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Computing Running DCT’s and DST’s Based on Their
Second-Order Shift Properties

Jiangtao Xi and Joe F. Chicharo

Abstract—This paper presents a set of second-order recursive equations
which are referred to as the second-order Shift (SOS) properties of the dis-
crete cosine transform (DCT) and the discrete sine transform (DST). The
proposed SOS properties enable independent updating of the respective
DCT and DST coefficients. This is in direct contrast with existing method-
ology for computing the running DCT and DST where there is an inherent
interdependency between the DCT and DST coefficients. The SOS prop-
erties provide more efficient algorithms in terms of computational burden
and memory requirements when implementing running DCT’s and DST’s.

Index Terms—DCT, discrete cosine transform, DST.

I. INTRODUCTION

The discrete cosine transform (DCT) [1] has been successfully ap-
plied to the fields of speech and image processing. In order to com-
pute the DCT efficiently, various fast and efficient block- based algo-
rithms have been proposed (for example, see [2]–[5] and their refer-
ences). However, in the case where the DCT parameters need to be up-
dated for every new signal sample, the running DCT implementation
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is required. As indicated by [7], the computational burden for the run-
ning DCT is rather intensive. One approach for computing the running
DCT’s and discrete sine transforms (DST’s) is to use their shift prop-
erties, as derived by Yip and Rao [6]. The shift properties are a set of
recursive equations that can be used for updating the DCT’s and DST’s
coefficients. However, this approach is not very efficient in terms of
computation. A source of the excessive computational burden is the
dependency between a DCT coefficient and its corresponding DST co-
efficient. The process of updating a DCT (or DST) requires updating
the corresponding DST (or DCT). To alleviate this problem, Murthy
and Swamy [7] proposed an approach for DCT-II, DST-II, DCT-IV,
and DST-IV. In [7] each transform member was represented as the real
part of a complex function and recursive equations were derived for up-
dating these complex functions. In other words, the approach updates
complex functions rather than transform coefficients. It is obvious that
there is still some excessive and unnecessary computation.

This paper proposes a more efficient class of running algorithms for
DCT’s and DST’s by deriving a set of recursive equations which enable
the independent updating of each DCT and DST member respectively.
The proposed recursive equations are called second-order shift (SOS)
properties due to their second-order nature. By contrast, the shift prop-
erties derived by Yip and Rao [6] are referred to as the first-order shift
(FOS) properties, as they are in effect first-order recursive equations.

This paper is organized as follows.: Section II reviews the FOS prop-
erties of DCT’s and DST’s. The SOS properties for the DCT’s and
DST’s are derived and presented in Section III. A performance anal-
ysis of running DCT’s and DST’s based on SOS properties is under-
taken in Section IV and the results are compared with the most recent
approaches reported in literature thus far. Finally, Section V concludes
the paper.

II. FIRST-ORDER SHIFT PROPERTIES OFDCT’s AND DST’s

As defined in [8], the family of DCT’s and DST’s for the signal block
x(n�N), x(n �N + 1); � � � ; x(n) is given as follows [8]

DCT-I:

c(n; k) =
2

N
Pk

N

m=0

Pmx(n �N +m) cos
m�

N
k ;

for k = 0; 1; � � � ; N (1)

DCT-II:

c(n; k) =
2

N
Pk

N�1

m=0

x(n�N +m) cos m+
1

2
k
�

N
;

for k = 0; 1; � � � ; N � 1 (2)

DCT-III:

c(n; k) =
2

N

N�1

m=0

Pmx(n�N +m) cos m k +
1

2

�

N
;

for k = 0; 1; � � � ; N � 1 (3)

DCT-IV:

c(n; k) =
2

N
Pk

N�1

m=0

x(n�N+m) cos m+
1

2
k +

1

2

�

N
;

for k = 0; 1; � � � ; N � 1 (4)
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and

DST-I:

s(n; k) =
2

N

N

m=0

x(n�N +m) sin
m�

N
k ;

for k = 1; 2; � � � ; N � 1 (5)

DST-II:

s(n; k) =
2

N
Pk

N

m=0

x(n�N +m) sin m� 1

2
k
�

N
;

for k = 1; 2; � � � ; N (6)

DST-III:

s(n; k) =
2

N

N

m=0

Pmx(n�N +m) sin m k +
1

2

�

N
;

for k = 1; 2; � � � ; N (7)

DST-IV:

s(n; k) =
2

N

N�1

m=0

x(n�N+m) sin m+
1

2
k +

1

2

�

N
;

for k = 0; 1; � � �N � 1 (8)

where

Pj =

1 if j 6= 0 norN
1p
2

if j = 0 orN

whereN is the block length of the transform. For the case when the
input signal is a stream of samples,c(n; k) ands(n; k) are referred to
as the running DCT’s and DST’s at timen. When a new samplex(n+
1) becomes available, the signal block of interest shifts one sample in
time to includex(n + 1) and exclude the samplex(n � N + 1). In
this case, the running DCT’s at the instantn + 1 is determined by the
following expressions [6]:

DCT-I:

c(n+ 1; k)

= Akc(n; k) + PkBks(n; k) +
2

N
Pk

� � 1p
2
Akx(n�N) +

1p
2
� 1 x(n�N + 1)

+(�1)k 1� 1p
2

Akx(n) + (�1)k 1p
2
x(n+ 1)

(9a)

DST-I:

s(n+ 1; k) =Aks(n; k)�Bkc(n; k) +
2

N
Bk

� 1p
2
x(n�N) + 1� 1p

2
(�1)kx(n)

(9b)

DCT-II:

c(n+ 1; k) =Akc(n; k) +Bks(n; k)

+
2

N
PkCk (�1)kx(n)� x(n�N) (10a)

and

DST-II:

s(n+ 1; k) =Aks(n; k)�Bkc(n; k)

+
2

N
PkDk x(n�N)� (�1)kx(n) (10b)

DCT-III:

c(n+ 1; k)

= Ekc(n; k) + Fks(n; k) +
2

N

� � 1p
2
Ekx(n�N) +

1p
2
� 1 x(n�N + 1)

+(�1)k 1� 1p
2

Fkx(n) : (11a)

DCT-III:

s(n+ 1; k)

= Eks(n; k)� Fkc(n; k) +
2

N

� 1p
2
Fkx(n�N) + (�1)k 1� 1p

2
Ekx(n)

+
(�1)kp

2
x(n+ 1) (11b)

DCT-IV:

c(n+ 1; k) =Ekc(n; k) + Fks(n; k) +
2

N

� �Gkx(n�N) + (�1)kHkx(n) : (12a)

DCT-IV:

s(n+ 1; k) =Eks(n; k)� Fkc(n; k) +
2

N

� Hkx(n�N) + (�1)kGkx(n) (12b)

where

Ak = cos
k�

N

Bk = sin
k�

N

Ck = cos
k�

2N

Dk = sin
k�

N

Ek = cos
(2k+ 1)�

2N

Fk = sin
(2k+ 1)�

2N

Gk = cos
(2k+ 1)�

4N
and

Hk =sin
(2k+ 1)�

4N
:

Equations (9)–(12) were derived by Yip and Rao [6] and were called
the shift properties, which can be used to update the transform coef-
ficients. Consider the DCT-II as a particular example. Clearly (10a)
can be used to update the DCT-II coefficients. However, the updated
DCT-II is related to the DST- II coefficients. In other words, updating
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the DCT-II also requires the updating of DST-II, and this can be per-
formed by (10b). Consequently, both DCT-II and DST-II must be up-
dated at the same time, even in the case when only one of them is re-
quired. This problem exists for other transforms as well and is a source
of excessive computational burden.

III. SECOND-ORDERSHIFT PROPERTIES OFDCT’s AND DST’s

As mentioned in Section I it is desirable to derive recursive equa-
tions which enable the independent updating of DCT’s and DST’s, re-
spectively. We present the derivation for DCT-II and DST-II in detail.
Similar derivations can be performed for the remaining transforms and
the final results will be listed without proof in the interest of brevity.

Let us consider the DCT-II and DST-II. The objective is to derive
two independent second-order one-variable recursive equations which
are equivalent to (10a) and (b). We begin by taking thez transform of
(10a) and (b) as follows:

zC(z; k) =AkC(z; k) +BkS(z; k) +
2

N
PkCk

� (�1)k � z
�N

X(z) (13a)

and

zS(z; k) =AkS(z; k)�BkC(z; k) +
2

N
PkDk

� z
�N � (�1)k X(z) (13b)

whereC(z; k), S(z; k), andX(z) are thez transforms ofc(n; k),
s(n; k) andx(n), respectively. From (13a) and (13b) we can obtain

C(z; k) =
Bkz

�1

1� Akz�1
S(z; k)

+

2

N
PkCk (�1)k � z�N z�1

1� Akz�1
X(z) (14a)

and

S(z; k) =
�Bkz

�1

1� Akz�1
C(z; k)

+

2

N
PkDk z�N � (�1)k z�1

1�Akz�1
X(z): (14b)

Substituting (14a) into (14b) and after some manipulation we have

(1� 2Akz
�1 + z

�2)C(z; k)

=
2

N
PkCk

� (�1)kz�1 � (�1)kz�2 � z
�(N+1) + z

�(N+2)
X(z):

(15a)

In the same way, substituting (14b) into (14a) and after some manipu-
lation we have

(1� 2Akz
�1 + z

�2)S(z; k)

=
2

N
PkDk

� (�1)kz�1 � (�1)kz�2 + z
�(N+1) + z

�(N+2)
X(z):

(15b)

Taking the inversez transform of (15a) and (15b) yields

c(n+ 1; k) = 2Akc(n; k)� c(n� 1; k) + T
k
2; 1

� (�1)kx(n)� (�1)kx(n� 1)

�x(n�N) + x(n�N � 1) (16)

and

s(n+ 1; k) = 2Aks(n; k)� s(n� 1; k) + U
k
2; 1

� �(�1)kx(n)� (�1)kx(n� 1)

+x(n�N) + x(n�N � 1) (17)

where

T
k
2; 1 =

2

N
PkCk and U

k
2; 1 =

2

N
PkDk:

Equations (16) and (17) represent the second-order shift properties for
DCT-II and DST-II. Close examination of (16) and (17) indicate that
they are independent of each other and, hence, can be used to recur-
sively update the DCT-II and DST-II, respectively. It is interesting to
note that there are similarities between (16) and (17) and the frequency
sampling structure for FIR filter implementation [9].

The second-order shift properties for other members of the DCT and
DST families can be obtained using a similar approach and the results
are listed as follows:

DCT-I:

c(n+ 1; k)

= 2Akc(n; k)� A
2
k + PkB

2
k c(n� 1; k)

+ T
k
1; 1x(n+ 1) + T

k
1; 2x(n) + T

k
1; 3x(n� 1)

� T
k
1; 4x(n�N + 1) + T

k
1; 5x(n�N)

+ T
k
1; 6x(n�N � 1) (18)

where

T
k
1; 1 =(�1)k 1

2

T
k
1; 2 =(�1)�k 1�

p
2 AkPk

2

N

T
k
1; 3 =�(�1)�k 1� 1

2
Pk

2

N

T
k
1; 4 =

1

2
� 1 Pk

2

N

T
k
1; 5 = 1�

p
2 AkPk

2

N

and

T
k
1; 6 =Pk

1

N
: (19)

Note that in (18) the coefficient,[A2
k + PkB

2
k], is always equal to one

whenk 6= 0andk 6= N . This means that this coefficient introduces a
multiplication only whenk = 0 or k = N

DST-I:

s(n+ 1; k)

= 2Aks(n; k)� A
2
k + PkB

2
k s(n� 1; k)

+ U
k
1; 1x(n) + U

k
1; 2x(n� 1) + U

k
1; 3x(n�N)

+ U
k
1; 4x(n�N � 1) (20)

where

U
k
1; 1 =(�1)�kBk

1� Pkp
2

� 1
2

N
;

U
k
1; 2 =(�1)k 1� 1

2
Ak(1� Pk)Bk

2

N
;

U
k
1; 3 =Bk

1

2
+ 1� 1

2
Pk

2

N
;

and

U
k
1; 4 =AkBk (Pk � 1)

1

N
: (21)
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DCT-III:

c(n+ 1; k)

= 2Ekc(n; k)� c(n� 2; k) + T
k
3; 1x(n)

+ T
k
3; 2x(n�N + 1) + T

k
3; 3x(n�N)

+ T
k
3; 4x(n�N � 1) (22)

where

T
k
3; 1 =(�1)k

2

N
Fk

T
k
3; 2 = 1�

1

2

2

N

T
k
3; 3 = 1�

p
2 Ek

2

N

and

T
k
3; 4 =

1

N
: (23)

DST-III:

s(n+ 1; k) = 2Eks(n; k)� s(n� 1; k) + U
k
3; 1x(n+ 1)

+Uk
3; 2x(n) + U

k
3; 3x(n� 1) + U

k
3; 4x(n�N) (24)

where

U
k
3; 1 =(�1)k

1

N

U
k
3; 2 =(�1)k

2

N
1�

1

2
Fk �

1

2
Ek

U
k
3; 3 = � (�1)k 1�

1

2

2

N
F
2

k +EkFk

and

U
k
3; 4 = �

1

N
Fk: (25)

DCT-IV:

c(n+ 1; k)

= 2Ekc(n; k)� c(n� 1; k)

+ T
k
4; 1 [x(n) + x(n� 1)]

+ T
k
4; 2 [x(n �N)� x(n�N � 1)] (26)

where

T
k
4; 1 =(�1)k

2

N
Hk

and

T
k
4; 2 =�Gk

2

N
: (27)

DST-IV:

s(n+ 1; k)

= 2Eks(n; k)� s(n� 1; k) + U
k
4; 1 [x(n)� x(n� 1)]

+ U
k
4; 2 [x(n �N)� x(n�N � 1)] (28)

where

U
k
4; 1 =(�1)kG

2

N
and U

k
4; 2 = Hk

2

N
: (29)

Equations (16)–(29) provide a new approach for implementing a run-
ning DCT and DST algorithm.

TABLE I
COMPARISON OF COMPUTATIONAL

BURDEN

TABLE II
COMPARISON OFMEMORY LOCATIONS

IV. PERFORMANCEANALYSIS

The computation of running DCT’s and DST’s based on SOS prop-
erties is expected to provide certain advantages over the first-order ap-
proach proposed by Yip and Rao [6] as well as the algorithm proposed
by Murthy and Swamy [7].

Let us first compare the computational burden associated with the
proposed approaches against those by Yip and Rao [6] and Murthy and
Swamy [7]. Taking DCT-II as the key example, from (9a) and (b) it is
clear that the first-order approach needs the following computation:

• 6N multiplications with coefficients;
• 4N addition of terms;
• 2 additions for 2[(�1)kx(n)� x(n�N)] for even and oddk.

Similarly, from (16) the proposed second-order approach requires the
following operations:

• 2N multiplications with coefficients;
• 2N additions of terms;
• four additions for

(�1)k[x(n)� x(n� 1)]� x(n�N) + x(n�N � 1)

for odd and evenk.
Hence, for DCT-II the second-order approach can reduce the number
of multiplications by 67% when compared with the first-order ap-
proach. Table I lists the results for all the transform members. Clearly,
in all cases the computational burden associated with the proposed
approaches is significantly reduced when compared to both references
[6] and [7].

Now let us consider the memory requirements. Note that in the case
of [7] there is no improvement in terms of the memory requirements
when compared with the first-order approach [6]. This is because both
the real and imaginary part of the complex function need storage loca-
tions. Hence, we only compare the proposed algorithm with the first-
order approach [6]. For both algorithms, memory is required to store 1)
the coefficients of the recursive equations; 2) transform results; and 3)
the input signal samples. Table II depicts the comparison between these
two methods. As expected, the memory requirements for the proposed
approach are either equal to or better than the first-order algorithm [6].
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V. CONCLUSION

In this paper, we have derived the SOS properties for DCT’s and
DST’s. The result is a new approach for computing the running DCT’s
and DST’s. The computational burden and memory requirements as-
sociated with the proposed approach have been investigated and com-
pared with the first-order approach proposed by Yip and Rao [6], as
well as the approach proposed by Murthy and Swamy [7]. It has been
shown that the proposed approach is characterized by reduced compu-
tational burden and generally lower memory storage requirements.

REFERENCES

[1] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine transform,”
IEEE Trans. Comput., vol. C-23, pp. 90–94, Jan. 1974.

[2] W. H. Chen, C. H. Smith, and S. C. Fralick, “A fast computational al-
gorithm for the discrete cosine transform,”IEEE Trans. Commun., vol.
COM-25, pp. 1004–1009, Sept. 1977.

[3] B. G. Lee, “A new algorithm to compute the discrete cosine transform,”
IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-32, pp.
1243–1245, Dec. 1984.

[4] M. Malvar, “Fast computation of discrete cosine transform through fast
Hartley transform,”Electron. Lett., vol. 22, no. 7, pp. 352–353, March
1986.

[5] Y.-H. Chan and W.-C. Siu, “Mixed-radix discrete cosine transform,”
IEEE Trans. Signal Processing, vol. 41, pp. 3157–3161, Nov. 1993.

[6] P. Yip and K. R. Rao, “On the shift properties of DCT’s and DST’s,”
IEEE Trans. Acoust., Speech, Signal Processing, vol. 35, pp. 404–406,
Mar. 1987.

[7] N. R. Murthy and M. N. S. Swamy, “On the computation of running
discrete Cosine and Sine transforms,”IEEE Trans. Signal Processing,
vol. 40, pp. 1430–1437, June 1992.

[8] Z. Wang, “Fast algorithms for the discreteW transform and for the
discrete Fourier transform,”IEEE Trans. Acoust., Speech, Signal Pro-
cessing, vol. ASSP-32, pp. 803–816, Aug. 1984.

[9] A. V. Oppenheim and R. W. Schafer,Digital Signal Pro-
cessing. Englewood Cliffs, NJ: Prentice-Hall, 1975.


	Computing running DCTs and DSTs based on their second-order shift properties
	Recommended Citation

	Computing running DCTs and DSTs based on their second-order shift properties
	Abstract
	Keywords
	Disciplines
	Publication Details

	Computing running DCT's and DST's based on their second-order shift properties - Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on

