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This paper discusses the design and development of a code to calculate the eigenvalues of a large

sparse real unsymmetric matrix that are the rightmost, leftmost, or are of largest modulus. A

subspace iteration algorithm is used to compute a sequence of sets of vectors that converge to an

orthonormal basis for the mvarlant subspace corresponding to the required eigenvalues. This

algorithm is combined with Chebychev acceleration if the rightmost or leftmost eigenvalues are

sought, or if the eigenvalues of largest modulus are known to be the rightmost or leftmost

eigenvalues. An option exists for computing the corresponding eigenvectors. The code does not

need the matrix exphcitly since it only requires the user to multiply sets of vectors by the matrix.

Sophisticated and novel iteration controls, stopping criteria, and restart facilities are provided.

The code is shown to be efficient and competitive on a range of test problems.

Categories and Subject Descriptors: G. 1.3 [Numerical Analysis]: Numerical Linear Algebra
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1. INTRODUCTION

We are concerned with the problem of computing selected eigenvalues and

the corresponding eigenvectors of a large sparse real unsymmetric matrix. In

particular, we are interested in computing either the eigenvalues of largest

modulus or the rightmost (or leftmost) eigenvalues. This problem arises in a

significant number of applications, including mathematical models in eco-

nomics, Markov chain modeling of queueing networks, and bifurcation prob-

lems (for references, see Saad [19]). Although algorithms for computing

eigenvalues of sparse unsymmetric matrices have received attention in the

literature (for example, Stewart [24], Stewart, and Jennings [27], Saad

[18-20]), there is a notable lack of general-purpose robust software. The

best-known codes are SRRIT [26] and LOPSI [27]. Both use subspace itera-
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138 . 1. S, Duff and J, A, Scott

tion techniques and are designed to compute the eigenvalues of largest

modulus. Many real problems, however, require a knowledge of the rightmost

eigenvalues. For example, common bifurcation problems involve computing

the eigenvalue A of largest real part (the rightmost eigenvalue) of a stability

matrix and then detecting when I&( A) becomes positive as the matrix

changes (see example 2 in Section 3).

In the Harwell Subroutine Library, routine EA12 uses a subspace iteration

method combined with Chebychev acceleration [17] to calculate the eigenval-

ues of largest modulus and the corresponding eigenvectors of a large sparse

real symmetric matrix. There is no analogous routine in the Harwell Subrou-

tine Library for the unsymmetric problem. In the NAG Library, routine

F02BCF calculates selected eigenvalues and eigenvectors of real unsymmet-

ric matrices by reduction to Hessenberg form, followed by the QR algorithm

and inverse iteration for selected eigenvalues whose moduli lie between two

user-supplied values. This routine is intended for dense matrices since all the

entries of the matrix (including the zero entries) must be passed by the user

to the routine, which stores the matrix as a two-dimensional array, making it

unsuitable for large sparse matrices. Since it was the intention that EB 12

should provide a code for unsymmetric problems that was analogous to the

Harwell code EA12 for symmetric problems, EB 12 uses subspace iteration

techniques, and in the design of the code we have not considered employing

any of the other methods for computing selected eigenvalues and eigenvectors

of large unsymmetric matrices such as Arnoldi’s method and the unsymmet-

ric Davidson’s method, which have been discussed recently in the literature

(for example, see Saad [19], Ho [11], Ho et al. [12], and Sadkane [22]).

This paper describes the algorithms employed by EB 12 and illustrates the

use of EB 12 on representative test problems. In Section 2 we introduce

the algorithms and discuss some of the design features of the code. The

results of using EB12 to find selected eigenvalues and the corresponding

eigenvectors of a set of test examples taken from practical problems are

presented in Section 3. These results illustrate the effect of varying the code’s

parameter values and demonstrate the superiority of Chebychev accelerated

subspace iteration over simple subspace iteration for those problems where

the rightmost (or leftmost) eigenvalues coincide with those of largest modu-

lus. Concluding remarks are made in Section 4.

2. THE ALGORITHM

Let A be a real n x n matrix with eigenvalues Al, Az, . . . . A. ordered so that

Let x be a subspace of dimension m with m < n (in general, m << n). If

IA., I > IAm,, I then, under mild restrictions on X, as h increases, the sub-

spaces Akx tend toward the invariant subspace of A corresponding to

Al, Az, . . . . Am (a proof is provided by Stewart [23]). The class of methods

based on using the sequence of subspaces Akjy, k = O, 1,2,...includes sub-

space (or simultaneous) iteration methods. In the special case m = 1, the
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subspace iteration method reduces to the power method in which the domin-

ant eigenvector of A is approximated by a sequence of vectors Ak x, k =

0,1,2,... Subspace iteration methods are particularly suitable when the

matrix A is large and sparse, since this class of methods only requires

the multiplication of sets of vectors by A.

Starting with an n x m matrix XO whose columns form a basis for x, the

sub space iteration method described by Stewart [24] for a real unsymmetric

matrix A generates a sequence of matrices Xh according to the formula

AX~ =Xk+lRh+l, (2.2)

where R ~+ ~ is an upper-triangular matrix chosen so that ‘k+ 1 has orthonor-

mal columns. This corresponds to applying the Gram–Schmidt orthogonaliza-

tion process to the columns of ~k. It is straightforward to verify the

relationship

AkXO = X/, RkRk_l,... Rl, (2.3)

so that the columns of Xk form a basis of Akx. Convergence of the i th column

of Xk to the i th basis vector of the invariant subspace of A corresponding to

AI, AZ,..., Am is linear with convergence ratio max{l Al/AL. J IA, + I/A, 1}, which

may be intolerably slow. A faster rate of convergence may be achieved by

performing a “Schur-Rayleigh-Ritz” (SRR) step (Stewart [24]) in which

Bk = X~AXh (2.4)

is formed and reduced by a unitary matrix Z~ to the real Schur form

T~ = Z; BkZk, (2.5)

where Tk is a block-triangular matrix, in which each diagonal block (T~ ),, is

either of order 1 or is a 2 X 2 matrix having complex conjugate eigenvalues,

with the eigenvalues ordered along the diagonal blocks in descending order of

their moduli. The matrix Xk is then replaced by ‘“h = ‘h Zk. For an arbitrary

matrix Xo, if lA, _ll > IA, I > IA, +lI, the ith column of ‘k will in general

converge to the ith basis vector of the invariant sub space of A corresponding

to A1, Az,. ... Am linearly with conv~rgence ratio IAm,~/A11. Thus convergence

is faster, and the first columns of Xk tend to converge more quickly than the

later columns. If the r eigenvalues of A of largest moduli are required, it is

usual to iterate with m (m > r) trial vectors, the additional vectors being

called guard vectors. The slowest rate of convergence will be for the r th basis

vector, which has a convergence ratio IAn + ~/A, 1.

The purpose of the orthogonalization of AXk (2.2) is to maintain linear

independence among the columns of AXk. To reduce overheads, it should not

be done until there is reason to believe that some columns have become

linearly dependent. Thus, in practice, Axk is replaced by A~Xk for some 121

(1 = l(li )), and each iteration of the subspace iteration algorithm then con-

sists of four main steps:

(1) Compute A’(~)Xk.

(2) Orthonormalize AZ(k ‘Xh.
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(3) Perform an SRR step,

(4) Test for convergence.

From the computed eigenvalues of Th, the corresponding eigenvectors of Th

can be determined by a simple back-substitution process (see Peters and

Wilkinson [16]). The eigenvectors of T~ can be used to obtain approximate

eigenvectors of A corresponding to the converged eigenvalues. To see this, let

w; denote the eigenvector of T; corresponding to Al. Then

T~w, = /iLW,

From (2.4) and (2.5),

T~ = X-;UAh ,

and hence

2.6)

2.7)

Xqm”kw, – Alxkw, ) = o. (2.8)

It follows that if y, = X~w,, then as k increases, (y,, A,) converges to the ith

eigenpair of A.

As already noted, in practice the simple subspace iteration algorithm uses

Al in place of A. One possible way of improving the convergence rate achieved

by the subspace iteration algorithm is to replace Al by an iteration polyno-

mial pi(A). The use of Chebychev polynomials to accelerate the convergence

of subspace iteration was suggested by Rutishauser [17] for symmetric prob-

lems. For the unsymmetric problem, Saad [19] discussed how the technique

can be extended to find the rightmost (or leftmost) eigenvalues of a real

unsymmetric matrix and to accelerate the convergence of the simple subspace

iteration algorithm when the eigenvalues of largest moduli are also the

rightmost (or leftmost) eigenvalues. We use many of the ideas proposed by

Saad. Suppose we want to find the r rightmost eigenvalues Al, &, . . . . & of

A. Let E(d, c, a) denote an ellipse with center d, foci d – c and d + c, major

semiaxis a, and which is symmetric with respect to the real axis (since A is

real, the spectrum of A is symmetric with respect to the real axis) so that d

is real, and a and c are either real or purely imaginary. Suppose E( d,

c, a) contains the set S of unwanted eigenvalues &, ~, A,+ ~, . . . . Art. The

Chebychev accelerated-iteration algorithm then chooses the iteration polyno-

mial pl( A) to be the polynomial given by

T’l[(A – d)/c]
Pi(A) = (2.9)

T’l[(A, – d)/c] ‘

where 1’1( A) is the Chebychev polynomial of degree 1 of the first kind. This

choice is made since the maximum modulus of pl( A) within the ellipse is

small compared to its modulus on the sought-after eigenvalues. The denomin-

ator T’l[( A, — d )/c] in (2.9) is a scaling factor, and A, is termed the reference

eigenvalue (Ho [11] and HO et al. [12]). In practice, since A, is not known, it

is replaced by some approximation y, called the reference point; this is
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discussed in Section 2.7. Associated with each eigenvalue A, eS is a conver-

gence factor

((A, –d) + (A, –~)’ –CZ ’12
RJ(d, c) =

)
(Ar -d) + ((A, - d)’ -c’)’” “

The choice of d, c, a which give an ellipse E(d, c, a) enclosing

which minimizes max~ ,~ R ,(d, c) defines the optimal ellipse.

(2.10)

all A~eS and

Forming pi(A) expli~itly may be avoided by computing the columns of the

matrix pl(A)X~ using the three-term recurrence relation for Chebychev

polynomials

T,+,(A) = 2ATq(A) – T,. I(A), q=l,2,... (2.11)

with T’o( A) = 1, Z’l( A) = A To see how (2.11) is used, for an arbitrary vector

ZO, let z~ = pg(A)z O. Defining a~+l = p~/p~+l with p~ = 7’~[(A, – d)/c], it

follows from (2. 11) that the vector z ~ may be computed for q = 1,2,... using

the recurrence

~q+l
Zq+l = 2— (A – dI)zq – Uq+l UqZq-l (2.12)

c

where

1

~q+l =
2/vi – Uq ‘

(2.13)

with al = c/(A, – d) and ZI = (al/c)(A – dI)z O. We note that if c is purely

imaginary, provided the reference point y used to approximate A, is real, the

above recursion can be carried out in real arithmetic since in this case

the scalars a, are purely imaginary, and hence u~ + ~/c and a~ + ~~~ are real.

It can be shown (Saad [ 19]) that if E(d, c, a) is the optimal elhpse and if

Pi(A) defined by (2.9) is used in the subspace iteration algorithm in place of

Al, convergence is to the invariant subspace corresponding to the eigenvalues

of A outside the ellipse, and the convergence rate for the i th basis vector is q:

where

‘ 1/2
a+(a’–c)

q, = l<i <m, (2.14)~ 1/2 >

a,+(a~–c)

where E(d, c, a,) is the ellipse with center d, foci d – c and d + c, and major

semiaxis al which passes through A,. If the m + 1 rightmost (or leftmost)

eigenvalues are also the m + 1 eigenvalues of largest modulus, the conver-

gence rate q: can be much better than the value IAm. ~/A,lz achieved by the

simple subspace iteration algorithm. The effect of this faster rate of conver-

gence is illustrated in Section 3 and is exploited in EB12 by employing

Chebychev polynomials when the r rightmost (or leftmost) eigenvalues are

sought and when the r eigenvalues of largest modulus are also the r

rightmost (or leftmost) eigenvalues. The use of Chebychev polynomials is one

ACM Transactions on Mathematical Software, Vol. 19, No. 2, June 1993



142 . 1.S. Duff and J. A. Scott

way in which EB12 is a more general and flexible code than the codes LOPSI

and SRRIT, which are only able to compute the eigenvalues of largest

modulus.

Implicit in the above brief discussion of subspace iteration, there are many

practical questions such as how to choose the subspace dimension m for a

given value of r, how to start the iteration process, how to choose the degree 1

of the iteration polynomial pi(A), how to orthonormalize a set of vectors, how

to construct the optimal ellipse E(d, c, a), and how to test for convergence of

an eigenvalue. We shall discuss these and other questions and how we deal

with them in EB 12 in some detail in later sections. However, omitting these

problems for the present, the algorithm employed by EB 12 has the following

general structure.

(1) Start. Choose the subspace dimension m and an n X m matrix X with

orthonormal columns. Set 1 = 1, pl( A) == 1.

(2) Iteration. Compute X* pl(A)X.

(3) SRR step. Orthonormalize the columns of X. Compute B = XTAX. Reduce

B to real Schur form T = ZTBZ, where each diagonal block T,, is either of

order 1 or is a 2 X 2 matrix having complex conjugate eigenvalues, with

the eigenvalues ordered along the diagonal blocks. Set X= XZ.

(4) Convergence test. If the first r columns of X is a satisfactory set of basis

vectors spanning the invariant subspace corresponding to the r sought-

-after eigenvalues of A then stop, else determine the degree 1 of the

iteration polynomial pl( A) for the next iteration, If the eigenvalues of

largest modulus are required and they are also the rightmost (or leftmost)

eigenvalues, or if the rightmost (or leftmost) eigenvalues are required,

find the ellipse E(cZ, c, a), update the reference point Y, and set P1

according to Eq. (2.9) with A, replaced by y. Otherwise, set pl( A) = Al.

Go to 2.

In the following subsections we discuss how this algorithm is implemented in

EB 12. In Section 2.1 we describe the overall design of EB12 and, in particu-

lar, the use of reverse communication. In Section 2.2 the dimension m of the

iteration subspace, which is a parameter which must be set by the user, is

considered. The initial matrix X chosen by EB 12 is discussed in Section 2.3.

In Section 2.4 the convergence criterion is given. The determination of the

degree 1 of the iteration polynomial is discussed in Section 2.5. In Section 2.6

the locking strategy employed by EB 12 is outlined. In Section 2.7 the calcula-

tion of the ellipse is considered, and in Section 2.8 we discuss

the computation of eigenvectors once the sought-after eigenvalues have been

determined.

2.1 Overall Control and Design

The code EB 12 is written in FORTRAN 77 and has two entries:

(a) EB12A (EB12AD in the double-precision version) calculates the selected

eigenvalues of A.
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(b) EB12B (EB12BD in the double-precision version) uses the basis vectors

calculated by EB 12A to calculate the eigenvectors corresponding to the

computed eigenvalues. Optionally, the scaled eigenvector residuals (see

Eq. (2.36)) are computed.

EB 12 does not require the user to supply the matrix A explicitly. Each

time EB12 needs a set of vectors to be multiplied by A, control is returned to

the user. This allows full advantage to be taken of the sparsity and structure

of A and of vectorization or parallelism. It also gives the user greater freedom

in cases where the matrix A is not available and where only the product of A

with vectors is known. Within the code EB 12, only dense linear algebra

operations are performed, and for efficiency these exploit the BLAS (Basic

Linear Algebra Subprograms) kernels. This includes the use of both level-2

BLAS routines (Dongarra et al. [4]) and the level-3 BLAS routine _GEMM

(Dongarra et al. [31) to perform matrix-matrix multiplications of the form

B = XT Y, where Y = AX has been computed by the user. In addition to using

BLAS routines, during the Schur-Rayleigh-Ritz step (see (2.4), (2.5)), EB12A

employs the EISPACK routines ORTHES and ORTRAN to reduce B = XT=

to Hessenberg form H (Wilkinson and Reinsch [29]), which is then reduced to

the real Schur form T = VTHV using a modified version of the routine HQR3

given by Stewart [25]. We have modified the routine HQR3 so that the

diagonal blocks of T are ordered with the eigenvalues appearing in descend-

ing order of their moduli if the simple subspace iteration algorithm is being

used, and in descending (or ascending) order of their real parts if Chebychev

acceleration is being employed. This ordering is convenient so that we can

“pick-off” the eigenvalues in turn as they converge (see Section 2.4).

2.2 The Number of Trial Vectors

The user must supply EB12 with the number r of required eigenvalues and

the dimension m of the iteration subspace to be used. The value of the

parameter m is important. It influences the effectiveness of EB 12 since

the amount of storage required by the code and the number of matrix-vector

multiplications at each iteration depends upon m, which implies that, for a

specified r, m should not be chosen unnecessarily large. But if m is too small,

the number of iterations required for convergence may be high. The number

of trial vectors m must therefore be chosen with some care. The value of m

must exceed r, the number of sought-after eigenvalues, to provide some

guard vectors. For the simple subspace iteration algorithm, m must be at

least r + 1. If Chebychev polynomials are employed, in order to be able to

construct the ellipse at each iteration and to allow for complex conjugate

pairs of eigenvalues, EB12 normally requires m to be at least r + 2, but if

the r + 1 rightmost (or leftmost) eigenvalues are known to be real, m may

equal r + 1 (see Section 2.7 for more details). In practice, it is advisable to

take m larger than this minimum value (see the discussion following

Eq. (2.5)). In typical runs, we have taken m to be about 2 r, but the best value

for m for a given r is problem dependent. At any stage of the computation,

the user is able to increase (or decrease) the value of m and restart EB12.
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The results of employing different values of m for a given r for our test

problems are presented in Section 3.

For some problems, if r eigenvalues are sought, it can be advantageous to

run E1312 with r replaced by rl, where rl exceeds r. The parameter m must

then be chosen to satisfy m > rl + 1 for simple subspace iteration and

m > rl + 2 for subspace iteration with Chebychev acceleration. The computa-

tion may be terminated once r eigenvalues have converged. This strategy

may be useful if, for example, some of the unwanted eigenvalues of A

have real parts which are almost equal to the real part of one or more

of the wanted eigenvalues. This is discussed further in Section 2.7 and is

illustrated in Example 2 of Section 3.

2.3 The Starting Matrix X

EB 12A allows the user to supply an initial estimate of the r basis vectors

which span the invariant subspace corresponding to the sought-after eigen-

values of A. If the user wishes to supply an estimate, on the first entry to

EB 12A the estimated values should be stored in the first r columns of X. The

remaining m – r guard vectors are generated using the Harwell Subroutine

Library random number generator, FAO 1A, which generates random num-

bers in the range [ – 1, 1]. The resulting set of m vectors is then orthonormal-

ized using the modified Gram–Schmidt algorithm (see, for example, Golub

and Van Loan [9]). The implementation of the modified Gram–Schmidt

algorithm employed in EB 12 uses level-2 BLAS kernels and was written by

Van Loan [28].

If the user does not wish to supply an estimate of the initial basis, a

normalized random vector, x ~, is generated using FAOIA, and control

is passed to the user for the matrix-vector multiplication Axl. In the next

call to EB12A, Axl is orthonormalized with respect to xl using the modified

Gram–Schmidt algorithm to give Xz. The process is repeated until xl,

X2 >..., x., have been computed. The resulting set of orthonormal vectors

X1, X2,..., Xm are taken to be the columns of the starting matrix X. This

choice of starting matrix amounts to using one step of Arnoldi’s method (see,

for example, Saad [18]). In general we found that this starting matrix yielded

better results than were obtained using a starting matrix with random

orthonormalized columns (that is, fewer matrix-vector multiplications and

fewer iterations were required for convergence). This was particularly true

when Chebychev acceleration was employed since in this case the use of

Arnoldi’s method on the first step provided better initial ellipse parameters

than were obtained from a random starting matrix. If the user has some prior

knowledge of the spectrum of A and feels that one step of Arnoldi’s method is

unlikely to provide a good starting matrix, a random starting matrix may be

employed by placing random vectors in the first r columns of X.

2.4 The Convergence Criterion

We test for convergence after an SRR step. The convergence criterion used in

EB 12A essentially amounts to demanding that the relation

AX=XT (2.15)
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is almost satisfied. In particular, the i th column of X is considered to have

converged if the following inequality is satisfied

II(AX – XT), 112< EPS(2)* I! L4X),I 12, (2.16)

where EPS(2) is a convergence parameter. The user is asked to assign to the

parameter EPS(l) a value in the range (u, 1.0), where u is the machine

precision. If the user supplies a value which is out of range, EB12A issues a

warning and sets EPS(2) to the default value &; otherwise, EPS(2) is

initially set equal to EPS(l).

EB12A requires the columns of X to be accepted in the order i = 1,2, . . . .

r so that column j is only tested for convergence if the preceding columns

i=l,2 , . . . . j – I have all converged. If columns j and j + 1 of X correspond

to a complex conjugate pair of eigenvalues, then (2.16) must hold simultane-

ously for i = j and i = j + 1. If j – 1 eigenvalues have converged, then until

the jth eigenvalue is accepted, the code monitors the scaled residual RJ given

by

Rj = II(AX – XT)J 112/11 (=).I 112. (2.17)

Let {~(k) and RJ(k ) denote, respectively, the computed approximation to the

jth elgenvalue and the corresponding scaled residual on the k th iteration.

For all k sufficiently large, the scaled residuals should satisfy

RJ(k + 1) <R,(k). (2.18)

If

Rj(k + 1) > R,(k) > EPS(2) (2.19)

and

lAJ(k + 1) - A,(k)l < EPS(2) *102 *max(l Aj(k + 1)1, lAj(k)l), (2.20)

then EB12A accepts AJ(k + 1), issues a warning that the convergence toler-

ance requested by the user was not achieved, and sets EPS(2 ) to the value for

which (2.16) is satisfied for i = j.

EB12A also checks for slow convergence, Convergence of the jth eigenvalue

is considered to be intolerably slow if, for some k,

RJ(k + 1) < EPS(2)* 102, (2.21a)

and

and

(2.21b)

(2.21C)

In this case, EB12A again accepts Aj( k + 1), issues a warning, and sets

EPS(2) to the value for which (2.16) is satisfied for i = j. If EB12A does

return with EPS(2) # EPS(l) (or EPS(2) + L if EPS(l) was supplied out of

range), the requested accuracy can often be achieved by increasing m and

recalling EB 12A.
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2.5 The Degree / of p,(A)

At each iteration, EB 12A must determine the degree 1 of the iteration

polynomial pl( A) to be used on the next iteration. We want to ensure that 1 is

chosen so that the columns of pl(A)X remain linearly independent. Bjoi-ck [21

showed that the modified Gram–Schmidt algorithm applied to a matrix

X= [X1, X2,...,
A

x ~ ] produces a computed orthonormal matrix X which satis-

fies

iTX = I + E, IIEIIZ = UK2(X), (2.22)

where K2(X) = maxllYllo= ~llXyllz/minllY ll~=~l~yllz is the condition number of X,

and u is the machine “precision.

Thus the modified Gram–Schmidt algorithm should only be used to com-

pute orthonorrnal bases when the vectors to be orthonormalized are reason-

ably independent. Let l(k) denote the degree of the iteration polynomial on

the k th iteration. We use (2.22) to obtain an estimate of K2(X) and then use

this to try and ensure that l(k + 1)will not be chosen so large that some of

the columns of Pz(~+ 11(A)X become linearly dependent. In particular, we

require 1( k + 1)< 11 where

{

l(k) X (1 +lloglO(~z(X) X 10-Y) I), K2(X) < 10q
1, = (2.23)

l(k) X (1 + 10g10(K2(x) X 10-’))-’, K2(X) > 10q,

with q = 3. This bound, which we have not seen in the published literature,

was chosen to ensure 11 varies from l(k) in a controlled manner. If K2(X) is

not large, so that the columns of X are reasonably linearly independent, 11

will be greater than l(k), but if K2(X) is large, 11 is smaller than l(k). The

value of q = 3 was selected as a result of our numerical experiments.

Provided the other restrictions on 1 discussed in the remainder of this section

are imposed, our results were not found to be very sensitive to changing the

value of q to 2 or 4, but larger values of q sometimes led to an unnecessary

amount of work being done before the ellipse is updated, while smaller values

sometimes caused an SRR step to be performed unnecessarily early,

When Chebychev acceleration is used, it is necessary to restrict the degree

of the iteration polynomial when the current ellipse is not a good ellipse,

since otherwise (2.23) may lead to a large number of matrix-vector multiplica-

tions being performed before there is an opportunity to update the ellipse.

The restriction EB 12A imposes on the degree of the iteration polynomial for

both the simple subspace and Chebychev accelerated algorithms is taken

from Stewart and Jennings [27] and is 1(k + 1)<12 with

12 = 0.5 x (1 + log, o(u-l)/loglo( ratio)), (2.24)

where ratio is the ratio of the convergence rates of the slowest and fastest

converging eigenvalue. If the ellipse is poor, ratio is large, and lZ will be

small, but as the algorithm converges, lZ increases, and our numeri-

cal experiments found that the degree of the iteration polynomial is then

governed by (2.23) rather than (2.24).
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Near convergence, if (2.23) and (2.24) are used to determine 1(k) and if its

value is large, the iteration polynomial may yield approximate eigenvalues

that are more accurate than required by the convergence criterion. In this

case, unnecessary matrix-vector multiplications may be performed. To avoid

this we monitor the scaled residual R, for the r th eigenvalue, which is given

by Eq. (2.17) with j = r. For values of R, close to EPS(2) we want to restrict

1. As a result of our numerical experiments, in EB12A we set l(k + 1) <13

where

13 = t X (1 + llog10(R,/EPS(2 ))l) (2.25)

with t = 40. Our numerical results were not very sensitive to the choice

t = 40; similar results were obtained for t = 30 and t = 50, but larger values

of t did not prevent unnecessary multiplications; and, if t was too small,

more iterations were needed for convergence. For some of our test problems,

if only a small number of eigenvalues were required, the savings resulting

from limiting 1 near convergence were significant. For example, for Example

2 of Section 3 with n = 400, if the two leftmost eigenvalues were required

and if m = 5 was chosen, the restriction (2.25) gave a saving of more than

507. in the number of matrix-vector multiplications required.

When the simple subspace algorithm is used, if IAl I >1 the entries of the

matrix AZX will grow as 1 increases. Let x ~ ( Ilxl IIz = 1) be the first column of

X. Then

for some z. To prevent overflow, for the simple subspace iteration algorithm

we require l(k + 1) < 11 where 1A satisfies

IA; I< M*1O-’, (2.27)

where M is the overflow limit. This gives a bound on 11 of

log10 M – 2
14<

loglo(l Ail) “

If i eigenvalues have already converged, the restriction (2.28) becomes

loglo M – 2
14<

loglo(l A,+ll) “

(2.28)

(2.29)

Since &. ~ is not known, the current estimate of A,. ~ is used in (2.29). For

the Chebychev accelerated algorithm it is not necessary to impose the restric-

tion (2.28) (or (2.29)) since the iteration polynomial (2.9) is scaled so that the

matrix entries do not overflow.

We remark that Stewart and Jennings [27] impose a maximum value

LMAX on the degree 1 of the iteration polynomial ZJl( N used in their code

LOPSI (see also Saad [ 19]). In particular, they suggest using LMAX = 20. We

have considered imposing a restriction 1< LMAX in EB12A but have found

that it usually led to poorer results. We report on this further in Section 3.
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2.6 The Use of Locking

Computation time may be reduced when several eigenvalues are desired by

using a “locking” technique. The idea behind locking techniques, which are

sometimes also termed implicit-deflation techniques (see, for example,

Stewart [24] and Saad [20]), is to exploit the fact that the initial columns of X

tend to converge before the later ones. Once the basis vectors x1, x z, ..., XL

corresponding to Al, Az, ,.. , A, (1 s i < r) have satisfied the convergence

criterion (2. 16), they are “locked,” and no further computations are carried

out with these vectors. On the next and subsequent iterations, an iteration

subspace of dimension m – i is used to find the next eigenvalue. To consider

in more detail the locking technique employed in EB12A, suppose i basis

vectors have converged, and let X = (X ~,Xz ), where Xl is the n x i matrix

containing the vectors which have converged. On subsequent iterations,

EB 12A forms (Xl, pl(A)X2 ). This can lead to significant savings in the

number of matrix-vector multiplications if several eigenvalues are required.

These savings are illustrated in Section 3. At the orthogonalization step,

further savings are made since the columns of Xl are already orthonormal. In

the Schur–Rayleigh–Ritz step, the matrix B = XTAX has the form

(2.30)

where Tll = X~AXl is an i X i block upper-triangular matrix. Since the

columns of Xl have converged

AXl = XITII + El (2.31)

for some matrix E ~ with norm dependent on the convergence parameter

EPS(2) (as in (2.16)). Assuming X$X1 is small (since the columns of Xz have

been orthogonalized with respect to those of Xl ) and assuming X~E ~ is small,

we can work with the partly triangularized system

(2.32)

Thus it is only necessary to reduce the (m – i) x (m – i) matrix Bz to real

Schur form.

Locking may cause some of the computed eigenvalues to appear out of

order. To avoid this and to overcome the errors which are introduced by

treating X~AXl as zero, once EB 12A has tentatively accepted the first r

columns of X as basis vectors for the invariant subspace corresponding to the

desired eigenvalues, the locking device is switched off. EB 12A then takes

the computed n X m matrix X and restarts the iterative process. The conver-

gence criterion (2. 16) must be satisfied simultaneously for j = 1,2,... , r. In

all of our numerical experiments only one iteration with the unlocked system

was necessary.

This locking technique differs from that described by Stewart and Jennings

[27] since their technique finds all the eigenvalues of the m X m matrix B in
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Eq. (2.30) at each iteration and, if i basis vectors have already converged,

only the vector x,+ ~ (and x,+ ~ for a complex conjugate pair) is tested for

convergence. Since the matrix B changes with each iteration, the eigenvalues

A1, A2,..., A, of B and the corresponding basis vectors x ~, x ~, ..., x, which

passed the convergence test on iteration k could fail the test on subsequent

iterations. There is therefore a danger that eigenvalues and basis vectors

which do not satisfy the convergence criterion will be returned. Moreover,

when sorting the eigenvalues, Stewart and Jennings have to prevent vectors

that are not locked from changing positions with locked vectors. They do this

by computing the eigenvalues in an unordered sequence (using the EISF’ACK

routine HQR2) and then artificially increasing the modulus of each eigen-

value corresponding to a locked vector immediately prior to sorting. After

sorting they restore the values of the eigenvalue estimates.

2.7 Constructing the Ellipse

When Chebychev acceleration is used, we want to find the optimal ellipse

E(d, c, a) enclosing the unwanted eigenvalues AJ, j z r + 1. Manteuffel’s

technique [ 13– 15] for doing this in the case of the solution of linear systems

has been adapted by Saad [19] to the unsymmetric eigenvalue problem.

Manteuffel’s algorithm does not allow a complex reference eigenvalue ~, in

Eq. (2.9) so Saad replaces & by a real reference point y, and, in particular, on

the k th iteration Saad takes -y to be the point on the real line which has the

same convergence ratio as A, with respect to the ellipse found on the

(k – l)st iteration. The best ellipse for the k th iteration is then determined

to minimize the maximum convergence factor Rj(ci, c) given by Eq. (2.10)

with & replaced by y. When A, is real, y = A,. Since in general y + A,, the

ellipse found using Saads method is only an approximation to the optimal

ellipse. Nevertheless, our experience is that this approximation generally

works well, and so EB12A uses Saad’s choice of y.

EB12A uses the eigenvalue estimates A~k’, 1 s j s m, computed on itera-

tion k to construct a sequence of ellipses Ek(ci, c, a), k = 1,2,...using the

following procedure. Here it is assumed that the r rightmost eigenvalues are

required.

for k = 1 step 1 until s do

begin

If k = 1, set pi(A) = 1; otherwise let y be the point on the real line with the
same convergence ratio as A\k-1) with respect to Ek -1( d, c, a) and define pl( A)

using (2.9) with A, replaced by y. Compute the eigenvalue estimates A\k’, 1 s
j s m, using steps 2 and 3 of the basic iteration algorithm of Section 2.

if the convergence criterion (2.16) is satisfied for i = 1, 2, ..., r go to exit

else define the barrier b = Re( A~k’) and the set of unwanted eigenvalues

Sk = {A~k): Re(A$k)) < b}.

Construct the positive convex hull Kk containing Sk and the points (x, y) on

the previous hull Kk - 1 for which x < b.

Find the best ellipse .Eh(cl, c, a) using the algorithms of Manteuffel [13, 14]

and Saad [21].

end
end

exit:
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We observe that if A;k ) is real (respectively, complex), Sk will usually be

nonempty provided m > r + 1 (respectively, m > r + 2). Thus in general the

number of trial vectors m must satisfy m > r + 2.

Manteuffel [ 13, 14] describes and implements an algorithm for finding the

ellipse Ek (d, c, a) using the positive convex hull Kk (see also Ashby [11). In

EB 12A, we follow the procedure described by Manteuffel, but we have

modified his code.

We remark that it is necessary to use the previous hull Kk -1 when

constructing Kk. Suppose the rightmost eigenvalues are sought. Typically,

during the first few iterations, the ellipse Ek(d, c, a) will not contain the

actual leftmost eigenvalues of A. Since pl( A) is small for eigenvalues inside

the ellipse compared with those lying outside the ellipse, convergence will be

toward the leftmost (unwanted) eigenvalues as well as to the rightmost

eigenvalues. At some stage, the computed leftmost eigenvalues will lie within

a hull which contains the actual leftmost eigenvalues of A, and, provided all

subsequent hulls contain these computed leftmost eigenvalues, convergence

will be to the sought-after rightmost eigenvalues.

Some of the ellipses Ek ( d, c, a) may contain wanted eigenvalues, which

will slow convergence down. This is likely to be a problem if there is a cluster

of eigenvalues near h,. In this case, it can be advantageous to set r to be

larger than the actual number of required eigenvalues (see Section 2.2). The

effect of choosing a larger value of r is to move the barrier b to the left (or

right). If more than one eigenvalue (or more than one pair of complex

conjugate eigenvalues) is required, once they have all converged, we recall

EB 12A with r set to the actual number of required eigenvalues to overcome

the errors introduced by locking. This is illustrated in Example 2 of Section 3.

2.8 Computing the Eigenvectors

Once EB12A has successfully computed the required eigenvalues of A, the

user may call EB12B to compute the corresponding eigenvectors. EB 12B

computes the eigenvectors w, of the block-triangular matrix T using back-

substitution and then takes the approximate eigenvectors of A to be y, = Xwl

(see (2.8)). The computed eigenvectors y, are normalized. If the ith eigenvalue

is complex with positive imaginary part, on exit from EB 12B the ith and

(i + l)th columns of a matrix Y will hold the real and imaginary parts of the

ith eigenvector, respectively. Since the ( i + l)th eigenvector is the complex

conjugate of the ith eigenvector, working with complex arrays is avoided.

When computing the eigenvectors of T using back-substitution, we found it

was necessary to set all the entries in the lower-triangular part of T (except

those in the 2 X 2 diagonal blocks corresponding to complex eigenvalues) to

zero. If we did not do this, the small off-diagonal entries in the matrix T

computed by EB 12A could cause large errors in the computed eigenvectors

of A.

Suppose X = (Xl, Xz ) where the r columns of Xl have converged and

Tll = X~AX1. The residuals for the computed eigenvectors of A will be small

if the residuals for the corresponding eigenvectors of Tll are small. To

demonstrate this, let w ( Ilw II~ = 1) denote the computed eigenvector of Tll
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corresponding to the computed eigenvalue A, and let r ~ be the residual vector

rl = Tllw – Aw. (2.33)

The corresponding approximate eigenvector of A is given by y = XIW, and

from (2.31) and (2.33) we have

Elw = AXlw – XITIIW = Ay – Ay – Xlrl. (2.34)

Hence, since Xl has orthonormal columns,

IPY – ~Yl12 s IIE1112 + llrJ2- (2.35)

The inequality (2.35) shows that provided IIE1IIz and kl IIz are small, the
residual for the computed eigenvector of A will be small. If the scaled

eigenvector residuals

(2.36)

are required, the user must compute AY, where Y has columns Y1, YZ, ..., Y~

and recall EB12B.

2,9 Use of EBI 2 to Obtain Other Parts of the Spectrum

The code EB12 can be used to find parts of the spectrum other than that

corresponding to the eigenvalues of largest modulus or the rightmost (or

leftmost) eigenvalues of A. If, for example, we wish to compute a group of

interior eigenvalues, say those closest to p (that is, those for which IA – p I is

smallest), we can use the simple sub space iteration algorithm option in EB 12

and replace A by (A – pl)- 1. In this case, on each return to the user, a

matrix-matrix multiplication U = (A – PI)- 1W, with W of order n X (m – z)

(i is the number of locked vectors), must be performed. This is equivalent to

solving the system of equations

(A -pI)U = W. (2.37)

If A is large the solution of the system (2.37) may itself be quite time

consuming, but note that if a direct method of solution is used, the decompo-

sition of A – p I into triangular factors needs only to be done once for a value

of the shift p. Having performed the decomposition, on each return to the

user it is only necessary to perform relatively cheap forward and backward

substitutions. In practice, p may be an approximation to a required eigen-

value of A, in which case it may be advantageous to update the value of the

shift as the computation proceeds, and consequently several factorization

may be required. However, if the shift p is suitably chosen, the matrix

B = (A – p 1)-1 will have a spectrum with much better separation properties

than the original matrix A, and the subspace iteration algorithm applied to B

should require far fewer iterations for convergence than when it is applied to

A. Thus, the rationale behind using a so-called shift-and-invert strategy is

that the additional cost of the factorization is amply repaid by the reduction

in the number of iterations required by using B in place of A. Note that if the
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shift p is complex, the use of complex arithmetic in the subspace iteration

algorithm may be avoided by replacing the complex operator (A – pi)- 1 by

the real operator Re[(A – p I) - l] (see Saad [20]). The user must form the LU

decomposition of the matrix (A – PI)- 1 and every time U = Re[(A – PI)-’ IW

is required, must perform forward and backward solves in the usual way and

take the real part of the resulting matrix to yield the matrix U which is

returned to EB 12.

The code EB 12 can also be used for the generalized eigenvalue prob-

lem Kx = AMx. In this case, on each return to the user it is necessary to

solve a system of the form

MU = KW. (2.38’)

If a direct method of solution is used, the factorization of M needs only be

done once for the entire calculation. To gain faster convergence, the shifted

and inverted operator (K – pM) -1 M may be used.

3. NUMERICAL EXPERIMENTS

The code EB 12 has been tested on a number of problems. In this section, we

describe the results of using EB 12 to calculate selected eigenpairs for three

representative test examples. In each example the convergence parame-

ter EPS(l) (see Section 2.4) was set to 10’5. The numerical experiments

were performed on a SUN SPARCstation using double precision (i.e., u =

2.220446 ~10- 16). The number of iterations required is defined to be the

number of times the iteration polynomial pl (A)X is computed, Throughout

this section, r, m, and 1~,, denote, respectively, the number of eigenpairs

sought, the number of trial vectors used, and the highest degree of the

iteration polynomial used by EB 12A. All CPU timings are in seconds.

Example 1. The first problem is taken from Stewart and Jennings [27],

who use this problem to illustrate the effectiveness of their subspace iteration

code LOPSI. The matrix is a stochastic matrix obtained during the applica-

tion of Markov modeling techniques to the analysis and evaluation of com-

puter systems. The matrix is of order 163 and has 1207 nonzero entries.

Table 1 compares the convergence characteristics for different numbers

of trial vectors for the simple subspace iteration algorithm and for the

Chebychev accelerated algorithm. For this example, the eigenvalues of largest

modulus are also the rightmost eigenvalues, so the two algorithms may be

compared directly.

The eigenvector corresponding to the dominant eigenvalue Al = 1 is known

to have all its elements of equal value. In all the tests using this problem, we

used the option offered by EB 12A for supplying an initial estimate of the

r basis vectors corresponding to the sought-after eigenvalues to specify

the first basis vector with length 1 and all its elements of equal value; the

initial estimate of each of the other basis vectors for this problem was taken

to be a random vector. The first basis vector passed the convergence test on

the initial iteration and was then locked. For this problem, the locking facility
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Table I. A Comparison of the Simple Subspace Iteration Algorithm and the Chebychev

Accelerated Algorithm for Example 1 (Rightmost Eigenvalues)

Matrix-vector
Iterations 1

CPU
products ma

r
time

m

Simple Chebychev Simple Chebychev Simple Chebyctrev Simple Ctrebychev

57 2348 1037 10 14 121 55 47.2 28.9

58 1810 991 7 6 I 14 85 39.3 25.7

5 10 2128 958 7 6 101 60 48.9 28.6

10 15 4089 2034 11 9 94 75 105.6 70.4

10 20 3129 2304 9 8 69 39 120.1 99.8

for the remaining basis vectors did not come into effect until late in the

computation so that most of the savings due to the locking techniques

employed by EB 12A come from the first vector. If locking is switched off, with

r = 10 and m = 20, the simple subspace and Chebychev accelerated algo-

rithms required 3540 and 2820 matrix-vector products, respectively.

For this example, we observe that, in each case, the value of l~,X for the

simple subspace iteration algorithm exceeded that for the Chebychev acceler-

ated algorithm, and that, with r = 5, the simple sub space iteration algorithm

took fewer iterations to converge than the Chebychev accelerated algorithm.

However, the number of matrix-vector multiplications and the computa-

tion times for the Chebychev accelerated algorithm were considerably less

than for the simple subspace iteration algorithm. Because of the way Stewart

and Jennings [27] present their results for this problem, it is difficult to make

a direct comparison between the results obtained by LOPSI and EB 12.

However, compared with LOPSI, EB12 appears to require significantly fewer

iterations, and, if Chebychev acceleration is used, the number of matrix-vector

multiplications used by EB 12 is also considerably smaller.

Example 2. The second test example is taken from Garratt et al. [7] and is

concerned with the detection of Hopf bifurcation points in the parameter-

dependent nonlinear system

dx
—= f(x, v), f: Rnx ReRn, XGRn, VGR. (3.1)
dt

The set r:= {(x, v) = R’+l: f(x, v) = O} represents the steady-state solutions

of (3.1) and it is often important to determine the (linearized) stability of a

branch of 1“.If Al denotes the rightmost eigenvalue of the Jacobian matrix

A = f .(x, v), then a steady-state solution is stable (unstable) if Re( Al) is

negative (positive). It is also desirable to be able to detect a Hopf bifurcation

point, that is a point of ~ where Re( Al) changes sign as v varies. Example 2

arises from a pair of equations of the form (3.1) which model a tubular reactor

(see Eqs. (l)-(5) of Heinemann and Poore [10]), and which are discretized

using simple central differences. We have taken n to be 200 and 400 and

the parameter v (the Damkohler number) to be 0.23. With this value for
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v the steady-state solution is stable (see Garratt et al. [7]’). The matrix A is

banded and has 796 and 1596 nonzero entries when n = 200 and 400,

respectively. For n = 200, the rightmost eigenvalue is (approximately)

– 0.83285 A 1.5926i, and the leftmost eigenvalue is – 7850.5 + 1.2049i. For

n = 400, the rightmost eigenvalue is – 0.04345 ~ 1.5806i, and the leftmost

eigenvalue is – 31689.56 + 1.05784i. Although it is the rightmost eigenvalue

that is of practical importance, we shall also use EB 12 to calculate the

leftmost eigenvalue since the leftmost eigenvalue is also the eigenvalue of

largest modulus, which allows us to compare the simple subspace algorithm

with the Chebychev accelerated algorithm. The results are given in Table II.

In Table II we see that, when n = 200 and the simple subspace iteration

algorithm is used, for each value of m, 1~~, = 78. In this example IAll = 7850,

and the degree of the iteration polynomial is limited by (2.28), which prevents

overflow. Similarly, when n = 400, Eq. (2.28) limits the degree of the itera-

tion polynomial used by the simple subspace iteration algorithm to 68. There

is no corresponding limit for the Chebychev accelerated algorithm, which

again gives much better results than the simple subspace iteration algorithm.

In particular, when n = 400, r = 2, and m = 5, the simple subspace iteration

algorithm requires more than 21 times as many matrix-vector multiplica-

tions, 15 times as many iterations, and 18 times as much CPU time as the

Chebychev accelerated algorithm.

In Table III we present some results for Example 2 for the Chebychev

accelerated algorithm used to find the rightmost eigenvalues. We observe

that for n = 200 and m = 8, fewer matrix-vector products and less CPU time

are required for convergence when r = 4 than when r = 2. In fact, with

m = 8, the rightmost pair of complex conjugate eigenvalues is found after

2541 matrix-vector products and 76.6 seconds CPU time. This is an example

which illustrates that it can be advantageous to set r to be larger than

the number of eigenvalues actually required. The results we obtained for

Example 2 using EB12 compare favorably with those obtained by Garratt [6]

using Chebychev acceleration techniques.

Example 3. The third test problem is another example of Markov chain

modeling and is used by Saad [19]. This example models a random walk on a

(j + 1) X (j + 1) triangular grid. Following Saad, we take j = 30, so that the

order of the matrix is n = 496. For this problem, matrix-vector products Ax

can be performed by a simple subroutine without explicitly forming the

matrix A. Since EB 12 returns control to the user for all matrix-vector

products, it is particularly convenient for solving problems of this kind. In

this problem, the eigenvalues of largest modulus are 1 and – 1, and the

rightmost eigenvalue is 1.

In Table IV we give convergence results for obtaining the dominant pair of

eigenvalues A = + 1 using the simple subspace iteration algorithm for vari-

ous values of the parameter m. In Table V, we present results for the

Chebychev accelerated subspace iteration algorithm, but in this case only

the rightmost eigenvalue A = 1 is obtained. The numbers in parentheses

in the second column of Table V are the figures reported by Saad [19]. The
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Table II. A Comparison of the Simple Subspace Iteration Algorithm and the Chebychev

Accelerated Algorithm for Example 2 (Leftmost Eigenvalues)

rlrm

200 2 4

200 2 5

200 2 8

400 2 5

Matrix-vector

products
Iterations lm

CPU
tune

Simple Chebychev Simple Chebychev Simple Chebychev Sunple Chebychev

9763 1179 38 7 78 111 236.0 328

9674 969 31 6 78 99 238.2 27,4

11023 1623 24 7 78 64 284.2 49.3

43759 2069 139 9 68 96 2158.0 1154

Table III. Convergence Results for the Chebychev Accelerated Subspace Iteration Algorithm

for Example 2 (Rightmost Eigenvalues)

Matrix-vector ~temtion~ ~ CPU
nrrn

products tune

200 2 4

200 2 6

200 2 8

200 4 6

200 4 8

400 2 4

400 2 5

400 2 8

3575

3401

4127

4075

2881

13439

7489

8887

10

10

10

13

11

27

15

18

224 96.7

148 92.4

139 115.9

167 111.3

125 87.4

239 699.5

230 398.3

237 483.1

Table IV. Convergence Results for the Simple Subspace Iteration Algorithm for

Example 3 (r = 2)

Matrix-vector
m Iterations lm

CPU
products tune

3 371 (-) 5 48 21.6

4 419 (-) 5 42 25.1

6 527 (645) 5 39 35.1

8 567 (903) 6 23 45.9

10 669 (909) 6 25 60.4

difference in the number of matrix-vector products used by EB12 and by Saad

is mainly attributable to the fact that Saad uses different criteria for choosing

the degree 1 of the iteration polynomial, and, following Stewart and Jennings

[271, Saad imposes a maximum degree on the iteration polynomial. For this

example, EB 12 performs consistently better than the code used by Saad.

From Tables I-V we see that, in general, the best results are obtained

by choosing a value of m which is larger than the minimum allowed value.

We also observe that, in most of the examples, increasing the number
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Table V Convergence Results for the Chebychev Accelerated Subspace Iteration Algorlthm

for Example 3 (Rightmost Elgenvalue)

Matrix-vector
m Iterations 1=

CPU
products tune

3 3407

4 1819

6 1721

8 1819

10 1739

of trial vectors reduces (or

required for convergence, but

cations needed may increase.

19 116 161.0

9 144 88.0

6 129 88.3

8 94 103.1

7 5’ 108.1

keeps constant) the number of iterations

the total number of matrix-vector multipli-

Even if the number of matrix-vector multi-

plications needed decreases as m increases, the CPU time may increase since

the order of the matrix which must be reduced to real Schur form is m.

However, when the order of the matrix n is large, most of the CPU time is in

the matrix-vector multiplication stage, and the total CPU time taken is

dependent upon the efficiency with which these multiplications can be carried

out. In particular, the time taken depends upon whether the user is able to

exploit the structure of the matrix and vectorization or parallelism.

We remarked in Section 2.5 that Stewart and Jennings [27] impose a

maximum value LMAX on the degree 1 of the iteration polynomial pl( A) used

in their code LOPSI. For all our test examples we found that the maximum

degree used by EB12 exceeded the value LMAX = 20 suggested by Stewart

and Jennings. With the restriction 1 < LMAX = 20, the Chebychev acceler-

ated algorithm applied to Example 2 with n = 200, r = 2, and m = 4 required

7043 matrix-vector products and 86 iterations for convergence. This compares

unfavorably with the corresponding result of 3575 matrix-vector products and

10 iterations given in Table III. Further numerical experiments for this and

other test examples using a range of values for LMAX led us to conclude that,

in general, the results are worse when a restriction LMAX is placed on 1.

In Section 2.9 we discussed the use of EB 12 to compute eigenvalues of the

matrix A other than those which are rightmost, leftmost, or are of largest

modulus. We may, for example, have an approximation p to an eigenvalue of

A and want to obtain a more accurate approximation. In this case we would

replace A by (A – p I) -1 and employ the simple subspace iteration algorithm,

solving Eq. (2.37) on each return to the user. We have performed some

numerical experiments to do this for the matrix in Example 1. In these

experiments we used the EIarwell Subroutine Library routine MA28AD to

factor the matrix (A – pI) once, and on each return the factors created by

MA28AD were used by MA28CD to solve (2.37). Full details of the MA28

package may be found in Duff [5]. We observed that for this example EB 12

converged very quickly. Typically if an approximation to a (real) eigenvalue

inside the spectrum was known to two decimal places, setting r = 1 and

m = 6, convergence with EPS(2) equal to 10 5 (see Eq. (2.16)) was achieved
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in only one or two iterations. The computed eigenvalues agreed with those

given in Table I of Stewart and Jennings [27].

4. CONCLUDING REMARKS

The purpose of this paper was to discuss the design and development of the

code EB 12 for computing selected eigenvalues and the corresponding eigen-

vectors of a real unsymmetric matrix A. Existing codes LOPSI (Stewart and

Jennings [27]) and SRRIT (Stewart [26]) use subspace iteration techniques to

compute the eigenvalues of largest moduli. EB 12 uses a subspace iteration

algorithm, combined with Chebychev acceleration if either the rightmost (or

leftmost) eigenvalues are required or if it is known that the eigenvalues of

largest moduli are also the rightmost (or leftmost) eigenvalues. EB12A works

in terms of the Schur vectors of A, and a second optional entry, EB 12B, is

used to obtain the eigenvectors once the Schur vectors have converged.

An important design feature of the code EB 12 is that control is returned to

the user each time a matrix-vector product Ax needs to be formed. This use of

reverse communication makes the code suitable for large sparse problems

and gives flexibility over the way in which the matrix is stored and matrix-

vector products are performed. Another feature of the code is that it employs

a new locking technique which is designed to reduce the number of matrix-

vector multiplications required for convergence when more than one eigen-

value is required. The use of locking has been found to be efficient in practice.

The user of EB 12 must choose the dimension m of the iteration subspace.

This is an important parameter which effects the efficiency of the algorithm.

We have provided the user with some guidance regarding the choice of m,

and, in addition, if a poor choice is made, we have designed EB 12 so that the

computation can be restarted at any stage with a different value of m while

taking advantage of the basis vectors which have already been computed.

The usefulness of the code EB 12 has been illustrated on a number of

representative practical problems. The numerical results show that subspace

iteration combined with Chebychev acceleration is significantly superior to

simple subspace iteration when the rightmost (or leftmost) eigenvalues are

also those of largest modulus. The results also show that the efficiency of our

subspace iteration algorithm (with or without Chebychev acceleration) is very

dependent on how the algorithm chooses 1, the degree of the iteration

polynomial. In particular, we found that imposing a maximum value on 1, as

suggested by other authors (for example, Stewart and Jennings [27] and Saad

[19]), could lead to a considerable degradation of the results. We have

introduced new criteria for choosing 1 which are designed to prevent the

columns of the iteration matrix from becoming dependent, to limit

the number of unnecessary matrix-vector multiplications, and, for the simple

subspace iteration algorithm, to prevent overflow. In addition, we have used

new stopping criteria designed to terminate the computation if the residuals

increase close to convergence or if convergence becomes intolerably slow. In

either case, EB 12A issues a warning message, and the user then has the

option of restarting the computation with an increased number of trial

vectors.
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5. AVAILABILITY OF THE CODE

EB 12 is written in standard Fortran 77. The code is included in Release 11 of

the Harwell Subroutine Library. Anyone interested in using the code should

contact the authors for license details. The specification sheet (write-up) for

EB 12 is also available from the authors.
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