the tolerance. 

We also integrated (8.3.7-8.3.8) on [0,0.1] with an input stepsize of 0.01 to Algo- 

rithm 1. We used orders k = 3,7,11,17,25,31,37,43, and 49 for the ITS method and 

p = q =  (k - 1)/2 for the IHO method. Algorithm I did not reduce the input stepsize. As 

a result, the solver could take the same number of steps with the ITS and IHO methods. 

In Figure 8.1 1, we plot the logarithm of the CPU time against the logarithm of the order 

for these two methods. Although on this probiem, the IHO method is more expensive 

for "low" orders, including k = 11, we still have savings in time (for the same excess) 

due to the fewer steps taken. 
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Figure 8.10: ITS(11) and IH0(5,5) on Van der Pol's equation, Taylor series for validation, 

variable stepsize control with Tol = IO-', 10-~ ,  . . . , 10-12. 

Figure 8.11: ITS and IHO with orders 3,7,11,17,25,31,37,43, and 49 on Van der Pol's 

equation. 



Tol Excess Steps Time 

ITS IHO ITS IHO ITS IHO 

Table 8.15: ITS(11) and IH0(5 ,5 )  on Van der Pol's equation, Taylor series for validation, 

variable stepsize control. 

Exarnple 5 Stiff DETEST Problem D l  

We integrated the Stiff DETEST problem D l  [21], 

with 

Y@) = (O, O, o ) ~ ,  for t E [O, 4001. 

Here, we used the ITS(17) and IH0(8,8) methods, Taylor series for validation, and a 

variable stepsize control with tolerances  IO-^, 10-', . . . , 10-Io. 

With the IHO method, we computed tighter bounds with fewer stepsizes, than with 

the ITS method; see Table 8.16 and Figure 8.12. The reduction in the stepsize on the 

last step for the IHO method seen in Figure 8.12(d) is a result of our program reducing 

the stepsize to hit the endpoint exactly. 



Tol Excess Steps Time 

ITS IHO ITS IHO ETS IHO 

Table 8-16: ITS(17) and IHO(8,a) on Stiff DETEST Dl,  Taylor series for validation, 

variable stepsize control. 

1 . 8 5 ~ ~ ~ ~ ~ I l ~ I l ~  

1.8 - =-. E S  + - -_ -- IHO -e- 

1.75 - -J--. -- -. -. e ------- - rn----__a- 

- 
- 

1.55 - 

-10.5-10 -9.5 -9 -8.5 -8 -7.5 -7 -6.5 -6 -5.5 

Excess 

7500 i p i i i i i i i  

7000 - % -. ITS *-- - 
6500 - *-. IHO ++ 

Excess 

Tol 

(b) 

Step number 

(d) Toi  = 10-Io 

Figure 8.12: ITS(17) and IH0(8,8) on Stiff DETEST D 1, Taylor series for validation, 

variable stepsize control with Tol = 10e6, IO-', . . . , IO-''. 



8.4 Taylor Series versus Constant Enclosure Method 

We integrated the following problems, which we denote by P l ,  Pz, P3, and P4. 

Pl: (5.3.6) with y(0) = 1, for t E [O, 201; 

PZ: y: = y*, = -YI, with y(0) = (O, I ) ~ ,  for t E [O, 1001; 

P3: (S.3.2) with y(0) = (1, -1)=, for t E [0,50]; and 

P4: (8.5.9) with y(0) = (0, O, o ) ~ ,  for t E [O, 501. 

For al1 of these tests, we used order k = 17 for the ITS method and p = q = S for the 

IHO method, and LEPUS error control with Tol = 10-lO. 

Tables 8.17 and 8-18 show the  number of steps taken by VNODE, when Algorithm 1 

uses a constant enclosure (CE) method (see 53.1) and our Taylor series enclosure (TSE) 

met hod (see Chapter 5), and the corresponding excess and times. The resolts in Ta- 

ble 5.17 are ~roduced with the ITS rnethod, and the results in Table S.18 are produced 

with the IHO method. In Figures 5.13 and 8.14, we plot the stepsizes against the  step 

number. 

From Table 8.17, we see that  if we use a TayIor series enclosure method, rve have 

a significant reduction in the number of steps (with Tol = 1 0 - ' O ) .  Furthermore, from 

the obtained excess, we see that with a Taylor series enclosure method the stepsize Is 

controlled from the accuracy requirements. In the constant enclosure method, we achieve 

more accuracy than we have asked for, implying that the stepsize was controlled from 

Algorithm 1 in that case. We should note, though, that the TSE method may still reduce 

the stepsizes determined from the stepsize control mechanism. 

In Table 8.18, we see a further reduction in the number of steps with the  TSE method, 

while the number of steps with the CE method rernains t h e  same (except for a slight 

difference for Pl).  Note also that  with the IHO method, we generally cornpute smaller 

enclosures in less time; cf. Tables 5-17 and 8.18- 



Problem Steps Excess Time 

TSE CE TSE CE TSE CE 

Table 8.17: TSE and CE methods, ITS method, variable stepsize control with 

Tol = 10-1°. 

Problem Steps Excess Time 

TSE CE TSE CE TSE CE 

Table 8.18: TSE and CE rnethods, IWO method, variable stepsize control with 

Tol = 10-'O. 
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Figure 8.13: TSE and CE methods, ITS method, variable stepsize control with 

Tol  = 10- 'O.  
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Step number Step number 
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Figure 8.14: TSE and CE methods, IHO method, variable stepsize control with 

Tol = 1 0 - = O .  



Chapter 9 

Conclusions and Directions for 

Furt her Research 

We have developed and studied an interval Hermite-Obreschkoff method for computing 

rigorous bounds on the solution of an IVP for an ODE. Compared to interval Taylor 

series methods with the same order and stepsize, our method has a smaIler truncation 

error, better stability, and is usually less expensive for ODES for which the right side 

contains many terms. Although Taylor series methods can be considered as a special 

case of the more general Hermite-Obreschkoff methods, we have developed a different 

approach (from Taylor series) to cornpute bounds for the solution of an IVP for an ODE. 

While our study was not directed towards producing an interval method for stiff 

problems, we have shown that an interval version of a scheme suitable for stiff problems 

(in traditional numerical methods) may still have a restriction on the stepsize. To obtain 

an interval method without stepsize limitations, we need to find a scheme with a stable 

formula not only for advancing the step but also for the truncation error. 

We proposed a Taylor series method for validating existence and uniqueness of the 

solution. This method was designed to ameliorate the stepsize restriction imposed by 

Algorithm 1, but we have not tried to produce an algorithm that always verifies existence 
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and uniqueness (if possible) with the supplied stepsize. Further work is necessary to 

produce a very good implementation of Algorithm 1. Such an implementation can be 

considered as an optimization problem: rnaximize the step length, subject to a tolerance 

restriction. 

Our stepsize control mechanism is relatively simple. It worked well for our tests, 

but we have not performed a thorough empirical investigation. Further studies rnay 

be necessary. New developments on stepsize selection for standard and validated ODE 

rnethods rnight be appropriate for considerations in a validated solver; see for example 

[26] and [36]. 

There has not been a comprehensive study of order control heuristics. Eijgenraam [19, 

pp. 129-1361 describes the only order selection scheme known to the author. Some in- 

sights into the problem of order control are given in [50, pp. 100-1151 and [70]. To 

develop an order control strategy based on the amount of work per step, we need to 

estimate this work. Obtaining a theoretical bound for the number of arithmetic oper- 

ations in generating Taylor coefficients for the solution is not difficult, but obtaining a 

reasonably accurate formula for the number of arithmetic operations in generating their 

Jacobians is more cornplex. These Jacobians can be computed by a forward (TADIFF) 

or a reverse mode (IADOL-C) of automatic differentiation [5S], sparsity rnay or rnay not 

be exploited, and different packages rnay implement the same method differently; for 

example, with a tape in ADOL-C or using only the main memory as in TADIFF. In ad- 

dition to estimating the number of floating-point operations, the time spent on memory 

operations rnay be nonnegligible. 

As the area of validated ODE solving develops, we will need a methodology for as- 

sessing validated methods. A part of such a methodology should be an estimate of the 

amount of work. It may be possible to express it as a number of function and Jaco- 

bian evaluations. Then, we rnay compare validated methods in a framework simiiar to 

DETEST [30] or Stiff DETEST [21]. 



Appendix A 

Number of Operations for 

Generating Taylor Coefficients 

We obtain formulas for the number of arithrnetic operations for generating one Taylor 

coefficient and k Taylor coefficients for the solution to y' = f (y), y(to) = yo. For simplic- 

ity, we assume that the code list of f contains only arithmetic operations. Let N I ,  i& 

and N3 be, respectively, the number of additions (we count subtractions as additions), 

multiplications, and divisions in the code list of f. If we have computed the Taylor 

coefficients (y),  , (y),, . . . , (y);, we can compute the (a' + 1)-st coefficient from 

where (f (y)), is the ith Taylor coefficient of f (y) (see 52.4). The number of arithmetic 

operations required for cornputing (f(~))~, using (y),, (y),, . . . , (y),, are ca~culated in 

Table A.1. If Ops (g) denotes the number of arithmetic operations for computing some 

function g, then from Table A.1, the number of arithmetic operations to  compute (f ( y ) ) i  

is 
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OP- # Formula Number of 

Table A. 1: Number of additions, multiplications, and divisions for comput ing (f (y));. 

where N = Ni + .V2 + f 3  and cf  = (N2 + N3)/Ar. Because of (A-l) ,  (A.%) also gives the 

number of operations for cornputing f = (y)i+, .l Therefore, 

Ops (f[il(y)) = 2c fN( i  - 1 )  + N = 2cfNi  + ( 1  - 2 q ) N  

= Zc Ni + O ( N ) .  

The total number of arithmetic operations to compute k 2 1 Taylor coefficients, (y),, 

(y127 . - , (y)k,  can be obtained by summing the number of arithmetic operations to 

compute (f (y))i for i = O , .  . . , k - 1: 

' We do not count the multiplication & x (f (y))(. 



Appendix B 

A Validated Ob ject-Oriented Solver 

B.1 Objectives 

Our primary goal is to provide a program environment that wiIl assist researchers in the 

numerical study and cornparison of schemes and heuristics used in computing validated 

solutions of IVPs for ODEs. The VNODE (Validated Numerical ODE) package that we 

are developing is intended to be a u n i f o m  implementation o f a  generic validated solverjbr 

IVPs /or ODEs. Uniform means that the design and implementation of VNODE follow 

well-defined patterns. As a result, implernenting, modifying, and using methods can 

be done systematically. Generic means that the user can construct solvers by choosing 

appropriate methods from sets of methods. This property enables us to isolate and 

compare methods implementing the same part of a solver. For example, we can assemble 

two solvers that differ only in the module implementing Algorithm II. Then, the difference 

in the numerical results obtained by executing the two solvers will indicate the difference 

in the performance of Algorithm II. Since we would like to investigate algorithms, being 

able to isolate them is an important feature of such an environment. 

We list and briefly explain some of the goals we have tried to achieve with the design of 

VNODE. Provided that a validated method for IVPs for ODEs is implemented correctly, 



the reliability issue does not exist: if a validated solver returns an enclosure of the 

solution, then the solution is guaranteed to exist within the computed bounds. 

Modularity The solver should be organized as a set of modules with well-defined inter- 

faces. The implementation of each module should be hidden, but if necessary, the 

user should be able to modify the implementation. 

Flexibility Since we require well-defined interfaces, we should be able to replace a 

method, inside a solver, without affecting the rest of it. Furthermore, we should 

be able to add methods following the established structure and wit hout rnodifying 

the existing code. 

Efficiency The methods incorporated in VNODE do not have theoretical limits. How- 

ever, these methods require the computation of high-order Taylor coefficients and 

Jacobians of Taylor coefficients. As a result, the efficiency of a validated solver 

is determined mainly by the efficiency of the underlying automatic differentiation 

package. Other factors that contribute to the performance are: the efficiency of 

the interval-arithmetic package, the programming language, and the actual im- 

plementation of the methods. To achieve flexibility, we may need to repeat the 

same calculations in two parts of a solver. For example, to separate Algorithm I 

and Algorithm II, we may need to generate the same Taylor coefficients in both 

algorithms. However, the repetition of such computations should be avoided. 

Since VNODE is to be used for comparing and assessing methods, it has to contain the 

existing ones. Moreover, VNODE should support rapid prototyping. 



The area of computing validated solutions of IVPs for ODEs is nl ot as devel ed as the 

area of computing approximate solutions. Some of the difficulties that arise in interval 

methods are discussed in Chapter 3 and [52]. With respect to the tools involved, a 

validated solver is inherently more complex than a classical ODE solver. In addition to 

an interval-arithmetic package, a major component of a validated solver is the module 

for automat ic generation of interval Taylor coefficients (see SB .4). 

Currently, there are three available packages for computing guaranteed bounds on the 

solution of an IVP for an ODE: AWA [44], ADIODES [69] and COSY INFINITY [SI. We 

briefly summarize each in turn. 

AWA is an implementation of Lohner's method (53.2.5) and the constant enclosure 

approach (83.1). This package is written in Pascal-XSC [37], an extension of Pascal for 

scientific computing . 

ADIODES is a C++ irnplementation of a solver using the constant enclosure method 

in Algorithm 1 and Lohner7s method in Algorithm II. The stepsizes in both ADIODES 

and AWA is restricted to Euler steps by Algorithm 1. 

COSY INFINITY is a Fortran-based code for study and design of beam physics sys- 

tems. The method used for verified integration of ODEs is based on high-order Taylor 

polynornials with respect to time and the initial conditions. The wrapping effect is re- 

duced by est ablishing functional dependency between initial and final conditions (see ['il ) . 

For that purpose, the computations are carried out with Taylor polynomials with real 

floating-point coefficients and a guaranteed error bound for the remainder term. Thus, 

the arithmetic operations and standard functions are executed with such Taylor polyno- 

mi& as operands. Although the approach described in [7] reduces the wrapping effect 

substantially, working with polynomials is significantly more expensive than working with 

i n t e r d s .  



B.3 Object-Oriented Concepts 

Since our goal is to build a flexible, easy-buse, and easy-to-extend package, we have 

chosen an object-oriented approach in designing VNODE. This is not the first object- 

oriented design of an ODE solver. The Godess project [57] offers a generic ODE solver 

t hat implements traditional methods for N P s  for O DES. Anot her successful package is 

Diffpack [43], which is devised for solving partial differential equations. In [43], there is 

also an example of how to construct an object-oriented ODE solver- 

In this section, we review some object-oriented concepts supported in C++. A good 

discussion of object-oriented concepts, analysis, and design can be found in [Il]. An 

excellent book on advanced C++ styles and idioms is [12]. A study of nonprocedural 

paradigms for numerical analysis, including ob ject-oriented ones, is presented in [72]. 

Data Abstraction 

In the object model, a software system can be viewed as a collection of objects that 

interact with each other to achieve a desired functionality. An object is an instance of 

a class, which defines the structure and behavior of its objects. By grouping data and 

methods inside a class and specifying its interface, we achieve encapsulation, separating 

the interface from the implementation. Hence, the user can change the data represen- 

tation and the implementation of a method' (or methods) of a class without modifying 

the software that uses it. By encapsulating data, we can avoid function calls with long 

parameter lists, which are intrinsic to procedural languages like Fortran 77. A ciass can 

encapsulate data or algorithms, or both. 

'We use method in two different contexts: to denote a rnember function of a class or a method in 
VNODE. 



Inheritance and Polymorphism 

Inheritance and polymorphism are powerful features of ob ject-oriented languages. In- 

heritance aIlows code reuse: the derived class can use the data and functions of its base 

class(es). Polyrnorphism serves to apply a given function to diKerent types of objects. 

Often polymorphism and inheritance are used with abstract classes. An abstract class 

defines abstract operations, which are implemented in its subclasses; it has no instances 

and an object of such a class cannot be created. 

Operat or Overloading 

Operator overloading allows the operators of the language to b e  overloaded for user de- 

fined types. To program interval operations without cxplicit function calls, we have to 

use a language that supports operator overloading. Without it, programming interval- 

arithmetic expressions is cumbersome. Both Cf+ and Fortran 90 provide operator over- 

loading. This feature is used to build interval-arithmetic libraïies like PROFIL/BIAS 

[38] (C++) and INTLIB (Fortran 90) [34]. 

B.4 Choice of Langi-age: C++ versi-s Fortran 90 

We have chosen C++ [20] over Fortran 90 [47] to implement VNODE. Procedural lan- 

guages like C or Fortran 77 can be used to implement an object-oriented design [3]. 

However, using a Ianguage that supports object-oriented programming usually reduces 

the effort for implementing object-oriented software. Our choice was determined by the 

following considerations, listed in order of importance: 

1. availability of software for automatic generation of interval Taylor coefficients; 

2. performance and built-in functions of the available interval-arithmetic packages; 

3. support of object-oriented concepts; and 
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4. efficiency. 

In this section, we discuss each in turn. 

B A l  Software for Automatic Generation of Interval Taylor 

Co efficients 

Although packages for automatic differentiation (AD) are available (see for example [33] 

and [79]), to date, only two free packages for automatic generation of interval Taylor 

coefficients for the solution of an ODE and the Jacobians of these coefficients are known 

to the author. These are the FADBADITADIFF [5 ] ,  161 and IADOL-C [31] packages. 

They are written in C++ and implement AD through operator overloading. 

TADIFF and FADBAD are two different packages. TADIFF can generate Taylor 

coefficients with respect to time. Then, FADBAD can be used to  compute Jacobians 

of Taylor coefficients by applying the forward mode of AD [55] to these coefficients. 

FADBAD and TADIFF are not optimized to handle large and sparse systems. Also, 

they perform al1 the work in the main rnernory. 

The IADOGC package is an extension of ADOL-C [25] that allows generic data 

types. ADOL-C can compute Taylor coefficients by using the forward mode and their 

Jacobians by applying the reverse mode [67] to these coefficients. The basic data type 

of ADOL-C is double. To use a new data type in IADOL-C, the user has to overload 

the ai thmetic  and cornparison operations and the standard fuoctions for that data type. 

Then, using IADOGC is essentially the same as using ADOL-C. Since I.4DOL-C replaces 

only the double data type of ADOL-C, IADOL-C inherits al1 the functionality of A D O L  

C. However, it was reported that the operator overloading, in IADOL-C, for a basic data 

type incurs about a three times speed penalty over ADOL-C [31]. This appears to be a 

phenomenon of the C++ compilers rather than the AD package [31]. 

The ADOL-C package records the computation graph on a so-callod tape. This tape 



is stored in the main memory, but, when necessary, is paged to disk. When generating 

Jacobians of Taylor coefficients, ADOL-C exploits the sparsity structure of the Jacobian 

of the function for computing the right side. Since optimization techniques are used 

in ADOL-C, we expect the interval version, IADOL-C, to perform better than FAD- 

BADITADIFF on large and complex problems. But, still, FADBADITADIFF should 

perform well on small to medium-sized problems. 

Currently, VNODE is configured with FADBADITADIFF, but we have also used 

IADOL-C. VNODE with these AD packages is based on the INTERVAL data type from 

the PROFIL/BIAS package, which we discuss in sB.4.2 and sB.4.3. 

B A.2 Int erval Arit hmet ic Packages 

The most popular and free interval-arithmetic packages are PROFIL/BIAS [38], writteo 

in Cf+, and INTLIB [35], written in Fortran 77 and available with a Fortran 90 interface 

[34]. The Fortran 90 version of INTLIB uses operator overloading. For references and 

comments on other available packages, see for example [34] or [38]. Recently, an interval 

extension of the Gnu Fortran compiler was reported [65], where intervals are supported 

as an intrinsic data type. 

PROFIL/BIAS seerns to be the fastest interval package. In cornparison with other 

such packages, including INTLIB, PROFIL/BIAS is about one order of magnitude faster 

[38]. Also, PROFIL/BIAS is easy-to-use, and provides matrix and vector operations 

and essential routines, for example, guaranteed linear equation solvers and optirnization 

routines. For efficiency, it uses the  rounding mode of the processor on the machines on 

which it is installed. Portability is provided by isolating the machine dependent code in 

small assembler files, which are distributed with the package. 



B.4.3 Efficiency 

Compared to Fortran, C++ has been criticized for its poor performance for scientific 

computing. Here, we discuss an important performance problem: the pairwise evaluation 

of arithmetic expression with arguments of array types (e.g., matrices and vectors). More 

detailed treatment of this and other problems can be found in [62], [75], and [76]. 

In C++, executing overloaded arithmetic operations betweeii array data types creates 

temporaries, which can int roduce a sipificant overhead, particularly for small ob jects. 

For example, if A ,  B, C, and D are vectors, the evaluation of the expression 

creates two temporaries: one to hold the result of A + B, and another to hold the result 

of (A + B) + C. Furthermore, this execution introduces three loops. Clearly, it would be 

better to compute this sum in one loop without temporaries. In Fortran 90, mathematical 

arrays are represented as elementary types and optimization is possible at the compiler 

level. 

Because of better optimizing compilers and template techniques [74], [76], Cf+  is 

becoming more cornpetitive for scientific computing. A good technique for reducing the 

overhead in the pairwise evaluation of expressions involving arrays is to use expression 

templates [74]. The expression template technique is based on performing compile- t ime 

transformation of the code using templates. Wi t h t his technique, expressions cont aining 

vectors and matrices can be evaluated in a single pass without allocat ing temporaries. For 

example, with expression templates, it is possible to achieve a loop fusion [74], allowing 

the above surn to be evaluated in a single loop: 

f o r  ( i n t  i = 1; i <= N;  i + +  ) 

D ( i )  = ~ ( i )  + B ( i )  + C ( i ) ;  

However, executing this loop in interval arithmetic may not be the best solution for the 

following reason. Each interval addition in this loop involves two changes of the rounding 



mode. In modern RISC architectures, rounding mode switches cost nearly the sarne or 

even more than fioating-point operations [3S], [65]. The approach of PROFIL/BiAS is 

to minimize these switches. Suppose that we want to compute in PROFIL/BIAS 

where A, B, and C are vectors of the same dimensions. If we denote the components of 

A ,  B, and C by a;, bi7 and ci, respectively, PROFIL/BIAS changes the rounding mode 

downwards and cornputes ci = gi + bi, for i = 1,2,. . . , n. Then, this package changes 
- 

the rounding mode upwards and cornputes = ai + bi, for i = 1 ,2 , .  . . n. Therefore, the 

result of A + B is computed with two rounding mode switches. However, PROFIL/BIAS 

still creates ternporaries. 

B.4.4 Support of Object-Oriented Concepts 

Cf+ is a fully object-oriented laquage, while Fortran 90 is not, because it does not 

support inheritance and polymorphism. The features of C++ (e-g., data abstraction, op- 

erator overloading, inheritance, and polymorphism) allow the goals in §B. 1 to be achieved 

in a relatively simple way. Inheritance and polymorphism can be simulated in Fortran 

90 [17], but this is cumbersome. 

B.5.1 Structure 

From an object-oriented perspective, it is useful to think of a numerical problem as an 

object containing al1 the information necessary to compute its solution. Also, we can 

think of a particular method, or a solver, as an object containing the necessary data and 

functions to perform the integration of a given problem. Then, we can cornpute a solution 

by "applying" a method object to a problem object. Most functions in VNODE have 



Figure B. 1: Problem classes. 

such objects as parameters. The description of the numerical problem and the rnethods 

in VNODE are implemented as classes in C++.  

The problem classes are shown in Figure B.1, and the method classes are shown in 

Figure B.2. A box in Figures B.1 and B.2 denotes a class; the rounded, filled boxes 

denote abstract classes. Each of them declares one or more virtual functions, which are 

not defined in the corresponding abstract class, but must be defined in the derived classes. 

The lines with A indicate an is-a relationship, which can be interpreted as a derived class 

or as a specialization of a base class; the lines with O indicate a has-a relationship. It is 

realized either by a complete containment of an object Y within another object X or by 

a pointer from X to Y. The notation in these figures is similar to that suggested in [64]. 

In the next two subsections, we Iist the problem and method classes and provide brief 

explsnations. Here, we do not discuss the classes for generating Taylor coefficients in 

VNODE. A detailed description of VNODE will be given in the documentation of the 

code at  http://ww~r.cs.toronto.edu/NA. 

Problem Classes Class ODESROBLEM specifies the mathematical problem, that is, to, 

[yo], T, and a pointer to a function to compute the right side of the ODE. It also contains 

a pointer to a class PROBLEMINFO. It indicates, for example, if the problem is constant 

coefficient, scalar, h a ,  a closed form solution, or has a point initial condition. Such 

information is useful since the solver can determine from it which part of the code to 





execute. 

ODENUMERIC specifies the numerical problern. This class contains data such as abso- 

lute and relative2 error tolerances, and a pointer to a class O D E m E R I C  representing a 

solution. The user-defined problems, Pl, P2, and P3 in Figure B.1 are derived from this 

class. New problems can be added by deriving them from ODENUMERIC. 

ODESOLUTION contains the last obtained a priori and tight enclosures of the solution 

and the value of t where the tight enclosure is computed. ODESOLUTION contains also a 

pointer to a file that stores information from the preceding steps (e-g., enclosures of the 

solution and stepsizes). 

Method Classes Class ODESOLVER is a general description of a solver that "solves" 

an ODENUMERIC problem. ODESOLVER declares the pure virtual function Int egrat e. Its 

definition is not provided in this class. As a result, instances of ODESOLVER cannot be 

created. This class also contains the class METHOD-CONTROL, which includes different flags 

(encapsulated in FLAGS) and statistics collected during the integration (encapsulated in 

STATISTICS). 

Class VODESOLVER implements a general validated solver by defining the Int egrat e 

function. We have divided this solver into four abstract rnethods: for selecting an order, 

selecting a stepsize, and computing initial and tight enclosures of the solution. These 

methods are realized by the abstract classes ORDER-CONTROL, STEP-CONTROL, INITXNCL, 

and TIGHTmCL,  respectively. 'ïheir purpose is to provide general interfaces to partic- 

ular methods. A new method c m  be added by deriving it from these abstract classes. 

In tegrate  performs the integrations by calling objects that are instances of classes de- 

rived from ORDER-CONTROL, STEP-CONTROL, INITIMCL, and T I  GHTXNCL. 

ORDER-CONTROL has only one derived class, CONSTSRDER, whose role is to return a 

constant order. Currently, VNODE does not implement variable-order methods. 

- - 

'Hout to specify and interpret relative error toierance will be discussed in the documentation of 
VNODE. 



For selecting a stepsize, CONSTSTEP returns a constant stepsize on each step, and 

VARSTEPCONTROL implements the stepsize selection scheme from 56.2. 

There are two methods for validating existence and uniqueness of the solution in 

VNODE: a constant enclosure method (CONSTINITXNCL) and a Taylor series method 

(TAYLINIT~CL). The purpose of the FIXEDINITBJCL class is to compute a priori 

enclosures of the solution from the formula for the true solution, if the problem has a 

closed form solution. This class turns out to be helpful when we want to isolate the 

influence of Algorithm 1, because this algorithm often reduces the input stepsize. 

There are two methods for computing a tight enclosure of the solution: an in- 

terval Hermite-O breschkoff method (OBRESCHKOFF-TIGHT_ENCL) and Lohner's met hod 

(LOHNER-TIGHTXNCL). The VODESOLVER class has also a pointer to DATAREPR, which is 

responsible for generating and storing Taylor coefficients and their Jacobians. 

B.5.2 An Example Illustrating the Use of VNODE 

Suppose that we want to compare two solvers that differ only in the method implementing 

Algorithm II. In addition, we want to compare them with a constant enclosure method 

and then with a Taylor series enclosure rnethod in Algorithm 1. Here, we show and discuss 

oart of the VNODE code that can be employed for this study. As an example of an ODE, 

Pol's equation, written as a system, 

(B.5.1) 

I 

we use Van der 

Y: = Y2 

In a traditional ODE solver, we provide a function for comput ing the right side. In a 

validated solver, we have to provide also functions for generating Taylor coefficients and 

their Jacobians. Since we use an AD package for generating such coefficients, we have to 

specify a function for computing the right side of (B.5.1) for this package. We write the 

template function 



template cclass YTYPE> void ~ ~ p t e r n ~ l a t e ( Y T Y P ~  *yp , c o n s t  YTYPE *Y) 

ypC01 = yC11; 

yp Cl1 = Mu*(l-sqr(yC0I 1) *yCa - yC01; 

which is used by FADBADITADIFF and IADOL-C to store the computation graph, and 

by VNODE to create a function for computing the right side. Then we derive a class 

VDP from ODE_NUMERIC. Since the details about the declaration of VDP are not essential 

to understand our example, we omit this declaration. 

Figure B.3 shows a typical use of VNODE classes. First, we create an ODEJUMERIC 

object3, W P ,  and load the initial condition, the interval of integration, and tolerance by 

calling the function LoadProblemParam (Part A). For testing, i t  is convenient to have a 

function that supplies different sets of data depending on the parameter to this function. 

Then, we create methods and return pointers to them (Part  B), as described below. 

ITS and IHO are pointers to abjects for computing enclosures using Lohner7s and the 

IHO methods, respectively. I n i t E n c l  is a pointer to an object for validating existence 

and uniqueness of the solution with the constant enciosure method; st e p c o n t r o i  refers 

to an object that implements a variable stepsize control; and OrderControl  points to an 

an object that provides a constant value for the order. 

The purpose of class TAYLOREXPANSION is to generate and store Taylor coefficients 

and their Jacobians. It is a template class, for which instances are created by specifying 

a class for generating Taylor coefficients and a class for generating Jacobians of Tay- 

lor coefficients. Here, we create such an instance with parameters VDPTaylGenODE and 

VDPTaylGenVar, which are classes4 for generating Taylor coefficients and their Jacobians 

for (B.5.1). 

31n Figure B.3, P t r  stands for pointer in PtrODENumeric, PtrTightEncl, etc. 
We do not describe these classes here. 



In part C, we create two solvers, SolverITS and SolverIHO and integrate the problem 

by calling the I n t e g r a t e  function on these sol ver^.^ Note that they differ only in the 

method for computing a tight enclosure of the solution. Thus, we can isolate and compare 

the two methods implementing Algorithm II. 

Now, in part D, we want to replace the constant enclosure method for validating 

existence and uniqueness of the solution with a Taylor series rnethod and repeat the 

same integrations. We create an instance of TAYLINITWCL by 

I n i t E n c l  = 

new TAYL-INIT-ENCL(ODE->S~~~,~~~ VDPTaylGenODE,new VDPTaylGenVAR); 

set i t by calling the S e t  I n i t  E n c l  function, and integrate. 

We explain how class I N I T X N C L  works; the same idea is used in the other abstract 

classes. I N I T Z N C L  is an abstract class since it contains the pure virtual function 

v i r t u a l  void Val ida te(  . . . ) = 0 ; 

(for simplicity, we leave out the parameters). Each of the derived classes of INITBNCL 

must declare a function with the same name and parameters and specify the body of 

the function. In In t eg ra t e ,  there is a cal1 to Validate .  During execution, depending 

on the object set, the appropriate Validate function will be calied. We use dynamic 

or late binding: the function that is cailed is determined by the type of object during 

the execution of the program. In our example, the method for validating existence and 

uniqueness is replaced, but the integrator function is not changed. If the user wants to 

implement his/her own Algorithm 1, he/she has to define a derived class of INITXNCL 

and an associate Validat e function. 

We omit the details about extracting data after an integration. 



// * . *  

// A .  Crea te  t h e  ODE problem. 
PtrODENumeric ODE = new VDP; 
ODE->~oad~roblern~aram(l); 

// B .  Create t h e  methods. 
i n t  K ,  P, Q ;  
K = il; // order  
P  = Q = (K-1)/2; 

PtrTightEncl  ITS = new LOHNER-TIGHT-ENCL(K); 
P t rTightEncl  IHO = new OBRESCHKOFF-TIGHT-ENCL(P,Q); 

P t r I n i t E n c l  In i tEncl  = new CONST-INIT-ENCL(ODE->S~~~, new V D P T ~ ~ ~ G ~ ~ V A R ) ;  
P t r S t e p C t r l  S tepCtr l  = new VAR-STEP-cONTROL(ODE->S~Z~); 
PtrOrderCtr l  OrderCtrl  = new CONST,ORDER(K); 
PtrDataRepr DataRepr = new TAYLOR-EXPANSION<VDPTaylGenODE, VDPTaylGenVAR> ; 

// P a r t  C .  Create t h e  s o l v e r s  and i n t e g r a t e .  
PtrVODESolver SolverITS = new 

VODE-SOLVER(ODE, DataRepr , OrderCtr l  , S t e p C t r l  , I n i t  Encl, ITS) ; 

PtrVODESolver SolverIHO = new 
VODE,SOLVER(ODE, Dat aRepr , OrderCtr l  , S t e p C t r l  , In i tEncl  , IHO) ; 

/ /  Part D .  Replace t h e  method implementing Algorithm 1 and i n t e g r a t e .  
I n i t E n c l  = 

new TAYL-INIT-ENCL(0DE->Size, new VDPTaylGenODE , new V D P T ~ ~ ~ G ~ ~ V A R )  ; 

~olver1~~->Set~nit~ncl(~nit~ncl); 

~ o l v e r 1 ~ 0 - > S e t I n i t E n c l  ( In i tEncl )  ; 

Figure B.3: The test code. 
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