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Abstract—This paper presents a method for measuring the semantic similarity between concepts in Knowledge Graphs (KGs) such as

WordNet and DBpedia. Previous work on semantic similarity methods have focused on either the structure of the semantic network

between concepts (e.g., path length and depth), or only on the Information Content (IC) of concepts. We propose a semantic similarity

method, namely wpath, to combine these two approaches, using IC to weight the shortest path length between concepts. Conventional

corpus-based IC is computed from the distributions of concepts over textual corpus, which is required to prepare a domain corpus

containing annotated concepts and has high computational cost. As instances are already extracted from textual corpus and annotated

by concepts in KGs, graph-based IC is proposed to compute IC based on the distributions of concepts over instances. Through

experiments performed on well known word similarity datasets, we show that the wpath semantic similarity method has produced a

statistically significant improvement over other semantic similarity methods. Moreover, in a real category classification evaluation, the

wpath method has shown the best performance in terms of accuracy and F score.

Index Terms—Semantic similarity, semantic relatedness, information content, knowledge graph, WordNet, DBpedia
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1 INTRODUCTION

WITH the increasing popularity of the linked data initia-
tive, many public Knowledge Graphs (KGs) have

become available, such as Freebase [1], DBpedia [2],
YAGO [3], which are novel semantic networks recordingmil-
lions of concepts, entities and their relationships. Typically,
nodes of KGs consist of a set of concepts C1; C2; . . . ; Cn repre-
senting conceptual abstractions of things, and a set of instan-
ces Ii; I2; . . . ; Im representing real world entities. Following
Description Logic terminology [4], knowledge bases contain
two types of axioms: a set of axioms is called a terminology
box (TBox) that describes constraints on the structure of the
domain, similar to the conceptual schema in database setting,
and a set of axioms is called assertion box (ABox) that asserts
facts about concrete situations, like data in a database set-
ting [4]. Concepts of the KG contains axioms describing con-
cept hierarchies and are usually refereed as ontology classes
(TBox), while axioms about entity instances are usually
referred as ontology instances (ABox). Fig. 1 shows a tiny
example of a KG using the above notions. Concepts of TBox
are constructed hierarchically and classify entity instances
into different types (e.g., actor or movie) through a special
semantic relation rdf:type1 (e.g., dbr:Star_Wars is an instance
of concept movie). Concepts and hierarchical relations (e.g.,
is-a) compose a concept taxonomy which is a concept tree
where nodes denote the concepts and edges denote the
hierarchical relations. The hierarchical relations between

concepts specify that a conceptCi is a kind of conceptCj (e.g.,
actor is a person). Apart from hierarchical relationships, con-
cepts can have other semantic relationships among them
(e.g., actor plays in amovie). Note that the tiny KG is a simpli-
fied example from DBpedia for illustration, and Table 1
shows examples of DBpedia entities and their types which
aremapped to the example KG in Fig. 1.

The lexical database WordNet [5] has been conceptual-
ized as a conventional semantic network of the lexicon of
English words. WordNet can be viewed as a concept taxon-
omywhere nodes denoteWordNet synsets representing a set
of words that share one common sense (synonyms), and
edges denote hierarchical relations of hypernym and hypon-
ymy (the relation between a sub-concept and a super-con-
cept) between synsets. Recent efforts have transformed
WordNet to be accessed and applied as concept taxonomy in
KGs by converting the conventional representation of Word-
Net into novel linked data representation. For example, KGs
such as DBpedia, YAGO and BabelNet [6] have integrated
WordNet and used it as part of concept taxonomy to catego-
rize entity instances into different types. Such integration of
conventional lexical resources and novel KGs have provided
novel opportunities to facilitate many different Natural Lan-
guage Processing (NLP) and Information Retrieval (IR)
tasks [7], including Word Sense Disambiguation (WSD) [8],
[9], Named Entity Disambiguation (NED) [10], [11], query
interpretation [12], document modeling [13] and question
answering [14] to name a few. Those KG-based applications
rely on the knowledge of concepts, instances and their rela-
tionships. In this work, we mainly exploit the concept level
knowledge, while the instance level knowledge is used to
support the concept knowledge. More specifically, we focus
on the problem of computing the semantic similarity between
concepts in KGs.

In computational linguistics, semantic similarity is a met-
ric that represents the commonality of two concepts relying
on their hierarchical relations [15], [16]. Semantic similarity
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is a special case of semantic relatedness which does not nec-
essarily rely on hierarchical relations. For example, as
shown in the tiny example of KG in Fig. 1, scientist and actor
are semantically similar because they share the hypernym
person. Although actor and movie are clearly related, but they
are not really similar because they belong to different
branches of taxonomy. Semantic relatedness usually has
wider computational applications because it considers all
kinds of semantic relations between concepts. Semantic sim-
ilarity would be more useful when applications need to
encode hierarchical relations between concepts, such as con-
cept expansion and concept-based retrieval [17]. In general,
semantic similarity metrics can be used for weighting or
ranking similar concepts based on a concept taxonomy. In
such way, semantic similarity methods could be applied in
KGs for concept-based entity retrieval or question answer-
ing, where those entities that contain types having similar
meaning to query concepts would be retrieved. Moreover,
in entity modeling, semantic similarity could be used to
cluster entities based on their type concepts.

Some of the conventional semantic similarity metrics [18],
[19], [20], [21] rely on measuring the semantic distance
between concepts using hierarchical relations. Semantic
similarity between two concepts is then proportional to the
length of the path connecting the two concepts. Path based
similarity metric requires the structure of semantic network
to generate a similarity score that quantifies the degree of
similarity between two concepts. Concepts that are physi-
cally close to each other in taxonomy are considered to be
more similar than those concepts that are located far away.
For instance, the concept actor is more similar to the concept
scientist than the concept movie, because actor and scientist
are located closer in concept taxonomy. Some other seman-
tic similarity metrics [15], [22], [23] consider statistical Infor-
mation Content (IC) of concepts computed from corpora in
order to improve the performance of similarity metrics that
are only based on the structure of concept taxonomy. IC is a
measure of specificity of a concept. The higher values of IC
are associated with more specific concepts (e.g., actor),
while those lower values are more general (e.g., person). IC
is computed based on frequency counts of concepts appear-
ing in a textual corpus. Each occurrence of a more specific
concept also implies the occurrence of the more general
ancestor concepts. In order to alleviate the weaknesses of
both path based metrics and IC based metrics, we propose a
novel semantic similarity method, namely wpath,

combining the two methods. Moreover, in order to adapt
corpus-based IC methods to structured KGs, we propose a
graph-based IC computation method, which can enable
those semantic similarity metrics using IC to be used based
on KGs without offline preparation of domain corpus.
Within the graph-based IC, the wpath semantic similarity
method can be used to compute semantic similarity
between concepts in KGs only based on the structural
knowledge of concepts and the statistical knowledge of
instances in KGs.

According to the evaluation experiments in word simi-
larity datasets, compared with the previous state of the art
semantic similarity methods, the wpath method results in
statistical significant improvement of correlation between
computed similarity scores and human judgements. The
proposed graph-based IC has shown to be effective as the
corpus-based IC so that it could be used as the substitution
of the corpus-based IC in KGs. Furthermore, in order to
evaluate the performance of semantic similarity methods in
real application datasets, we have applied semantic similar-
ity metrics to the aspect category classification task [24], [25]
of the restaurant domain. The evaluation results of semantic
similarity based category classification have shown that the
wpath semantic similarity method has the best accuracy
and F-measure score.

In conclusion, this paper considers the problem of measur-
ing semantic similarity between concepts in KGs. The main
contributions of thisworkmay be summarized as below.

� We propose a method for measuring the semantic
similarity between concepts in KGs.

� We propose a method to compute IC based on the
specificity of concepts in KGs.

� We evaluate the proposed methods in gold standard
word similarity datasets.

� We evaluate the semantic similarity methods in
aspect category classification.

Fig. 1. A tiny example of knowledge graph.

TABLE 1
The Examples of Mapped Entities and Entity Types in DBpedia

Entity Type Concept

dbr:Star_Wars yago:Movie106613686, dbo:Film Movie

dbr:Don_Quixote yago:Novel106367879, dbo:Book Novel

dbr:Tom_Cruise yago:Actor109765278, dbo:Actor Actor

dbr:Apple_Inc yago:Company108058098, dbo:Company Company
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The rest of this paper is organized as follows. In Section 2,
we review the conventional semantic similarity methods
and formalise the semantic information used in those meth-
ods. Section 3 presents the wpath semantic similarity
method and the graph-based IC computation method. Sec-
tion 4 reports the evaluation experiments and summarises
the evaluation results. Finally, we draw conclusions and
outline aspects of future work in Section 5.

2 SEMANTIC SIMILARITY

There is a relatively large number of semantic similarity
metrics which were previously proposed in the literatures.
Among them, there are mainly two types of approaches in
measuring semantic similarity, namely corpus-based
approaches and knowledge-based approaches [26]. Corpus-
based semantic similarity metrics are based on models of
distributional similarity learned from large text collections
relying on word distributions. Two words will have a high
distributional similarity if their surrounding contexts are
similar. Only the occurrences of words are counted in cor-
pus without identifying the specific meaning of words and
detecting the semantic relations between words. Since cor-
pus-based approaches consider all kinds of lexical relations
between words, they mainly measure semantic relatedness
between words. On the other hand, knowledge-based
semantic similarity methods are used to measure the
semantic similarity between concepts based on semantic
networks of concepts. This section reviews briefly corpus-
based approaches (Section 2.1) and knowledge-based
semantic similarity metrics that have been observed good
performance in NLP or IR applications (Section 2.2).

2.1 Corpus-Based Approaches

Corpus-based approaches measure the semantic similarity
between concepts based on the information gained from
large corpora such as Wikipedia. Following this idea, some
works exploit concept associations such as PointwiseMutual
Information [27] or Normalised Google Distance [28], while
some other works use distributional semantics techniques to
represent the concept meanings in high-dimensional vectors
such as Latent Semantic Analysis [29] and Explicit Semantic
Analysis [30]. Recent works based on distributed semantics
techniques consider advanced computational models such
as Word2Vec [31] and GLOVE [32], representing the words
or concepts with low-dimensional vectors.

The co-occurrence information of words with the same
surrounding context would make a wide variety of words
to be considered as related. Since corpus-based approaches
mainly rely on contextual information of words, they usu-
ally measure the general semantic relatedness between
words rather than the specific semantic similarity that
depends on hierarchical relations [16]. Furthermore, cor-
pus-based semantic similarity methods represent concepts
as words without clarifying their different meanings (word
senses). Compared to knowledge-based approaches relying
on KGs, corpus-based approaches normally have better cov-
erage of vocabulary because their computational models
can be effectively applied to various and updated corpora.
Since they are modeled based on words and textual corpora
rather than concept taxonomies, we briefly touch on the

corpus-based methods and present a detailed review of the
main knowledge-based methods in the following section.

2.2 Knowledge-Based Approaches

Knowledge-based approaches measure the semantic similar-
ity of concepts in KGs.We first give a formal definition of KG.

Definition 1. A KG is defined as a directed labeled graph,
G ¼ ðV;E; tÞ, where V is a set of nodes, E is a set of edges con-
necting those nodes; and t is a function V � V ! E that
defines all triples in G.

Given a KG, knowledge-based approaches measure the
semantic similarity between concepts c1; c2 2 V , formally
simðc1; c2Þ, using semantic information contained in KG.
The most intuitive semantic information is the semantic dis-
tance between concepts, which is usually represented by
the path connecting two concepts in KG. Intuitively, the
shorter the path from one concept to another, the more simi-
lar they are.

Definition 2. A path P ðci; cjÞ between ci; cj 2 V through G is a
sequence of nodes and edges P ðci; cjÞ ¼ ci; ei; . . . ; vk; ek; vkþ1;f
ekþ1; . . . ; cjg connecting the concepts ci and cj with cardinality
or size n. For every two consecutive nodes vk; vkþ1 2 V in
P ðci; cjÞ, there exists an edge ek 2 E.

Note that though KG is modeled as a directed graph we
do not consider the direction of edges because semantic
relations can be considered to have semantically sound
inverse relation [11]. Let Pathsðci; cjÞ ¼ P 1; P 2; . . .Pnf g be
the set of paths connecting the concepts ci and cj with cardi-
nality or size N . Let jPij denote the length of a path
Pi 2 Pathsðci; cjÞ, then lengthðci; cjÞ ¼ min

1�i�N
ðjPijÞ denotes

the shortest path length between two concepts. The path [18]
method uses the shortest path length between concepts to
represent their semantic distance and the distance can be
transformed into similarity as

simpathðci; cjÞ ¼ 1

1þ lengthðci; cjÞ : (1)

The lch [19] method measures the semantic similarity
between concepts based on their shortest path length using
a non-linear function illustrated as

simlchðci; cjÞ ¼ �log

�
lengthðci; cjÞ

2 �D
�
; (2)

where D is the maximum depth of the concept taxonomy
in a KG. The path between the root concept and a given
concept through hierarchical relations is called depth,
given that KGs contain concepts which can be organised
as a concept taxonomy with hierarchical relations, such
as WordNet taxonomy, DBpedia ontology class to name
a few.

Definition 3. The depthðciÞ ¼ lengthðci; crootÞ of a concept
ci 2 V is defined as the shortest path length from ci to root con-
cept croot 2 V . For every two consecutive nodes vk; vkþ1 2 P
ðci; crootÞ, there exists an edge ek 2 hypernym; subClassOff g.
The idea of using depth information of concepts to

measure the semantic similarity lies in the property of
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concept taxonomies that the upper-level concepts in a
taxonomy are supposed to be more general. Therefore,
the similarity between lower-level concepts should be
considered more similar than those concepts between
upper-level concepts. For example in Fig. 1, the concept
pair scientist and actor are more similar than the concept
pair person and product.

The Least Common Subsumer (LCS) is the most specific
concept that is a shared ancestor of the two concepts. For
example, the LCS of concept scientist and concept actor is the
concept person. Let clcs be the LCS of concepts ci and cj, the
wup [20] method measures semantic similarity of given con-
cepts using the following formula:

simwupðci; cjÞ ¼ 2depthðclcsÞ
depthðciÞ þ depthðcjÞ : (3)

The li method [21] combines the shortest path length and
the depth of LCS. It measures semantic similarity using a
non-linear functions as

simliðci; cjÞ ¼ e�alengthðci;cjÞ

� e
bdepthðclcsÞ � e�bdepthðclcsÞ

ebdepthðclcsÞ þ e�bdepthðclcsÞ ;
(4)

where e is the Euler’s number and a;b are parameters that
contribute to the path length and depth respectively.
According to the experiment of li [21], the empirical optimal
parameters are a ¼ 0:2 and b ¼ 0:6.

Some other knowledge-based semantic similarity meth-
ods [22], [23], [33] include IC of concepts to improve
performance of measuring semantic similarity. The defini-
tion of corpus-based IC proposed in [15] is presented in
Definition 4.

Definition 4. The ICcorpusðciÞ of a concept ci 2 V is defined as:
ICcorpusðciÞ ¼ �logProbðciÞ, where ProbðciÞ denotes the prob-
ability of encountering the set of wordsðciÞ subsumed by con-
cept ci. Let freqcorpusðciÞ ¼

P
w2wordsðciÞ countðwÞ be the

frequency of concept ci occurs in corpus, then ProbðciÞ ¼
freqcorpusðciÞ

N where N is the total number of concepts observed in

corpus.

The quantitative characteristic of IC is that the more
abstract concepts have lower value of IC and more specific
concepts have higher value of IC. If two concepts share a
more specific concept, it means that they share more infor-
mation and thus more similar because the IC of their LCS is
higher. Based on this intuition, the res [15] method measures
the semantic similarity of two concepts using the IC of their
LCS which is illustrated as

simresðci; cjÞ ¼ ICcorpusðclcsÞ: (5)

The lin [23] method extends the resmethod by computing
the similarity between concepts as the ratio between the IC
of LCS and their own ICs

simlinðci; cjÞ ¼ 2ICcorpusðclcsÞ
ICcorpusðciÞ þ ICcorpusðcjÞ : (6)

Similarly, the jcn [22] method measures the difference
between concepts by subtracting the sum of the IC of each
concept alone from the IC of their LCS

disjcnðci; cjÞ ¼ ICcorpusðciÞ þ ICcorpusðcjÞ
� 2ICcorpusðclcsÞ:

(7)

It can be transformed from distance disjcnðci; cjÞ to similarity
simjcnðci; cjÞ by computing the reverse of distance

simjcnðci; cjÞ ¼ 1

1þ disjcnðci; cjÞ : (8)

The knowledge-based semantic similarity metrics pre-
sented above are reported having good performance in
measuring the semantic similarity between concepts in
WordNet. They are still applicable to measure conceptual
semantic similarity in KGs as WordNet concept taxonomy
has been integrated into KGs such as DBpedia, YAGO,
BabelNet.

Apart from conceptual similarity, some recent works
started to propose semantic relatedness or similarity metrics
for instances in KGs, where wide-coverage of fine-grained
semantic relations between instances are provided. The path-
based semantic relatedness method [11] between instances
uses a social network analysis technique tomeasure the effec-
tiveness of a path connecting instances, together with the
exclusivity metric that specifies the relative importance of a
relation connecting two instances. It follows two principles in
measuring semantic relatedness: 1) the shorter path between
instances the higher their relatedness; 2) two instances are
more related if the relations connecting them are relatively
more important. The Concept Association [34] computes the
statistical association between instances based on the occur-
rence and cooccurrence of nodes and edges in KGs. The Com-
bined Information Content (CombIC) [13] proposed a
information content method to derive the weights for edges
(property) in DBpedia. These recently proposed semantic
relatedness methods are focused on instance relatedness
rather than semantic similarity between concepts. Aswemen-
tioned previously, concept similarity is usually based on taxo-
nomical relations between concepts such as WordNet
taxonomy and DBpedia ontology class. Semantic similarity
between concepts in KG can be extended to instances in order
tomeasure the semantic similarity between instances, because
concepts can be viewed as semantic classes of instances. For
example, the semantic similarity between the instances A and
B (e.g., dbr:Star_Wars and dbr:Don_Quixote) can be measured
by calculating the semantic similarity of their respective types
(e.g., dbo:Film and dbo:Book). The main goal of this paper is
to propose a semantic similarity metric for concepts in KGs
which is introduced in the following sections.

3 THE PROPOSED METHODS

The main idea of the wpath semantic similarity method is to
encode both the structure of the concept taxonomy and the
statistical information of concepts. Furthermore, in order to
adapt corpus-based IC methods to structured KGs, graph-
based IC is proposed to compute IC based on the distribu-
tion of concepts over instances in KGs. Consequently, using
the graph-based IC in the wpath semantic similarity method
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can represent the specificity and hierarchical structure of the
concepts in a KG. Section 3.1 presents the wpath semantic
similarity method for measuring semantic similarity
between concepts in KGs and Section 3.2 describes the pro-
posed method to compute graph-based IC of concepts based
on KGs.

3.1 WPath Semantic Similarity Metric

The knowledge-based semantic similarity metrics men-
tioned in the previous section are mainly developed to
quantify the degree to which two concepts are semantically
similar using information drawn from concept taxonomy or
IC. Metrics take as input a pair of concepts, and return a
numerical value indicating their semantic similarity. Many
applications rely on this similarity score to rank the similar-
ity between different pairs of concepts. Take a fragment of
WordNet concept taxonomy in Fig. 2 as example, given the
concept pairs of ðbeef; lambÞ and ðbeef; octopusÞ, the applica-
tions require similarity metrics to give higher similarity
value to simðbeef; lambÞ than simðbeef; octopusÞ because the
concept beef and concept lamb are kinds of meat while the
concept octopus is a kind of seafood. The semantic similarity
scores of some concept pairs computed from the semantic
similarity methods have been illustrated in Table 2. It can
be seen in this table how the row of concept pair
ðbeef; lambÞ has higher similarity scores than the row of con-
cept pair ðbeef; octopusÞ.

One of the drawbacks of conventional knowledge-based
approaches (e.g., path or lch) in addressing such task is that
the semantic similarity of any two concepts with the same
path length is the same (uniform distance problem). As
illustrated in Fig. 2 and Table 2, based on the path and lch
semantic similarity methods, simðmeat; seafoodÞ is the
same as simðbeef; lambÞ and simðoctopus; shellfishÞ because
those concept pairs have equal shortest path length. Some
knowledge-based approaches (e.g., wup or li) tried to solve
the drawback by including depth information in concept
taxonomy. Considering that the upper level concepts are
more general than the lower level concepts in hierarchy,
those approaches use the depth of concepts to give higher
similarity value to those concept pairs which are located
deeper in taxonomy. For example, the similarity of
ðbeef; lambÞ is higher than the similarity of ðmeat; seafoodÞ
based on semantic similarity method of wup and li, because

the concept lamb and the concept beef are located deeper in
the concept taxonomy (lamb and beef are sub-concepts of
meat). Though using depth has been reported performance
improvement compared to pure path length methods, for a
given taxonomy such as the one in Fig. 2, many concepts
share the same depth (hierarchical level) resulting in same
similarity. For instance, as shown in Table 2, based on the
semantic similarity methods of wup and li, simðlamb; beefÞ
is equal to simðoctopus; shellfishÞ because of the same
depth.

In order to solve the equal path length and depth prob-
lem, some knowledge-based approaches (e.g., res, lin, or
jcn) proposed to include IC because different concepts usu-
ally have different IC values (e.g, the IC of meat is 6.725 and
the IC of food is 6.109) so that the simðlamb; beefÞ is different
from simðoctopus; shellfishÞ. Note that the IC in this section
is based on corpus-based IC and its implementation details
is described in Section 4.1.1. IC is a statistical method to
measure the informativeness of concept. General concepts
have lower informativeness thus have lower value of IC,
while more specific concepts would have higher value of
IC. For example, the IC of meat is higher than the IC of food
because meat is a sub-concept of food. The idea of using IC to
compute semantic similarity is that the more information
two concepts share in common, the more similar they are.
Using the IC of the LCS alone in the res method can repre-
sent the common information that two concepts share, how-
ever, the problem is that the similarity of any two concepts
with the same LCS is the same. For example, based on res
semantic similarity, although the concept pairs ðbeef; lambÞ
and ðoctopus; shellfishÞ have different similarity scores, the
similarity scores of concept pairs ðmeat; seafoodÞ and
ðbeef; octopusÞ, ðbeef; coffeeÞ and ðfood; coffeeÞ are the same
because the LCS of the concept pairs are concept food and
matter. Other methods (e.g., lin or jcn) tried to solve the
drawback by including the IC of concepts being compared.
However, only using the informativeness of concepts to rep-
resent the difference between concepts may lose the valu-
able distance information between concepts provided by
the human experts who have created the concept taxonomy.
It has been shown in our preliminary experiments that the
path length between concepts in a taxonomy is a very effec-
tive feature in measuring semantic similarity of concepts.
Furthermore, when the LCS of the concept pairs is the root
concept entity, the li, res, and lin methods fail by generating
0 similarity score such as concept pairs ðbeef; serviceÞ and
ðbeef; atmosphereÞ. In addition, the lin and jcn methods are

Fig. 2. A fragment of WordNet concept taxonomy.

TABLE 2
The Illustration of Semantic Similarity Methods

on Some Concept Pair Examples

Concept Pairs path lch wup li res lin jcn wpath

beef-octopus 0.200 2.028 0.714 0.442 6.109 0.484 0.071 0.494

beef-lamb 0.333 2.539 0.857 0.667 6.725 0.591 0.097 0.692

meat-seafood 0.333 2.539 0.833 0.659 6.109 0.760 0.205 0.662

octopus-shellfish 0.333 2.539 0.857 0.667 9.360 0.729 0.125 0.801

beef-service 0.071 0.999 0.133 0.000 0.000 0.000 0.050 0.071

beef-atmosphere 0.083 1.153 0.154 0.000 0.000 0.000 0.052 0.083

beef-coffee 0.111 1.440 0.429 0.168 3.337 0.319 0.066 0.208

food-coffee 0.143 1.692 0.500 0.251 3.337 0.411 0.095 0.260
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still missing the hierarchical level information. For instance,
since the concept pairs ðmeat; seafoodÞ are more general
than ðoctopus; shellfishÞ, the ðmeat; seafoodÞ is assumed to
be less similar, however, the lin and jcn methods have given
higher similarity score.

Considering both advantages and disadvantages of con-
ventional knowledge-based semantic similarity methods,
we propose a weighted path length (wpath) method to com-
bine both path length and IC in measuring the semantic
similarity between concepts. The IC of two concepts’ LCS is
used to weight their shortest path length so that those con-
cept pairs having same path length can have different
semantic similarity score if they have different LCS. The
wpath semantic similarity method is illustrated as

simwpathðci; cjÞ ¼ 1

1þ lengthðci; cjÞ � kICðclcsÞ ; (9)

where k 2 ð0; 1� and k ¼ 1means that IC has no contribution
in shortest path length. The parameter k represents the con-
tribution of the LCS’s IC which indicates the common infor-
mation shared by two concepts.

The proposed method aims to give different weights to
the shortest path length between concepts based on their
shared information, where the path length is viewed as dif-
ference and the common information is viewed as common-
ality. For identical concepts, their path length is 0 so their
semantic similarity reaches the maximum similarity 1. As
the path length between concepts in the concept taxonomy
becomes bigger (bigger value of path length), the semantic
similarity between concepts becomes smaller. The similarity
score of the wpath is ranged in ð0; 1�, which has improved
the similarity score range in lch method and res method.

When the concepts have the same distance (equal path
length), the more information two concepts share, the more
similar they are. As shown in Table 2, based on the wpath
method, the similarity score of ðbeef; lambÞ, ðmeat; shellfishÞ
and ðoctopus; shellfishÞ are different based on their shared
information, which shows the improvement of wpath over
the path, lch, wup, and li methods. Although the wpath
method is missing the depth, the LCS actually denotes the
hierarchical level in taxonomy implicitly. Specifically, IC is a
statistical method exploiting statistical occurrence informa-
tion of concept, and the IC of LCS is similar to depth of con-
cept indicating that the deeper level of concepts in the
taxonomy are more specific, thus they are more similar.
Moreover, concept’s IC includes frequency of concepts so it
hasmore various values than depth.

Since IC based metrics (e.g., res, lin and jcn) do not deal
with the hierarchy of concepts, similarity scores computed
by them lack of information about hierarchical levels and
conceptual distance. As structural knowledge is retained in
the wpath method, it is able to give higher similarity score to
more specific concepts, but also give higher similarity score
to those concepts sharing the same IC and located closer in
taxonomy. In the example of ðbeef; octopusÞ, ðmeat; seafoodÞ,
since they share the same IC and ðmeat; seafoodÞ locates
closer in the taxonomy, the wpath method has given higher
similarity score to ðmeat; seafoodÞ than ðbeef; octopusÞ, which
shows improvement of the wpath method over res method.
The example of ðoctopus; shellfishÞ and ðmeat; seafoodÞ

shows that the wpath method has solved the hierarchical
level problem of lin and jcn methods by giving higher simi-
larity score to more specific concept pair when two concept
pairs have the same path length.

In conclusion, the wpath semantic similarity method
takes advantage of structure based methods (e.g., path, lch,
wup and li) in representing the distance between concepts
in a taxonomy, and overcomes the equal path and depth
problem that would result in equal similarity scores for
many concept pairs. By using the shared information (IC)
between concepts to weight their path length, the wpath not
only can retain the ability to show the distance between con-
cepts based on a taxonomy, but also can acquire statistical
information to tell the commonality between concepts when
their conceptual structures in taxonomy are same.

The IC function in Eq. (9) denotes the general purpose IC
which is used as weight for path length. According to differ-
ent application scenarios, the IC function can either be the
corpus-based IC (Definition 4) or the graph-based IC (Defi-
nition 5) which will be introduced in the following section.

3.2 Graph-Based Information Content

Conventional corpus-based IC requires to prepare a domain
corpus for the concept taxonomy and then to compute IC
from the domain corpus in offline. The inconvenience lies in
the high computational cost and difficulty of preparing a
domain corpus. More specifically, in order to compute cor-
pus-based IC, the concepts in the taxonomy need to be
mapped to the words in the domain corpus. Then the appear-
ance of concepts are counted and the IC values for concepts
are generated. In this way, the additional domain corpus
preparation and offline computationmay prevent the applica-
tion of those semantic similarity methods relying on the IC
values (e.g., res, lin, jcn, and wpath) to KGs, especially when
the domain corpus is insufficient or the KG is frequently
updated. Since KGs already mined structural knowledge
from textual corpus, we present a convenient graph-based IC
computation method for computing the IC of concepts in a
KG based on the instance distributions over the concept tax-
onomy. The graph-based IC is proposed to directly take
advantage of KGs while retaining the idea of corpus-based IC
representing the specificity of concepts. In consequence, the
IC-based semantic similarity methods such as res, lin, jcn and
the proposedwpath can compute the similarity score between
concepts directly relying on the KG.

As we mentioned previously in Section 1, concepts in KGs
are usually represented as TBox and arranged into concept
taxonomies. Those concepts categorize entity instances of
ABox into different types via the special relation rdf:type. For
example, the concept movie groups all movie instances in
DBpedia. Moreover, if concept A is a parent concept of con-
cept B and concept C in the taxonomy, then the set of instances
of A is the union of the instances of B and C. In other words, a
concept in KG can have multiple entity instances indicating
the semantic type of those entities, while an instance can have
multiple concepts to describe entity categories from general
to specific. For instance, a DBpedia entity instance dbr:
Tom_Cruise can have several concepts describing its types
fromgeneral to specific, Person,Actor,AmericanFilmActor.

Intuitively, more general concepts occur more frequently
in a KG such as concepts organization, person in the tiny
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example of KG in Fig. 1, while more specific concepts occur
less frequently such as concepts actor, university, scientist
and many others. Therefore, the proportion of the instances
belonging to a specific concept in a KG can be used to mea-
sure the specificity of the concept for the given KG, which is
similar to the idea of IC. As introduced in Section 2.2, IC
measures the specificity (informativeness) of a concept over
a corpus. Similar to the definition of conventional corpus-
based IC, we extend the definition of IC in [15] to KGs.

Definition 5. The graph-based IC in a KG is ICgraphðciÞ ¼
�logProbðciÞ where ProbðciÞ ¼ freqgraphðciÞ

N . N denotes the total

number of entities in the KG. Let entitiesðciÞ be the function to
retrieve set of entities having type of ci, the frequency of concept
ci in the KG is defined as freqgraphðciÞ ¼ countðentitiesðciÞÞ
where countðxÞ is a simple counting function measuring the
cardinality of a set of entities.

The above definition of graph-based IC has defined the
distribution of concepts over all the instances in KG. In par-
ticular, entity instances in KG are viewed as document col-
lections and each instance denotes a document, while a
collection of concepts describing each instance are viewed
as terms in a document. Then the graph-based IC is com-
puted as the frequency of those concepts over the document
collections, whose idea is similar to the idea of Inverse Doc-
ument Frequency (IDF) [35] in IR, and the difference is the
mathematical form. Both graph-based IC and IDF treat the
less frequent concepts with higher importance. Since con-
cepts in a taxonomy have hierarchical relations, the less fre-
quent concepts specify more specific concepts.

Corpus-based IC methods may contain ambiguous
meaning of concepts because it calculates IC by counting
the occurrence of words over textual corpus, where words
can be mapped to multiple concepts (ambiguous words). In
comparison, graph-based IC contains specific meaning of
concepts since KGs usually contain disambiguated concepts
to describe types of instances. Furthermore, similar to cor-
pus-based IC, graph-based IC can be used in semantic simi-
larity methods which need to employ ICs such as the res,
lin, jcn and wpath similarity methods. If the LCS of two con-
cepts appears less frequently in a KG, it means that two con-
cepts are more similar. Using graph-based IC enables
semantic similarity methods to compute semantic similarity
between concepts only based on the specific KG without
relying on additional corpora.

Moreover, it is more convenient to compute graph-based
IC than conventional IC. Since instances are linked to con-
cepts through the rdf:type relation in a structured represen-
tation, it is convenient to retrieve all the entities in a KG
belonging to a specific concept using structured query lan-
guages such as SPARQL.2 This could be considered as
online computation compared to the corpus-based IC that is
required to compute in offline from textual corpus. Suppose
that the SPARQL query language is implemented in the KG
management system and the ontology classes are described
using OWL,3 the total number of entities N in the KG can be
acquired using the following SPARQL query.

SELECT count(?e) as ?e WHERE

{

?e rdf:type owl:Thing .

}

In addition, the function freqgraphðciÞ can be implemented
using the following SPARQL query.

SELECT count(?e) as ?e WHERE {

?e rdf:type owl:Thing .

?e rdf:type <concept_uri> .

}

The concept_uri denotes the URI link of the specific concept
in the KG. Within the Definition 5 and the SPARQL imple-
mentation of graph-based IC, it is convenient to compute the
IC of a specific concept based on a KG. Note that the above
SPARQL implementation is just an illustrative example, and
the similar online computation of graph-based IC can be
achieved by accessing a knowledge management system. In
addition, apart from being used in semantic similarity meth-
ods, graph-based IC can also be used in other KG-based appli-
cations such as selecting the most specific type of a given
entity. Furthermore, the definition of graph-based IC can be
applied to conventional document analysis domainwhere the
documents are tagged with hierarchical concepts such as
the Open Directory Project4, the Medical Subject Headings,5

the ACM Term Classification6 and many others. This paper
focuses on applying graph-based IC in semantic similarity
methods and leave its other applications as futurework.

In summary, graph-based IC is proposed to be a possible
substitution or complementary for the conventional corpus-
based IC when the domain corpus is insufficient or online
computation of IC is required. For those domains already
containing annotated corpus such as Brown Corpus [36] for
WordNet, corpus-based IC could be used if it performs well
in similarity metrics for domain applications. According to
our experiments, graph-based IC is as effective as corpus-
based IC although it is not outperforming, thus graph-based
IC could be considered as a trade off of the efficiency, con-
venience and effectiveness, with corpus-based IC. Having
introduced the proposed semantic similarity method and
graph-based IC, we then present their evaluation in the
following section.

4 EXPERIMENTS

The goal of our experiments is to evaluate the proposed
semantic similarity method and graph-based IC in KGs.
However, to best of our knowledge, currently there is no stan-
dard method and dataset to evaluate the performance of
semantic similarity method and IC computation model for
concepts in KG. Therefore, the commonly usedword similar-
ity datasets are used to evaluate the proposed semantic simi-
larity method and graph-based IC based on WordNet and
DBpedia. Moreover, the semantic similarity methods are
evaluated in an aspect category classification task [24], [25] in
order to evaluate their performance in a real application. This
section presents the datasets, implementation, evaluation
and provides a brief discussion about the obtained experi-
mental results.

2. https://www.w3.org/TR/sparql11-query/
3. https://www.w3.org/TR/owl-ref/

4. https://www.dmoz.org/
5. https://www.nlm.nih.gov/mesh/
6. https://www.acm.org/publications/class-2012
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4.1 Word Similarity Evaluation

This section presents the evaluation of semantic similarity
methods and graph-based IC in word similarity task.

4.1.1 Datasets and Implementation

We collected several publicly available gold standard data-
sets for evaluating word semantic similarity, which are con-
ventionally most commonly used and some recently most
updated datasets. The description of collected datasets used
in experiment are listed below.

� R&G [37] is the first and most used dataset contain-
ing human assessment of word similarity. The data-
set resulted from the experiment conducted in 1965
where a group of 51 students (all native English
speakers) assessed the similarity of 65 pairs of words
selected from ordinary English nouns. Those 51 sub-
jects were requested to judge the similarity of meaning
for two given words on a scale from 0.0 (completely
dissimilar) to 4.0 (highly synonymous). It focused on
semantic similarity and ignored any other possible
semantic relationships between the words.

� M&C [38] replicated the R&G experiment again in
1991 by taking a subset of 30 noun pairs. The similar-
ity between words was judged by 38 human subjects.

� WS353 [39] contains 353 pairs of words and 13 to 16
human subjects were asked to assign a numerical
similarity score between 0.0 to 10.0 (0=totally unre-
lated and 10=very closely related). In fact, this dataset
measures general relatedness rather than similarity
because it considers other semantic relations (e.g.,
antonyms are considered as similar). We used this
dataset because it has been perhaps the most com-
monly-used gold standard dataset for semantic simi-
larity recently.

� WS353-Sim [40] contains 203 pairs of words and is
the subset of WS353. It has been identified by the
authors to be suitable for evaluating semantic simi-
larity specially.

� SimLex [41] is a recently released dataset consisting
of 999 word pairs for evaluating semantic similarity
specially. The dataset contains 111 adjective pairs
(A), 666 noun pairs (N), and 222 verb pairs (V). We
used 666 noun pairs in our experiment. Each pair of
words was rated by at least 36 subjects (native
English speakers) with similarity scores on scale
from 0.0 (no similarity) to 10.0 (exactly mean same
thing) and the average score was assigned as final
human judgment score.

All the datasets described above contain a list of triples
comprising two words and a similarity score denoting
word similarity judged by human subjects. The human rat-
ings on those word pairs have been proven to be highly rep-
licable. The correlation obtained from M&C with respect to
R&Gs experiment was 0.97. Ref. [15] replicated the M&C’s
experiment again in 1995, involving 10 computer science
graduate students and post-doc researchers to assess simi-
larity. The correlation with respect to the M&C’s results was
0.96. This indicates that human assessment about semantic
similarity between words is remarkably stable over a large
time span and such datasets containing human ratings can

be reliably used for evaluating semantic similarity methods.
Since those datasets contain different coverage of word
pairs, we use all the datasets for evaluation in order to pres-
ent a more completed and objective experiment.

Those datasets are used for evaluating word similarity.
However, the semantic similarity metrics presented in this
paper are used for concepts, rather than words. We convert
those concept-to-concept semantic similarity metrics into a
word-to-word similarity metrics by taking the maximal sim-
ilarity score over all the concepts which are the senses of the
words [15], [42]. This is based on the intuition that human
subjects would pay more attention to word similarities (i.e.,
most related senses) rather than their differences while rat-
ing two non-disambiguated words [42], which has been
demonstrated in psychological studies [43]. Polysemic
words can be mapped to a set of concepts. Let sðwÞ denote a
set of concepts that are senses of word w, then the word sim-
ilarity measure is defined as

simwordðwi; wjÞ ¼ max
ci2sðwiÞ;cj2sðwjÞ

simconceptðci; cjÞ; (10)

where simconcept can be any semantic similarity methods for
concepts presented in this paper. This function is used to
compute word similarity scores for each semantic similarity
method to be evaluated in this section.

Moreover, we implemented all the knowledge-based
semantic similarity methods and graph-based IC using
WordNet version 3.07 and DBpedia 2014.8 The semantic
similarity methods li, jcn and the proposed wpath method
are implemented based on WordNet NLTK interface.9 We
use the default implementation of other similarity methods
in NLTK which are based on the perl module of WordNet::
Similarity [44]. We also use the NLTK’s implementation of
corpus-based IC using Brown Corpus [36]. For graph-based
IC, we extracted 68,423 WordNet concepts that have been
used in YAGO [3] and used as DBpedia classes such as
yago:Movie106613686. By computing the IC of those 68,423
YAGO classes from DBpedia using the proposed graph-
based IC, we can have the graph-based IC of those concepts
in WordNet so that the graph-based IC can be evaluated
using word similarity datasets. This graph-based IC compu-
tation is achieved by implementing a interface to compute IC
using SPARQLquerieswhich are executed in online SPARQL
endpoint,10 including 4,298,433 entities. As a result, we devel-
oped a complete integrated framework to implement and
evaluate semantic similarity methods for concepts in Word-
Net and DBpedia. All the implementations and resources, as
well as the evaluation results, are published in Sematch11

framework publicly.

4.1.2 Metrics and Evaluation

We follow the most established methodology for evaluating
semantic similarity measures, which consists of measuring
the Spearman correlation between similarity scores gener-
ated by the similarity methods and scores assessed by

7. https://wordnet.princeton.edu/
8. http://dbpedia.org
9. http://www.nltk.org/
10. http://dbpedia.org/sparql
11. https://github.com/gsi-upm/sematch/
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human. Note that both Spearman’s and Pearson’s correla-
tions coefficients have been commonly used in the litera-
tures. They are equivalent if rating scores are ordered and
we use Spearman correlation coefficients in this paper for
convenience. The conventional knowledge-based semantic
similarity methods path [18] (Eq. (1)), lch [19] (Eq. (2)),
wup [20] (Eq. (3)), li [21] (Eq. (4)), res [15] (Eq. (5)), lin [23]
(Eq. (6)), jcn [22] (Eq. (8)) are used as compared methods
and treated as baselines. A similarity measure is acknowl-
edged to have better performance if it has higher correlation
score (the closer to 1.0 the better) with human judgements,
while it is acknowledged to be unrelated to human assess-
ment if the correlation is 0. Since the Spearman’s rank corre-
lation coefficients produced by different semantic similarity
methods are dependent on the human ratings for each data-
set, we need to conduct statistical significance tests on two
dependent (overlapping) correlations. We followed the
Steigers Z test [45] used by Philipp et al. [46] to calculate sta-
tistical significance test between the dependent correlation
coefficients produced by different semantic similarity meth-
ods, using a one-tailed hypothesis test for assessing the dif-
ference between two paired correlations. The cocor package
of R 12 is used to calculate the statistical significance tests on
dependent Spearman rank correlation coefficients. The sta-
tistical significance tests would determine whether the
improvement in the correlation coefficient for each dataset
is statistically significant.

In addition, the performance of IC is evaluated based on
its performance of being used in semantic similarity meth-
ods. The IC computation method is acknowledged to be bet-
ter if the semantic similarity method achieved better
performance in using the IC. We compare the proposed
graph-based IC to conventional corpus-based IC. The evalu-
ation goal of graph-based IC is not to show that it outper-
forms the corpus-based IC, but rather to evaluate how
graph-based IC can be exploited in IC-based semantic simi-
larity metrics aiming to complement or substitute existing
corpus-based IC methods in modern KGs.

In order to evaluate the wpath semantic similarity
method and graph-based IC, word similarity datasets have
been processed and split into Word-Noun, Word-Graph
and Word-Type. For evaluating the wpath similarity metric,
the Word-Noun task was created by mapping words in
word similarity datasets to WordNet noun concepts. The
performance of graph-based IC is compared to corpus-
based IC based on their performance in the similarity met-
rics of wpath, res, lin and jcn. To compute graph-based IC,
words in word similarity datasets need to be mapped to
DBpedia concepts. However, many words are not used as

concepts in DBpedia such as noon, madhouse or lad to
name a few. In consequence, in order to compare wpath
and res, the Word-Graph was created by mapping the LCS
of word pairs to DBpedia concepts, while the Word-Type
was created by mapping the word pairs to DBpedia con-
cepts for comparing wpath, lin and jcn. The more detailed
dataset split criteria are described as below:

� Word-Noun: Word pairs are chosen from all the origi-
nal word similarity datasets if both words can be
mapped to WordNet concepts, while unmapped
word pairs are removed from the datasets. We run
all the semantic similarity methods based on Word-
Net and corpus-based IC. This task evaluates the
performance of semantic similarity methods.

� Word-Graph: Word pairs are further chosen from data-
sets if both words can be mapped to WordNet con-
cepts and the LCS of mapped concepts is one of the
extracted 68,423 WordNet concepts which are used as
DBpedia type. Apart from running all the semantic
similarity methods based on corpus-based IC, we also
use the graph-based IC computed from DBpedia in
the res method and the proposed wpath method. This
task is able to evaluate the performance of the graph-
based IC used in semantic similarity methods of res
and wpath. This task is chosen because both res and
wpath only rely on the IC of LCS.

� Word-Type: Word pairs are chosen if both words can
be mapped to the extracted 68,423 WordNet con-
cepts used as entity type in DBpedia. We treat those
mapped word pairs as DBpedia types. Then, all the
semantic similarity methods are run using both cor-
pus-based IC and graph-based IC. This task is able
to evaluate the performance of graph-based IC used
in semantic similarity of lin, jcn and wpath.

Table 11 shows the numbers of word pairs that are cho-
sen from the original datasets in each task. In Word-Noun
task, we generated word similarity scores of baselines and
the proposed wpath (Eq. (9)) method using corpus-based
IC. Furthermore, we experimented with different settings of
k in range of ð0; 1� with interval of 0.1. The Spearman corre-
lations between the wpath method with different k settings
and human judgements are shown in Table 4. Each column
denotes each dataset and each row denotes a specific k
value running the wpath method. Note that the bold values

TABLE 3
Numbers of Word Pairs for Evaluation Tasks

Task
R&G
(65)

M&C
(30)

WS353
(353)

WS353-Sim
(203)

SimLex
(999)

Word-Noun 65 30 348 201 666
Word-Graph 57 27 321 189 657
Word-Type 41 18 211 128 408

The headline denotes the numbers of word pairs in original dataset.

TABLE 4
Spearman Correlations with Ground Truth in Word-Noun Task

for Proposed wpath Method with Different Settings of k

wpath
k

R&G
(65)

M&C
(30)

WS353
(348)

WS353-Sim
(201)

SimLex
(666)

k = 0.1 0.747 0.703 0.279 0.538 0.486
k = 0.2 0.746 0.696 0.326 0.621 0.497
k = 0.3 0.776 0.737 0.345 0.640 0.550
k = 0.4 0.785 0.740 0.349 0.647 0.573
k = 0.5 0.790 0.738 0.349 0.649 0.482
k = 0.6 0.789 0.732 0.348 0.648 0.589
k = 0.7 0.791 0.723 0.348 0.650 0.596
k = 0.8 0.794 0.728 0.344 0.652 0.603
k = 0.9 0.795 0.726 0.335 0.644 0.601
k = 1.0 0.781 0.724 0.314 0.618 0.584

12. https://cran.r-project.org/web/packages/cocor/index.html
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in each column denotes the highest correlation score for
each dataset which is also same for the following tables. The
Spearman correlations between baselines and human judge-
ments are shown in Table 5. Each row represents a semantic
similarity method and the columns denote the different
datasets. The row wpath shows the highest correlation score
from the Table 4 for each dataset. Note that the corpus in
parentheses of each method denotes that the method has
used corpus-based IC. The Word-Noun is a superset of
Word-Graph and Word-Type, which contains complete
word pairs and human ratings. In order to evaluate whether
the proposed wpath semantic similarity method outper-
forms other semantic similarity methods, a statistical signifi-
cance test based on Steiger’s Z test [45] has been carried out
to analyse the results of Word-Noun task, using one tailed
test and 0.05 statistical significance in each dataset. Table 6
shows the result of Steiger’s Z significance test on the differ-
ences between Spearman correlations (r) of wpath method
and other semantic similarity methods.

In Word-Graph task, we computed the word similarity
scores of baselines and the wpath method with the task set-
ting of Word-Graph. Particularly, for the res and wpath we
also used graph-based IC, while the lin and jcn only used
corpus-based IC. The Spearman correlations between simi-
larity methods and human judgements for Word-Graph
task are shown in Table 7. The graph in parentheses of
methods denote that the method has used the graph-based
IC. In Word-Type task, we computed the word similarity
scores of baselines and the wpath method with the task set-
ting of Word-Type. Apart from corpus-based IC, we also
used graph-based IC for the methods of res, lin, jcn, and
wpath. The difference between the methods res, wpath and
methods of lin, jcn is that the previous two only use the IC

of LCS while the latter two also use the IC of individual con-
cepts. The Spearman correlations between similarity meth-
ods and human judgements for the Word-Type task are
shown in Table 8. We also experimented with different k
settings of wpath method in the Word-Graph task and
Word-Type task for both corpus-based IC and graph-based
IC. In Tables 7 and 8 we reported the best results of wpath
method for each task and each dataset, while Table 9 shows
the specific settings of wpath method achieved best result in
each task and each dataset. Within the evaluation of three
tasks and corresponding results, we then analyse the results
in the following section.

4.1.3 Result Analysis and Discussion

Our main hypothesis in the experiments is that the pro-
posed semantic similarity method wpath will improve over
the baselines and show high correlation to human assess-
ments. The second hypothesis is that the proposed graph-
based IC computation method is effective compared to the
conventional corpus-based IC, which means the graph-
based IC needs to show close performance or outperform-
ing in some cases.

Tables 5, 7, and 8 show that all the semantic similarity
methods have high correlation with human judgements and
the proposed wpath semantic similarity method outper-
forms the baselines in most of cases except the M&C dataset
and WS353-Sim dataset in WordType task. Moreover, from
the three tables we observed that the jcn method performed
exceptionally best in the M&C dataset, however in other
datasets it performed not as good as the one in M&C data-
set. It is probably because of the small word pair sample in

TABLE 5
Word-Noun Task: Spearman Correlations with Ground Truth

of Different Semantic Similarity Methods

Method
R&G
(65)

M&C
(30)

WS353
(348)

WS353-Sim
(201)

SimLex
(666)

path 0.781 0.724 0.314 0.618 0.584
lch 0.781 0.724 0.314 0.618 0.584
wup 0.755 0.729 0.348 0.633 0.542
li 0.787 0.719 0.337 0.636 0.586
res(corpus) 0.776 0.733 0.347 0.637 0.535
lin(corpus) 0.784 0.752 0.310 0.609 0.582
jcn(corpus) 0.775 0.820 0.292 0.592 0.579
wpath(corpus) 0.795 0.740 0.349 0.652 0.603

TABLE 6
Steiger’s Z Significance Test on the Differences Between Spearman Correlations (r) of wpath Method and

Other Semantic Similarity Methods Using 1-Tailed Test and 0.05 Statistical Significance

R&G(65) M&C(30) WS353(348) WS353-Sim(201) SimLex(666)

Method r p-value r p-value r p-value r p-value r p-value

path .982 .171 .984 .248 .967 .003 .960 .013 .955 .021
lch .982 .171 .984 .248 .967 .003 .960 .013 .955 .021
wup .964 .029 .946 .398 .969 .468 .959 .110 .946 .000
li .982 .293 .978 .223 .978 .129 .974 .097 .965 .019
res .956 .204 .943 .436 .952 .449 .948 .194 .913 .000
lin .956 .314 .969 .353 .903 .040 .900 .038 .944 .021
jcn .876 .296 .890 .067 .831 .026 .845 .023 .916 .029

TABLE 7
Word-Graph Task: Spearman Correlations with Ground Truth

of Different Semantic Similarity Methods

Method
R&G
(57)

M&C
(27)

WS353
(321)

WS353-Sim
(189)

SimLex
(657)

path 0.782 0.699 0.336 0.611 0.581
lch 0.782 0.699 0.336 0.611 0.581
wup 0.738 0.711 0.367 0.622 0.537
li 0.779 0.696 0.353 0.625 0.583
lin(corpus) 0.776 0.736 0.324 0.596 0.578
jcn(corpus) 0.762 0.794 0.308 0.589 0.576
res(corpus) 0.765 0.713 0.365 0.626 0.530
res(graph) 0.721 0.717 0.315 0.543 0.373
wpath(corpus) 0.796 0.714 0.370 0.647 0.600
wpath(graph) 0.788 0.776 0.336 0.620 0.581
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M&C dataset. It was also surprising that the li method had
performed best only in WS353-Sim in Word-Type task. It
may be caused by the specific subset of the dataset.

In Table 6, on R&G dataset, the significance test shows
the improvement of wpath over wup (the p-value of each
test is below the significance level of 0.05), while indicates
no statistical significance differences with other methods.
Regarding the M&C dataset, although the jcn method per-
forms best, the result of statistical significance test indicates
that no statistic significant differences between wpath and
jcn (p-value > 0.05). On WS253-Sim and WS353 datasets, it
is clear that the wpath has statistical significant improve-
ment over the path, lch, jcn and lin. Finally, on SimLex data-
set, the wpath has statistical significant improvement over
all other semantic similarity metrics. In general, from the
results of our experiments, we observed that different
semantic similarity metrics have performed differently in
different datasets. The wpath similarity metric has obtained
the best performance in 4 out of 5 datasets (ranked as sec-
ond in M&C only containing 30 word pairs). This shows
that the wpath similarity metric has provided a stable per-
formance in all datasets. Considering that SimLex is the
largest dataset for semantic similarity, bigger than the com-
bination of all other datasets, we may conclude that the
wpath method has produced statistically significant
improvement over other semantic similarity metrics.

From Eq. (9) we know when k ¼ 1 the proposed wpath
method is equivalent to path method. As the value of k
becoming smaller, IC starts to have bigger influence. Even
with low or high values of k, k contributes to solve the uni-
form distance problem of the path method illustrated in
Table 2. It has been shown in Tables 4 and 9 that the best k
has smaller value in R&G and M&C datasets. As pure IC-
based semantic similarity methods also achieved better per-
formance in those two datasets, probably the human ratings
of word pairs in those datasets care more on IC or general
relevance. Based on this observation, the parameter k actu-
ally defines for a given KG the balance among hierarchical
structure and statistical information for calculating semantic
similarity. Its values can provide insight about which met-
rics perform better in a given KG. For high values of k,
structural metrics will provide a better result and for low
values of k, IC metrics perform better.

Different KGs have different concept taxonomies and dif-
ferent distributions of instances over concepts. Even in a
given concept taxonomy, concepts are not equally struc-
tured, such as various density of sub-concepts and different
hierarchical levels of concepts. This can be shown in Fig. 2.
Given that applications usually use a group of concepts
from a taxonomy (e.g., restaurant domain), the specific
value of k should be selected for a specific domain (e.g., a
subgraph of a KG) that reflects the concept structure and IC
of that domain. In consequence, the selection of k would be
the optimization of k for a specific group of concepts. For
those concepts having human ratings, k can be adjusted
empirically or learned automatically by comparing to
human ratings. For those concepts without human ratings,
k should be determined according to the specific domain
application, in which k can be selected empirically or
learned automatically based on application performances.

Regarding to the graph-based IC, we observed that it per-
formed better in Word-Type task than Word-Graph task. It
is also shown in Tables 7 and 8 that the graph-based IC has
better performance in res, lin and wpath methods than jcn.
It is shown in Table 8 that graph-based IC may not be suit-
able for the jcn method, and the graph-based IC achieved
the best performance in R&G and M&C dataset in Word-
Type task while had a similar result in other datasets com-
pared to corpus-based IC. Consequently, we may conclude
that the graph-based IC computation method is effective
compared to conventional corpus-based IC in measuring
word similarity but not always outperforming. Moreover,
graph-based IC has a number of benefits, since it does not
requires a corpus and enables online computing based on
available KGs. Besides, graph-based IC metrics can benefit
from the success of open linked data, and the continuous
growth of available KGs.

4.2 Aspect Category Classification Evaluation

Although the word similarity correlation measure is the
standard way to evaluate the semantic similarity methods,
it relies on human evaluation over word pairs which may
not have the same performance in real applications [47].
Therefore, we consider to evaluate the semantic similarity
methods in a real application. In order to evaluate the
semantic similarity methods considering structure and IC
features, without involving too much other features, we
choose a simple aspect category classification task in Aspect
Based Sentiment Analysis (ABSA) [24], [25].

4.2.1 Aspect Category Classification

ABSA is an evaluation task of the SemEval workshop that
provides benchmark datasets of reviews and a common

TABLE 8
Word-Type Task: Spearman Correlations with Ground Truth

of Different Semantic Similarity Methods

Method
R&G
(41)

M&C
(18)

WS353
(211)

WS353-Sim
(128)

SimLex
(408)

path 0.679 0.621 0.353 0.601 0.616
lch 0.679 0.621 0.353 0.601 0.616
wup 0.613 0.606 0.357 0.589 0.538
li 0.673 0.614 0.361 0.612 0.612
res(corpus) 0.667 0.679 0.355 0.595 0.540
res(graph) 0.674 0.704 0.294 0.487 0.381
lin(corpus) 0.642 0.696 0.322 0.539 0.592
lin(graph) 0.624 0.661 0.305 0.517 0.534
jcn(corpus) 0.676 0.805 0.342 0.546 0.594
jcn(graph) 0.309 0.324 0.241 0.440 0.331
wpath(corpus) 0.691 0.669 0.367 0.606 0.625
wpath(graph) 0.717 0.765 0.353 0.601 0.616

TABLE 9
Spearman Correlations with Ground Truth in Word-Noun Task

for Proposed wpath Method with Different Settings of k

Setting R&G M&C WS353 WS353-Sim SimLex

Word-Graph IC-Corpus k=0.9 k=0.5 k=0.7 k=0.8 k=0.8
Word-Graph IC-Graph k=0.9 k=0.5 k=0.8 k=0.9 k=1.0
Word-Type IC-Corpus k=0.8 k=0.5 k=0.7 k=0.9 k=0.9
Word-Type IC-Graph k=0.6 k=0.6 k=1.0 k=1.0 k=1.0
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evaluation framework. In SemEval 2015 and 2016, the task
sentence-level ABSA has defined a subtask so-called Aspect
Category Detection, whose aim is to identify every entity E
and attribute A pair, towards which an opinion is expressed
in the given text [24]. Specifically, given an input sentence
such as “The food was delicious”, ABSA needs to detect the
E and A pair (category=FOOD#QUALITY) for the target
word “food” and to estimate its sentiment either positive or
negative. The English dataset has been provided for two
domains: Laptops and Restaurants. We have chosen the lat-
ter for this evaluation. In the restaurant domain, SemEval
predefines a set of entities SERVICE, RESTAURANT,
FOOD, DRINKS, AMBIANCE and LOCATION, which can
be viewed as general aspect categories. Our task of aspect
category classification consists in assigning a general aspect
category to opinion target words. For example, words such
as wine, beverage and soda are classified into DRINKS,
while words such as bread, fish, and cheese are classified
into FOOD. Note that only entity E (FOOD) is used as gen-
eral aspect category and the attribute QUALITY is not con-
sidered for simplicity.

This task challenges semantic relatedness methods, espe-
cially for corpus-based methods. For instance, in restaurant
review corpora, those target words such as fish and wine
would appear in same surrounding contexts (e.g., “the fish
is delicious and the wine is great”). Since corpus-based
methods are based on calculating co-occurrences of terms in
a corpus, they can hardly discriminate terms from different
categories that are frequently collocated (e.g., fish and
wine). In such scenario, knowledge-based methods are use-
ful to include the structural knowledge from domain taxon-
omy. As illustrated in a fragment of WordNet in Fig. 2,
lamb, beef, and seafood are sub-concepts of FOOD category,
while coffee, tea and milk are sub-concepts of DRINKS cate-
gory. Intuitively, semantic similarity methods can be used
to measure the taxonomical similarity between target words
and aspect category in order to classify the target words
into correct aspect category.

The most frequent target words of a category are used as
features for representing that category. Features of different
aspect categories are illustrated in Table 10. Formally, we
use A ¼ fa1; . . . ; ang to denote a set of aspect categories, and
fðaiÞ to denote the feature words of a category ai. For a fea-

ture word wk 2 fðaiÞ, we use weightðwkÞ ¼ countðwkÞ
Nai

to denote

the weight of the feature word wk. The Nai ¼P
wk2fðaiÞ countðwkÞ denotes the total count of feature words

of category ai. The counts of feature words are derived from
the annotated datasets from SemEval ABSA [24], [25]. We
can define a simple aspect category classification framework

based on the word semantic similarity method defined in
Eq. (10), in which different semantic similarity methods
are used. Given a sequence of new target words T ¼
fw1; . . . ; wkg, we chose the aspect category â that maximizes
the following similarity function as the correct category of
the T

â ¼ argmax
ai2A

max
wj2T

X
wk2fðaiÞ

simwordðwj; wkÞ � weightðwkÞ: (11)

Given an aspect category ai, the formula sums the semantic
similarity scores between the target words and the feature
words. The highest similarity score of the target word is
chosen to represent the similarity score between T and ai.
The aspect category with the highest similarity score would
be chosen as the correct aspect category. By using different
semantic similarity methods in this simple framework, we
are able to show the effectiveness of similarity methods in a
simple real world application without involving too much
additional features. We then report the evaluation results in
the following Section.

4.2.2 Evaluation Results

We use the restaurant review datasets of ABSA in SemEval-
2015 and SemEval-2016 [24], [25]. Both datasets contain
annotated target words and corresponding category. We
have converted the specific categories into general catego-
ries, and collected a list of target words and category pairs.
As a result, we got a dataset containing 4,406 tuples in form
of target words and category pairs such as (shellfish,
FOOD). The numbers of pairs belong to each category are
shown in Table 11. Since the dataset contains six classes, we
use multi-class classification metrics accuracy, macro-aver-
age of precision, recall and f-measure as the performance
metrics to evaluate the semantic similarity methods.

We have implemented the semantic similarity based
aspect category classification system and evaluated the clas-
sification system in the dataset with different semantic simi-
larity methods. The evaluation results are reported in
Table 12. We have experimented with different k values and
the best k ¼ 0:9 is chosen for the proposed wpath method.

TABLE 11
Numbers of Sentences in Evaluation for Each Aspect Category

Categories SERVICE RESTAURANT FOOD DRINKS AMBIENCE LOCATION

Numbers 519 228 2,256 54 597 752

TABLE 10
Most Frequent Words Co-Occur with Each Aspect Category

Aspect Category Frequent Feature Words

SERVICE service, staff, waiter, waitress, wait, manager, delievery

RESTAURANT place, restaurant, spot, pizza, femme, casa, season

FOOD food, pizza, sushi, dish, menu, fish, chicken, meal, salad

DRINKS wine, drink, beer, selection, bottle, martini, glass, margarita

AMBIENCE atmosphere, place, decor, ambience, music, room, garden

LOCATION view, location, neighborhood, city, place, outdoor, avenue

TABLE 12
Accuracy, Precision, Recall and F-Measure of Aspect Category

Classification Using Different Semantic Similarity Methods

Method Accuracy Precision Recall F-measure

path .793 .658 .736 .680
lch .788 .656 .704 .662
wup .769 .630 .685 .637
li .783 .659 .701 .667
res .723 .560 .679 .558
lin .731 .575 .674 .567
jcn .732 .606 .702 .609
wpath .800 .664 .741 .689
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This k can be treated as the optimized setting for wpath
method in calculating semantic similarity between concepts
in the restaurant domain. As we mentioned previously, the
k value can provide insight about which metrics perform
better in a given group of concepts. Since k has shown
higher value in this restaurant domain, the structure infor-
mation of concept taxonomy is relatively more important. It
is also shown in Table 12 that the structure based semantic
similarity methods, path, lch, wup, and li are performing
better than IC based methods res, lin and jcn. Moreover, the
proposed wpath method has achieved the best accuracy,
precision, recall and F-measure score among other semantic
similarity methods. We could conclude that combining the
statistical IC with the structure information can improve the
performance of structure based semantic similarity methods
in the task of aspect category classification where the hierar-
chical structure is considered to be important.

5 CONCLUSIONS AND FUTURE WORK

Measuring semantic similarity of concepts is a crucial compo-
nent in many applications which has been presented in the
introduction. In this paper, we propose wpath semantic simi-
larity method combining path length with IC. The basic idea
is to use the path length between concepts to represent their
difference, while to use IC to consider the commonality
between concepts. The experimental results show that the
wpathmethod has produced statistically significant improve-
ment over other semantic similarity methods. Furthermore,
graph-based IC is proposed to compute IC based on the distri-
butions of concepts over instances. It has been shown in
experimental results that the graph-based IC is effective for
the res, lin and wpath methods and has similar performance
as the conventional corpus-based IC. Moreover, graph-based
IC has a number of benefits, since it does not requires a corpus
and enables online computing based on available KGs. Based
on the evaluation of a simple aspect category classification
task, the proposedwpathmethodhas also shown the best per-
formance in terms of accuracy and F score.

In this paper, we evaluated the proposed method in the
word similarity dataset and simple classification using the
most established evaluation method. More evaluation of
semantic similaritymethods in other applications considering
the taxonomical relation could be useful and can be one of our
future works. Furthermore, this paper mainly discussed
semantic similarity rather than general semantic relatedness.
Therefore, another future work could be in studying the com-
bination of knowledge-based methods with the corpus-based
methods for semantic relatedness. Finally, since we combined
WordNet and DBpedia together in this paper, we would fur-
ther explore using the proposed approaches for measuring
the entity similarity and relatedness inKGs.
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