
Computing Separable Functions via Gossip

Damon Mosk-Aoyama
Department of Computer Science

Stanford University
Stanford, CA 94305, USA

damonma@cs.stanford.edu

Devavrat Shah
Laboratory for Information and Decision Systems

Massachusetts Institute of Technology
Cambridge, MA 02139, USA

devavrat@mit.edu

ABSTRACT
Motivated by applications to sensor, peer-to-peer, and ad-
hoc networks, we study the problem of computing func-
tions of values at the nodes in a network in a totally dis-
tributed manner. In particular, we consider separable func-
tions, which can be written as linear combinations of func-
tions of individual variables. Known iterative algorithms for
averaging can be used to compute the normalized values of
such functions, but these algorithms do not extend in gen-
eral to the computation of the actual values of separable
functions.

The main contribution of this paper is the design of a
distributed randomized algorithm for computing separable
functions based on properties of exponential random vari-
ables. We bound the running time of our algorithm in terms
of the running time of an information spreading algorithm
used as a subroutine by the algorithm. Since we are inter-
ested in totally distributed algorithms, we consider a ran-
domized gossip mechanism for information spreading as the
subroutine. Combining these algorithms yields a complete
and simple distributed algorithm for computing separable
functions.

The second contribution of this paper is an analysis of the
information spreading time of the gossip algorithm. This
analysis yields an upper bound on the information spread-
ing time, and therefore a corresponding upper bound on the
running time of the algorithm for computing separable func-
tions, in terms of the conductance of an appropriate stochas-
tic matrix. These bounds imply that, for a class of graphs
with small spectral gap (such as grid graphs), the time used
by our algorithm to compute averages is of a smaller order
than the time required for the computation of averages by
a known iterative gossip scheme [5].

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols; F.2.2 [Analysis of Algorithms and Problem
Complexity]: Nonnumerical Algorithms and Problems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PODC’06,July 22-26, 2006, Denver, Colorado, USA.
Copyright 2006 ACM 1-59593-384-0/06/0007 ...$5.00.

General Terms
Algorithms, Theory

Keywords
Data aggregation, randomized algorithms, gossip

1. INTRODUCTION
The development of sensor, peer-to-peer, and ad hoc wire-

less networks has stimulated interest in distributed algo-
rithms for data aggregation, in which nodes in a network
compute a function of local values at the individual nodes.
These networks typically do not have centralized agents that
organize the computation and communication among the
nodes. Furthermore, the nodes in such a network may not
know the complete topology of the network, and the topol-
ogy may change over time as nodes are added and other
nodes fail. In light of the preceding considerations, dis-
tributed computation is of vital importance in these modern
networks.

We consider the problem of computing separable func-
tions in a distributed fashion in this paper. A separable
function can be expressed as the sum of the values of indi-
vidual functions. Given a network in which each node has
a number, we seek a distributed protocol for computing the
value of a separable function of the numbers at the nodes.
Each node has its own estimate of the value of the function,
which evolves as the protocol proceeds. Our goal is to min-
imize the amount of time required for all of these estimates
to be close to the actual function value.

In this work, we are interested in totally distributed com-
putations, in which nodes have a local view of the state of
the network. To accurately estimate the value of a sepa-
rable function that depends on the numbers at all of the
nodes, each node must obtain information about the other
nodes in the network. This is accomplished through com-
munication between neighbors in the network. Over the
course of the protocol, the global state of the network effec-
tively diffuses to each individual node via local communica-
tion among neighbors.

More concretely, we assume that each node in the network
knows only its neighbors in the network topology, and can
contact any neighbor to initiate a communication. On the
other hand, we assume that the nodes do not have unique
identities (i.e., a node has no unique identifier that can be
attached to its messages to identify the source of the mes-
sages). This constraint is natural in ad-hoc and mobile net-
works, where there is a lack of infrastructure (such as IP

addresses or static GPS locations), and it limits the abil-
ity of a distributed algorithm to recreate the topology of
the network at each node. In this sense, the constraint also
provides a formal way to distinguish distributed algorithms
that are truly local from algorithms that operate by gather-
ing enormous amounts of global information at all the nodes.

The absence of identifiers for nodes makes it difficult,
without global coordination, to simply transmit every node’s
value throughout the network so that each node can iden-
tify the values at all the nodes. As such, we develop an al-
gorithm for computing separable functions that relies on an
order- and duplicate-insensitive statistic [17] of a set of num-
bers, the minimum. The algorithm is based on properties of
exponential random variables, and reduces the problem of
computing the value of a separable function to the problem
of determining the minimum of a collection of numbers, one
for each node.

This reduction leads us to study the problem of informa-
tion spreading or information dissemination in a network.
In this problem, each node starts with a message, and the
nodes must spread the messages throughout the network
using local communication so that every node eventually
has every message. Because the minimum of a collection of
numbers is not affected by the order in which the numbers
appear, nor by the presence of duplicates of an individual
number, the minimum computation required by our algo-
rithm for computing separable functions can be performed
by any information spreading algorithm. Our analysis of
the algorithm for computing separable functions establishes
an upper bound on its running time in terms of the run-
ning time of the information spreading algorithm it uses as
a subroutine.

In view of our goal of distributed computation, we ana-
lyze a gossip algorithm for information spreading. Gossip
algorithms are a useful tool for achieving fault-tolerant and
scalable distributed computations in large networks. In a
gossip algorithm, each node repeatedly iniatiates communi-
cation with a small number of neighbors in the network, and
exchanges information with those neighbors.

The gossip algorithm for information spreading that we
study is randomized, with the communication partner of
a node at any time determined by a simple probabilistic
choice. We provide an upper bound on the running time
of the algorithm in terms of the conductance of a stochastic
matrix that governs how nodes choose communication part-
ners. By using the gossip algorithm to compute minima in
the algorithm for computing separable functions, we obtain
an algorithm for computing separable functions whose per-
formance on certain graphs compares favorably with that
of known iterative distributed algorithms [5] for computing
averages in a network.

1.1 Related work
In this section, we present a brief summary of related

work. Algorithms for computing the number of distinct el-
ements in a multiset or data stream [9, 2] can be adapted
to compute separable functions using information spreading
[6]. We are not aware, however, of a previous analysis of the
amount of time required for these algorithms to achieve a
certain accuracy in the estimates of the function value when
the computation is totally distributed (i.e., when nodes do
not have unique identities). These adapted algorithms re-
quire the nodes in the network to make use of a common

hash function. In addition, the discreteness of the count-
ing problem makes the resulting algorithms for computing
separable functions suitable only for functions in which the
terms in the sum are integers. Our algorithm is simpler
than these algorithms, and can compute functions with non-
integer terms.

There has been a lot of work on the distributed compu-
tation of averages, a special case of the problem of reaching
agreement or consensus among processors via a distributed
computation. Distributed algorithms for reaching consensus
under appropriate conditions are known [22, 23, 4]. Aver-
aging algorithms compute the ratio of the sum of the input
numbers to n, the number of nodes in the network, and
not the exact value of the sum. Thus, such algorithms can-
not be extended in general to compute arbitrary separable
functions. On the other hand, an algorithm for computing
separable functions can be used to compute averages by sep-
arately computing the sum of the input numbers, and the
number of nodes in the graph (using one as the input at
each node).

Recently, Kempe, Dobra, and Gehrke showed the exis-
tence of a randomized iterative gossip algorithm for averag-
ing with the optimal averaging time [12]. This result was
restricted to complete graphs. The algorithm requires that
the nodes begin the computation in an asymmetric initial
state in order to compute separable functions, a require-
ment that may not be convenient for large networks that do
not have centralized agents for global coordination. Further-
more, the algorithm suffers from the possibility of oscillation
throughout its execution.

In a more recent paper, Boyd, Ghosh, Prabhakar, and
Shah presented a simpler iterative gossip algorithm for av-
eraging that addresses some of the limitations of the Kempe
et al. algorithm [5]. Specifically, the algorithm and anal-
ysis are applicable to arbitrary graph topologies. Boyd et
al. showed a connection between the averaging time of the
algorithm and the mixing time (a property that is related
to the conductance, but is not the same) of an appropriate
random walk on the graph representing the network. They
also found an optimal averaging algorithm as a solution to
a semi-definite program.

For completeness, we contrast our results for the problem
of averaging with known results. As we shall see, itera-
tive averaging, which has been a common approach in the
previous work, is an order slower than our algorithm for
many graphs, including ring and grid graphs. In this sense,
our algorithm is quite different than (and has advantages in
comparison with) the known averaging algorithms.

On the topic of information spreading, gossip algorithms
for disseminating a message to all nodes in a complete graph
in which communication partners are chosen uniformly at
random have been studied for some time [10, 18, 8]. Karp,
Schindelhauer, Shenker, and Vöcking presented a push and
pull gossip algorithm, in which communicating nodes both
send and receive messages, that disseminates a message to
all n nodes in a graph in O(log n) time with high probabil-
ity. In this work, we have provided an analysis of the time
required for a gossip algorithm to disseminate n messages
to n nodes for the more general setting of arbitrary graphs
and non-uniform random choices of communication part-
ners. For other related results, we refer the reader to [19,
13, 14]. We take note of the similar (independent) recent
work of Ganesh, Massoulié, and Towsley [11], and Berger,

Borgs, Chayes, and Saberi [3], on the spread of epidemics in
a network.

1.2 Organization
The rest of the paper is organized as follows. Section

2 presents the distributed computation problems we study
and an overview of our results. In Section 3, we develop and
analyze an algorithm for computing separable functions in
a distributed manner. Section 4 contains an analysis of a
simple randomized gossip algorithm for information spread-
ing, which can be used as a subroutine in the algorithm for
computing separable functions. In Section 5, we discuss ap-
plications of our results to particular types of graphs, and
compare our results to previous results for computing aver-
ages. Finally, we present conclusions and future directions
in Section 6.

2. PRELIMINARIES
We consider an arbitrary connected network, represented

by an undirected graph G = (V, E), with |V | = n nodes.
For notational purposes, we assume that the nodes in V
are numbered arbitrarily so that V = {1, . . . , n}. A node,
however, does not have a unique identity that can be used
in a computation. Two nodes i and j can communicate with
each other if (and only if) (i, j) ∈ E.

To capture some of the resource constraints in the net-
works in which we are interested, we impose a transmitter
gossip constraint on node communication. Each node is al-
lowed to contact at most one other node at a given time
for communication. However, a node can be contacted by
multiple nodes simultaneously.

Let 2V denote the power set of the vertex set V (the set
of all subsets of V). For an n-dimensional vector ~x ∈ Rn,
let x1, . . . , xn be the components of ~x.

Definition 1. We say that a function f : Rn × 2V → R is
separable if there exist functions f1, . . . , fn such that, for all
S ⊆ V ,

f(~x, S) =
∑
i∈S

fi(xi). (1)

Goal. Let F be the class of separable functions f for which
fi(x) ≥ 1 for all x ∈ R and i = 1, . . . , n. Given a function
f ∈ F , and a vector ~x containing initial values xi for all
the nodes, the nodes in the network are to compute the
value f(~x, V) by a distributed computation, using repeated
communication between nodes.

Note 1. Consider a function g for which there exist func-
tions g1, . . . , gn satisfying, for all S ⊆ V , the condition
g(~x, S) =

∏
i∈S gi(xi) in lieu of (1). Then, g is logarithmic

separable, i.e., f = logb g is separable. Our algorithm for
computing separable functions can be used to compute the
function f = logb g. The condition fi(x) ≥ 1 corresponds
to gi(x) ≥ b in this case. This lower bound of 1 on fi(x)
is arbitrary, although our algorithm does require the terms
fi(xi) in the sum to be positive.

Before proceeding further, we list some practical situa-
tions where the distributed computation of separable func-
tions arises naturally. By definition, the sum of a set of
numbers is a separable function.

(1) Summation. Let the value at each node be xi = 1.
Then, the sum of the values is the number of nodes in
the network.

(2) Averaging. According to Definition 1, the average of a
set of numbers is not a separable function. However,
the nodes can estimate the separable function

∑n
i=1 xi

and n separately, and use the ratio between these two
estimates as an estimate of the mean of the numbers.

Suppose the values at the nodes are measurements of a
quantity of interest. Then, the average provides an un-
biased maximum likelihood estimate of the measured
quantity. For example, if the nodes are temperature
sensors, then the average of the sensed values at the
nodes gives a good estimate of the ambient tempera-
ture.

For more sophisticated applications of a distributed aver-
aging algorithm, we refer the reader to [15] and [16]. Aver-
aging is used for the distributed computation of the top k
eigenvectors of a graph in [15], while in [16] averaging is used
in a throughput-optimal distributed scheduling algorithm in
a wireless network.
Time model. In a distributed computation, a time model
determines when nodes communicate with each other. We
consider two time models, one synchronous and the other
asynchronous, in this paper. The two models are described
as follows.

(1) Synchronous time model: Time is slotted commonly
across all nodes in the network. In any time slot, each
node may contact one of its neighbors according to a
random choice that is independent of the choices made
by the other nodes. The simultaneous communication
between the nodes satisfies the transmitter gossip con-
straint.

(2) Asynchronous time model: Each node has a clock that
ticks at the times of a rate 1 Poisson process. Equiv-
alently, a common clock ticks according to a rate n
Poisson process at times Ck, k ≥ 1, where {Ck+1−Ck}
are i.i.d. exponential random variables of rate n. On
clock tick k, one of the n nodes, say Ik, is chosen uni-
formly at random. We consider this global clock tick
to be a tick of the clock at node Ik. When a node’s
clock ticks, it contacts one of its neighbors at random.
In this model, time is discretized according to clock
ticks. On average, there are n clock ticks per one unit
of absolute time.

In this paper, we measure the running times of algorithms
in absolute time, which is the number of time slots in the
synchronous model, and is (on average) the number of clock
ticks divided by n in the asynchronous model. To obtain a
precise relationship between clock ticks and absolute time
in the asynchronous model, we appeal to tail bounds on the
probability that the sample mean of i.i.d. exponential ran-
dom variables is far from its expected value. In particular,
we make use of the following lemma, which also plays a role
in the analysis of the accuracy of our algorithm for comput-
ing separable functions.

Lemma 1. For any k ≥ 1, let Y1, . . . , Yk be i.i.d. expo-
nential random variables with rate λ. Let Rk = 1

k

∑k
i=1 Yi.

Then, for any ε ∈ (0, 1/2),

Pr

(∣∣∣∣Rk −
1

λ

∣∣∣∣ ≥ ε

λ

)
≤ 2 exp

(
− ε2k

3

)
. (2)

Proof. By definition, E[Rk] = 1
k

∑k
i=1 λ−1 = λ−1. The

inequality in (2) follows directly from Cramér’s Theorem
(see [7], pp. 30, 35) and properties of exponential random
variables.

A direct implication of Lemma 1 is the following corollary,
which bounds the probability that the absolute time Ck at
which clock tick k occurs is far from its expected value.

Corollary 1. For k ≥ 1, E[Ck] = k/n. Further, for
any ε ∈ (0, 1/2),

Pr

(∣∣∣∣Ck −
k

n

∣∣∣∣ ≥ εk

n

)
≤ 2 exp

(
− ε2k

3

)
. (3)

Our algorithm for computing separable functions is ran-
domized, and is not guaranteed to compute the exact quan-
tity f(~x, V) =

∑n
i=1 fi(xi) at each node in the network. To

study the accuracy of the algorithm’s estimates, we analyze
the probability that the estimate of f(~x, V) at every node is
within a (1±ε) multiplicative factor of the true value f(~x, V)
after the algorithm has run for some period of time. In this
sense, the error in the estimates of the algorithm is relative
to the magnitude of f(~x, V).

To measure the amount of time required for an algorithm’s
estimates to achieve a specified accuracy with a specified
probability, we define the following quantity. For an algo-
rithm C that estimates f(~x, V), let ŷi(t) be the estimate of
f(~x, V) at node i at time t. Furthermore, for notational
convenience, given ε > 0, let Aε

i(t) be the following event.

Aε
i(t) = {ŷi(t) 6∈ [(1− ε)f(~x, V), (1 + ε)f(~x, V)]}

Definition 2. For any ε > 0 and δ ∈ (0, 1), the (ε, δ)-
computing time of C, denoted T cmp

C (ε, δ), is

T cmp
C (ε, δ) = sup

f∈F
sup

~x∈Rn
inf
{

τ : ∀t ≥ τ, Pr
(
∪n

i=1 Aε
i(t)
)
≤ δ
}

.

Intuitively, the significance of this definition of the (ε, δ)-
computing time of an algorithm C is that, if C runs for an
amount of time that is at least T cmp

C (ε, δ), then the probabil-
ity that the estimates of f(~x, V) at the nodes are all within
a (1± ε) factor of the actual value of the function is at least
1− δ.

As noted before, our algorithm for computing separable
functions is based on a reduction to the problem of informa-
tion spreading, which is described as follows. Suppose that,
for i = 1, . . . , n, node i has the one message mi. The task
of information spreading is to disseminate all n messages
to all n nodes via a sequence of local communications be-
tween neighbors in the graph. In any single communication
between two nodes, each node can transmit to its communi-
cation partner any of the messages that it currently holds.
We assume that the data transmitted in a communication
must be a set of messages, and therefore cannot be arbitrary
information.

Consider an information spreading algorithm D, which
specifies how nodes communicate. For each node i ∈ V , let
Si(t) denote the set of nodes that have the message mi at
time t. While nodes can gain messages during communi-
cation, we assume that they do not lose messages, so that

Si(t1) ⊆ Si(t2) if t1 ≤ t2. Analogous to the (ε, δ)-computing
time, we define a quantity that measures the amount of time
required for an information spreading algorithm to dissemi-
nate all the messages mi to all the nodes in the network.

Definition 3. For δ ∈ (0, 1), the δ-information-spreading
time of the algorithm D, denoted T spr

D (δ), is

T spr
D (δ) = inf {t : Pr (∪n

i=1{Si(t) 6= V }) ≤ δ} .

In our analysis of the gossip algorithm for information
spreading, we assume that when two nodes communicate,
one can send all of its messages to the other in a single
communication. This rather unrealistic assumption of infi-
nite link capacity is merely for convenience, as it provides a
simpler analytical characterization of T cmp

C (ε, δ) in terms of
T spr
D (δ). Our algorithm for computing separable functions

requires only links of unit capacity.

2.1 Our contribution
The main contribution of this paper is the design of a dis-

tributed algorithm to compute separable functions of node
values in an arbitrary connected network. Our algorithm is
randomized and is based on the following property of the
exponential distribution.

Property 1. Let W1, . . . , Wn be n independent random
variables such that, for i = 1, . . . , n, the distribution of
Wi is exponential with rate λi. Let W̄ be the minimum
of W1, . . . , Wn. Then, W̄ is distributed as an exponential
random variable of rate λ =

∑n
i=1 λi.

Proof. For an exponential random variable W with rate
λ, for any z ∈ R+,

Pr(W > z) = exp(−λz).

Using this fact and the independence of the random variables
Wi, we compute Pr(W̄ > z) for any z ∈ R+.

Pr(W̄ > z) = Pr (∩n
i=1{Wi > z})

=

n∏
i=1

Pr(Wi > z)

=

n∏
i=1

exp(−λiz)

= exp

(
−z

n∑
i=1

λi

)
.

This establishes the property stated above.

Our algorithm uses an information spreading algorithm as
a subroutine, and as a result its running time is a function of
the running time of the information spreading algorithm it
uses. The faster the information spreading algorithm is, the
better our algorithm performs. Specifically, the following
result provides an upper bound on the (ε, δ)-computing time
of the algorithm.

Theorem 1. Given an information spreading algorithm
D with δ-spreading time T spr

D (δ) for δ ∈ (0, 1), there exists
an algorithm A for computing separable functions f ∈ F
such that, for any ε ∈ (0, 1) and δ ∈ (0, 1),

T cmp
A (ε, δ) = O

(
ε−2(1 + log δ−1)T spr

D (δ/2)
)
.

Motivated by our interest in decentralized algorithms, we
analyze a simple randomized gossip algorithm for informa-
tion spreading. When node i initiates a communication, it
contacts each node j 6= i with probability Pij . With prob-
ability Pii, it does not contact another node. The n × n
matrix P = [Pij] characterizes the algorithm; each matrix
P gives rise to an information spreading algorithm P. We
assume that P is stochastic, and that Pij = 0 if i 6= j and
(i, j) /∈ E, as nodes that are not neighbors in the graph can-
not communicate with each other. Section 4 describes the
data transmitted between two nodes when they communi-
cate.

We obtain an upper bound on the δ-information-spreading
time of this gossip algorithm in terms of the conductance of
the matrix P , which is defined as follows.

Definition 4. For a stochastic matrix P , the conductance
of P , denoted Φ(P), is

Φ(P) = min
S⊂V, 0<|S|≤n/2

∑
i∈S,j /∈S Pij

|S| .

In general, the above definition of conductance is not the
same as the classical definition [21]. However, we restrict
our attention in this paper to symmetric matrices P . When
P is symmetric, the two definitions are equivalent. Note
that the definition of conductance implies that Φ(P) ≤ 1.

Theorem 2. Consider any stochastic and symmetric ma-
trix P such that if i 6= j and (i, j) /∈ E, then Pij = 0. There
exists an information dissemination algorithm P such that,
for any δ ∈ (0, 1),

T spr
P (δ) = O

(
log n + log δ−1

Φ(P)

)
.

Note 2. The results of Theorems 1 and 2 hold for both the
synchronous and asynchronous time models. Recall that the
quantities T cmp

C (ε, δ) and T spr
D (δ) are defined with respect to

absolute time in both models.

3. FUNCTION COMPUTATION
In this section, we describe our algorithm for computing

the value y = f(~x, V) =
∑n

i=1 fi(xi) of the separable func-
tion f , where fi(xi) ≥ 1. For simplicity of notation, let
yi = fi(xi). Given xi, each node can compute yi on its
own. Next, the nodes use the algorithm shown in Figure
1, which we refer to as COMP, to compute estimates ŷi of
y =

∑n
i=1 yi. The quantity r is a parameter to be chosen

later.
We describe how the minimum is computed as required

by step 2 of the algorithm in Section 3.1. The running time
of the algorithm COMP depends on the running time of the
algorithm used to compute the minimum.

Now, we show that COMP effectively estimates the func-
tion value y when the estimates Ŵ i

` are all correct by pro-
viding a lower bound on the conditional probability that the
estimates produced by COMP are all within a (1± ε) factor
of y.

Lemma 2. Let y1, . . . , yn be real numbers (with yi ≥ 1 for
i = 1, . . . , n), y =

∑n
i=1 yi, and W̄ = (W̄1, . . . , W̄r), where

the W̄` are as defined in the algorithm COMP. For any node
i, let Ŵ i = (Ŵ i

1 , . . . , Ŵ i
r), and let ŷi be the estimate of y

Algorithm COMP

0. Initially, for i = 1, . . . , n, node i has the value yi ≥ 1.

1. Each node i generates r independent random numbers
W i

1 , . . . , W i
r , where the distribution of each W i

` is ex-
ponential with rate yi (i.e., with mean 1/yi).

2. Each node i computes, for ` = 1, . . . , r, an estimate Ŵ i
`

of the minimum W̄` = minn
i=1 W i

` . This computation
can be done using an information spreading algorithm
as described below.

3. Each node i computes ŷi = r∑r
`=1 Ŵ i

`

as its estimate of∑n
i=1 yi.

Figure 1: An algorithm for computing separable
functions.

obtained by node i in COMP. For any ε ∈ (0, 1/2),

Pr
(
∪n

i=1 {|ŷi − y| > 2εy} | ∀i ∈ V, Ŵ i = W̄
)

≤ 2 exp

(
− ε2r

3

)
.

Proof. Observe that the estimate ŷi of y at node i is a
function of r and Ŵ i. Under the hypothesis that Ŵ i = W̄
for all nodes i ∈ V , all nodes produce the same estimate

ŷ = ŷi of y. This estimate is ŷ = r
(∑r

`=1 W̄`

)−1
, and so

ŷ−1 =
(∑r

`=1 W̄`

)
r−1.

Property 1 implies that each of the n random variables
W̄1, . . . , W̄r has an exponential distribution with rate y.
From Lemma 1, it follows that for any ε ∈ (0, 1/2),

Pr

(∣∣∣∣ŷ−1 − 1

y

∣∣∣∣ >
ε

y

∣∣∣ ∀i ∈ V, Ŵ i = W̄

)
≤ 2 exp

(
− ε2r

3

)
.

(4)

This inequality bounds the conditional probability of the
event {ŷ−1 6∈ [(1−ε)y−1, (1+ε)y−1]}, which is equivalent to
the event {ŷ 6∈ [(1+ε)−1y, (1−ε)−1y]}. Now, for ε ∈ (0, 1/2),

(1− ε)−1 ∈ [1 + ε, 1 + 2ε] ,

(1 + ε)−1 ∈ [1− ε, 1− 2ε/3] .
(5)

Applying the inequalities in (4) and (5), we conclude that
for ε ∈ (0, 1/2),

Pr
(
|ŷ − y| > 2εy | ∀i ∈ V, Ŵ i = W̄

)
≤ 2 exp

(
− ε2r

3

)
.

Noting that the event ∪n
i=1{|ŷi − y| > 2εy} is equivalent to

the event {|ŷ − y| > 2εy} when Ŵ i = W̄ for all nodes i
completes the proof of Lemma 2.

3.1 Using information spreading to compute
minima

We now elaborate on step 2 of the algorithm COMP.
Each node i in the graph starts this step with a vector
W i = (W i

1 , . . . , W i
r), and the nodes seek the vector W̄ =

(W̄1, . . . , W̄r), where W̄` = minn
i=1 W i

` . In the information
spreading problem, each node i has a message mi, and the
nodes are to transmit messages across the links until every
node has every message.

If all link capacities are infinite (i.e., in one time unit,
a node can send an arbitrary amount of information to an-
other node), then an information spreading algorithm D can
be used directly to compute the minimum vector W̄ . To see
this, let the message mi at the node i be the vector W i,
and then apply the information spreading algorithm to dis-
seminate the vectors. Once every node has every message
(vector), each node can compute W̄ as the component-wise
minimum of all the vectors. This implies that the running
time of the resulting algorithm for computing W̄ is the same
as that of the information spreading algorithm.

The assumption of infinite link capacities allows a node to
transmit an arbitrary number of vectors W i to a neighbor
in one time unit. A simple modification to the information
spreading algorithm, however, yields an algorithm for com-
puting the minimum vector W̄ using links of capacity r. To
this end, each node i maintains a single r-dimensional vector
wi(t) that evolves in time, starting with wi(0) = W i.

Suppose that, in the information dissemination algorithm,
node j transmits the messages (vectors) W i1 , . . . , W ic to
node i at time t. Then, in the minimum computation algo-
rithm, j sends to i the r quantities w1, . . . , wr, where w` =
minc

u=1 W iu
` . The node i sets wi

`(t
+) = min(wi

`(t
−), w`) for

` = 1, . . . , r, where t− and t+ denote the times immediately
before and after, respectively, the communication. At any
time t, we will have wi(t) = W̄ for all nodes i ∈ V if, in
the information spreading algorithm, every node i has all
the vectors W 1, . . . , W n at the same time t. In this way, we
obtain an algorithm for computing the minimum vector W̄
that uses links of capacity r and runs in the same amount
of time as the information spreading algorithm.

An alternative to using links of capacity r in the computa-
tion of W̄ is to make the time slot r times larger, and impose
a unit capacity on all the links. Now, a node transmits the
numbers w1, . . . , wr to its communication partner over a pe-
riod of r time slots, and as a result the running time of the
algorithm for computing W̄ becomes greater than the run-
ning time of the information spreading algorithm by a factor
of r. The preceding discussion, combined with the fact that
nodes only gain messages as an information spreading algo-
rithm executes, leads to the following lemma.

Lemma 3. Suppose that the COMP algorithm is imple-
mented using an information spreading algorithm D as de-
scribed above. Let Ŵ i(t) denote the estimate of W̄ at node
i at time t. For any δ ∈ (0, 1), let tm = rT spr

D (δ). Then, for

any time t ≥ tm, with probability at least 1− δ, Ŵ i(t) = W̄
for all nodes i ∈ V .

Note that the amount of data communicated between
nodes during the algorithm COMP depends on the values
of the exponential random variables generated by the nodes.
Since the nodes compute minima of these variables, we are
interested in a probabilistic lower bound on the values of
these variables (for example, suppose that the nodes trans-
mit the values 1/W i

` when computing the minimum W̄` =
1/ maxn

i=1{1/W i
`}). To this end, we use the fact that each

W̄` is an exponential random variable with rate y to obtain
that, for any constant c > 1, the probability that any of the
minimum values W̄` is less than 1/B (i.e., any of the inverse

values 1/W i
` is greater than B) is at most δ/c, where B is

proportional to cry/δ.

3.2 Proof of Theorem 1
Now, we are ready to prove Theorem 1. In particular,

we will show that the COMP algorithm has the properties
claimed in Theorem 1.

Proof (of Theorem 1). Consider using an information
spreading algorithm D with δ-spreading time T spr

D (δ) for δ ∈
(0, 1) as the subroutine in the COMP algorithm. For any
δ ∈ (0, 1), let τm = rT spr

D (δ/2). By Lemma 3, for any time

t ≥ τm, the probability that Ŵ i 6= W̄ for any node i at time
t is at most δ/2.

On the other hand, suppose that Ŵ i = W̄ for all nodes
i at time t ≥ τm. For any ε ∈ (0, 1), by choosing r ≥
12ε−2 log(4δ−1) so that r = Θ(ε−2(1 + log δ−1)), we obtain
from Lemma 2 that

Pr
(
∪n

i=1 {ŷi 6∈ [(1− ε)y, (1 + ε)y]} | ∀i ∈ V, Ŵ i = W̄
)

≤ δ/2.
(6)

Recall that T cmp
COMP (ε, δ) is the smallest time τ such that,

under the algorithm COMP, at any time t ≥ τ , all the nodes
have an estimate of the function value y within a multiplica-
tive factor of (1 ± ε) with probability at least 1 − δ. By a
straightforward union bound of events and (6), we conclude
that, for any time t ≥ τm,

Pr (∪n
i=1 {ŷi 6∈ [(1− ε)y, (1 + ε)y]}) ≤ δ.

For any ε ∈ (0, 1) and δ ∈ (0, 1), we now have, by the
definition of (ε, δ)-computing time,

T cmp
COMP (ε, δ) ≤ τm

= O
(
ε−2(1 + log δ−1)T spr

D (δ/2)
)
.

This completes the proof of Theorem 1.

4. INFORMATION SPREADING
In this section, we analyze a randomized gossip algorithm

for information spreading. The method by which nodes
choose partners to contact when initiating a communication
and the data transmitted during the communication are the
same for both time models defined in Section 2. These mod-
els differ in the times at which nodes contact each other: in
the asynchronous model, only one node can start a commu-
nication at any time, while in the synchronous model all the
nodes can communicate in each time slot.

The information spreading algorithm that we study is pre-
sented in Figure 2, which makes use of the following nota-
tion. Let Mi(t) denote the set of messages node i has at
time t. Initially, Mi(0) = {mi} for all i ∈ V . For a com-
munication that occurs at time t, let t− and t+ denote the
times immediately before and after, respectively, the com-
munication occurs.

As mentioned in Section 2.1, the nodes choose commu-
nication partners according to the probability distribution
defined by an n×n matrix P . The matrix P is non-negative
and stochastic, and satisfies Pij = 0 for any pair of nodes
i 6= j such that (i, j) 6∈ E. For each such matrix P , there is
an instance of the information spreading algorithm, which
we refer to as SPREAD(P).

We note that the data transmitted between two commu-
nicating nodes in SPREAD conform to the pull mechanism.

Algorithm SPREAD(P)
When a node i initiates a communication at time t:

1. Node i chooses a node u at random, and contacts u.
The choice of the communication partner u is made
independently of all other random choices, and the
probability that node i chooses any node j is Pij .

2. Node u sends all of the messages it has to node i, so
that

Mi(t
+) = Mi(t

−) ∪Mu(t−).

Figure 2: A gossip algorithm for information spread-
ing.

That is, when node i contacts node u at time t, node u sends
information to node i, but i does not send information to
u. We also note that the description in Figure 2 assumes
that the communication links in the network have infinite
capacity. As discussed in Section 3.1, however, an informa-
tion spreading algorithm that uses links of infinite capacity
can be used to compute minima using links of unit capacity.

This algorithm is simple, distributed, and satisfies the
transmitter gossip constraint. We now present analysis of
the information spreading time of SPREAD(P) for sym-
metric matrices P in the two time models. The goal of the
analysis is to prove Theorem 2. To this end, for any i ∈ V ,
let Si(t) ⊆ V denote the set of nodes that have the message
mi after any communication events that occur at absolute
time t (communication events occur on a global clock tick
in the asynchronous time model, and in each time slot in
the synchronous time model). At the start of the algorithm,
Si(0) = {i}.

4.1 Asynchronous model
As described in Section 2, in the asynchronous time model

the global clock ticks according to a Poisson process of rate
n, and on a tick one of the n nodes is chosen uniformly at
random. This node initiates a communication, so the times
at which the communication events occur correspond to the
ticks of the clock. On any clock tick, at most one node can
receive messages by communicating with another node.

Let k ≥ 0 denote the index of a clock tick. Initially, k = 0,
and the corresponding absolute time is 0. For simplicity of
notation, we identify the time at which a clock tick occurs
with its index, so that Si(k) denotes the set of nodes that
have the message mi at the end of clock tick k. The follow-
ing lemma provides a bound on the number of clock ticks
required for every node to receive every message.

Lemma 4. For any δ ∈ (0, 1), define

K(δ) = inf{k ≥ 0 : Pr(∪n
i=1{Si(k) 6= V }) ≤ δ}.

Then,

K(δ) = O

(
n

log n + log δ−1

Φ(P)

)
.

Proof. Fix any node v ∈ V . We study the evolution of
the size of the set Sv(k). For simplicity of notation, we drop
the subscript v, and write S(k) to denote Sv(k).

Under the gossip algorithm, after clock tick k + 1, we
have either |S(k + 1)| = |S(k)| or |S(k + 1)| = |S(k)| + 1.

Further, the size increases if a node j /∈ S(k) contacts a node
i ∈ S(k). For each such pair of nodes i, j, the probability
that this occurs on clock tick k + 1 is Pji/n. Hence,

E[|S(k + 1)| − |Sk| | S(k)] =
∑

i∈S(k),j /∈S(k)

Pji

n
. (7)

By the symmetry of P ,

E[|S(k + 1)| | S(k)]

= |S(k)|

(
1 +

∑
i∈S(k),j /∈S(k) Pij

n|S(k)|

)
. (8)

Now, we divide the execution of the algorithm into two
phases based on the size of the set S(k). In the first phase,
|S(k)| ≤ n/2, and in the second phase |S(k)| > n/2. When
|S(k)| ≤ n/2, it follows from (8) and the definition of the
conductance Φ(P) of P that

E[|S(k + 1)| | S(k)] ≥ |S(k)|
(
1 + Φ̂

)
, (9)

where Φ̂ = Φ(P)
n

.

Let Z(k) = |S(k)| − (1 + Φ̂)k. Define the stopping time
L = inf{k : |S(k)| > n/2}, and L∧k = min(L, k). The lower
bound in (9) on the conditional expectation of |S(k + 1)|
implies that Z(L ∧ k) is a submartingale. To see this, first
observe that if |S(k)| > n/2, then L ∧ (k + 1) = L ∧ k, and
thus E[Z(L ∧ (k + 1)) | S(L ∧ k)] = Z(L ∧ k). In the case
that |S(k)| ≤ n/2, we apply the inequality in (9) and the
fact that L∧(k+1) = (L∧k)+1 to verify the submartingale
condition.

E[Z(L ∧ (k + 1)) | S(L ∧ k)]

= E[|S(L ∧ (k + 1))| | S(L ∧ k)]

− E

[(
1 + Φ̂

)L∧(k+1) ∣∣∣ S(L ∧ k)

]
≥

(
1 + Φ̂

)
|S(L ∧ k)| −

(
1 + Φ̂

)(L∧k)+1

=
(
1 + Φ̂

)
Z(L ∧ k)

Since Z(L∧ k) is a submartingale, we have the inequality
E[Z(L∧0)] ≤ E[Z(L∧k)] for any k > 0, which implies that

E

[(
1 + Φ̂

)L∧k
]
≤ E[|S(L∧k)|] because Z(L∧0) = Z(0) =

0. Using the fact that the set S(k) can contain at most the
n nodes in the graph, we conclude that

E

[(
1 + Φ̂

)L∧k
]
≤ n. (10)

From the Taylor series expansion of ln(1 + x) at x = 0,
for x ≥ 0 we have the inequality ln(1 + x) ≥ x − x2/2 =

x(1 − x/2). By the definition of Φ̂, and the fact that the
sum of each row of the matrix P is at most 1, we have
Φ̂ ≤ 1. It follows that ln(1 + Φ̂) ≥ Φ̂(1 − Φ̂/2) ≥ Φ̂/2, and

so exp(Φ̂z/2) ≤ (1 + Φ̂)z for all z ≥ 0. Substituting this
inequality into (10), we obtain

E

[
exp

(
Φ̂(L ∧ k)

2

)]
≤ n.

Because exp(Φ̂(L∧k)/2) ↑ exp(Φ̂L/2) as k →∞, the mono-

tone convergence theorem implies that

E

[
exp

(
Φ̂L

2

)]
≤ n.

Applying Markov’s inequality, we obtain that, for k1 =
2(ln 2 + 2 ln n + ln(1/δ))/Φ̂,

Pr(L > k1) = Pr

(
exp

(
Φ̂L

2

)
>

2n2

δ

)

<
δ

2n
. (11)

For the second phase of the algorithm, when |S(k)| > n/2,
we study the evolution of the size of the set of nodes that do
not have the message, |S(k)c|. This quantity will decrease as
the message spreads from nodes in S(k) to nodes in S(k)c.
For simplicity, let us consider restarting the process from
clock tick 0 after L (i.e., when more than half the nodes in
the graph have the message), so that we have |S(0)c| ≤ n/2.
The analysis is similar to that for the first phase.

Since |S(k)| + |S(k)c| = n, the equation in (7) gives the
conditional expectation E[|S(k)c|−|S(k+1)c| | S(k)c] of the
decrease in |Sc

k|. We use this and the fact that |S(k)c| ≤ n/2
to obtain

E[|S(k + 1)c| | S(k)c] ≤
(
1− Φ̂

)
|S(k)c|.

We note that this inequality holds even when |S(k)c| = 0,
and as a result it is valid for all clock ticks k in the second
phase. Repeated application of the inequality yields

E[|S(k)c|] = E[E[|S(k)c| | S(k − 1)c]]

≤
(
1− Φ̂

)
E[|S(k − 1)c|]

≤
(
1− Φ̂

)k

E[|S(0)c|]

≤
(
1− Φ̂

)k (n

2

)
.

The Taylor series expansion of e−x implies that e−x ≥ 1−x
for x ≥ 0, and so

E[|S(k)c|] ≤ exp
(
−Φ̂k

)(n

2

)
.

For k2 = ln(n2/δ)/Φ̂ = (2 ln n + ln(1/δ))/Φ̂, we have
E[|S(k2)

c|] ≤ δ/(2n). Markov’s inequality now implies the
following upper bound on the probability that not all of the
nodes have the message at the end of clock tick k2 in the
second phase.

Pr(|S(k2)
c| > 0) = Pr(|S(k2)

c| ≥ 1)

≤ E[|S(k2)
c|]

≤ δ

2n
. (12)

Combining the analysis of the two phases, i.e., the inequal-
ities in (11) and (12), we obtain that, for k′ = k1 + k2 =

O((log n+log δ−1)/Φ̂), Pr(Sv(k′) 6= V) ≤ δ/n. Applying the
union bound over all the nodes in the graph, and recalling
that Φ̂ = Φ(P)/n, we conclude that

K(δ) ≤ k′

= O

(
n

log n + log δ−1

Φ(P)

)
.

This completes the proof of Lemma 4.

To extend the bound in Lemma 4 to absolute time, ob-
serve that Corollary 1 implies that the probability that κ =
K(δ/3) + 27 ln(3/δ) = O(n(log n + log δ−1)/Φ(P)) clock
ticks do not occur in absolute time (4/3)κ/n = O((log n +
log δ−1)/Φ(P)) is at most 2δ/3. Applying the union bound
now yields T spr

SPREAD(P)(δ) = O((log n + log δ−1)/Φ(P)),

thus establishing the upper bound in Theorem 2 for the
asynchronous time model.

4.2 Synchronous model
In the synchronous time model, in each time slot every

node contacts a neighbor to receive messages. Thus, n com-
munication events may occur simultaneously. Recall that
absolute time is measured in rounds or time slots in the
synchronous model.

The analysis of the randomized gossip algorithm for infor-
mation spreading in the synchronous model is very similar
to the analysis for the asynchronous model. In this sec-
tion, we sketch a proof of the time bound in Theorem 2,
T spr

SPREAD(P)(δ) = O((log n + log δ−1)/Φ(P)), for the syn-

chronous time model. Since the proof follows the same
structure as the proof of Lemma 4, we only point out the
significant differences.

We fix a node v ∈ V , and study the evolution of the size
of the set S(t) = Sv(t). Consider a time slot t + 1. For any
j /∈ S(t), let Xj be an indicator random variable that is 1
if node j receives the message mv in round t + 1 from some
node i ∈ S(t), and is 0 otherwise. Then,

E[|S(t + 1)| | S(t)]

= |S(t)|+ E

 ∑
j /∈S(t)

Xj

∣∣∣ S(t)


= |S(t)|+

∑
i∈S(t),j /∈S(t)

Pji

= |S(t)|

(
1 +

∑
i∈S(t),j 6∈S(t) Pij

|S(t)|

)
. (13)

Here, we have used the fact that P is symmetric.
It follows from (13) and the definition of conductance that

for |S(t)| ≤ n/2,

E[|S(t + 1)| | S(t)] ≥ |S(t)|(1 + Φ(P)). (14)

The inequality in (14) is exactly the same as (9), with a
factor n missing. The remainder of the proof is analogous
to that for Lemma 4, and hence we skip the details.

5. APPLICATIONS
We study here the application of our preceding results to

several types of graphs. In particular, we consider complete
graphs, constant-degree expander graphs, and grid graphs.
We use grid graphs as an example to compare the perfor-
mance of our algorithm for computing separable functions
with that of a known iterative averaging algorithm.

For each of the three classes of graphs mentioned above,
we study the δ-information-spreading time T spr

SPREAD(P)(δ),

where P is a symmetric matrix that assigns equal probabil-
ity to each of the neighbors of any node. Specifically, the
probability Pij that a node i contacts a node j 6= i when i
becomes active is 1/∆, where ∆ is the maximum degree of
the graph, and Pii = 1 − di/∆, where di is the degree of i.

Recall from Theorem 1 that the information dissemination
algorithm SPREAD(P) can be used to compute separable
functions, with the running time of the resulting algorithm
being a function of T spr

SPREAD(P)(δ).

5.1 Complete graph
On a complete graph, the transition matrix P has Pii = 0

for i = 1, . . . , n, and Pij = 1/(n − 1) for j 6= i. This regu-
lar structure allows us to directly evaluate the conductance
of P , which is Φ(P) ≈ 1/2. This implies that the (ε, δ)-
computing time of the algorithm for computing separable
functions based on SPREAD(P) is O(ε−2(1+log δ−1)(log n+
log δ−1)). Thus, for a constant ε ∈ (0, 1) and δ = 1/n, the
computation time scales as O(log2 n).

5.2 Expander graph
Expander graphs have been used for numerous applica-

tions, and explicit constructions are known for constant-
degree expanders [20]. We consider here an undirected graph
in which the maximum degree of any vertex, ∆, is a con-
stant. Suppose that the edge expansion of the graph is

min
S⊂V, 0<|S|≤n/2

|F (S, Sc)|
|S| = α,

where F (S, Sc) is the set of edges in the cut (S, Sc), and
α > 0 is a constant. The transition matrix P satisfies Pij =
1/∆ for all i 6= j such that (i, j) ∈ E, from which we obtain
Φ(P) ≥ α/∆. When α and ∆ are constants, this leads to a
similar conclusion as in the case of the complete graph: for
any constant ε ∈ (0, 1) and δ = 1/n, the computation time
is O(log2 n).

5.3 Grid
We now consider a d-dimensional grid graph on n nodes,

where c = n1/d is an integer. Each node in the grid can
be represented as a d-dimensional vector a = (ai), where
ai ∈ {1, . . . , c} for 1 ≤ i ≤ d. There is one node for each
distinct vector of this type, and so the total number of nodes
in the graph is cd = (n1/d)d = n. For any two nodes a and
b, there is an edge (a, b) in the graph if and only if, for some
i ∈ {1, . . . , d}, |ai − bi| = 1, and aj = bj for all j 6= i.

In [1], it is shown that the isoperimetric number of this
grid graph is

min
S⊂V, 0<|S|≤n/2

|F (S, Sc)|
|S| = Θ

(
1

c

)
= Θ

(
1

n1/d

)
.

By the definition of the edge set, the maximum degree of a
node in the graph is 2d. This means that Pij = 1/(2d) for
all i 6= j such that (i, j) ∈ E, and it follows that Φ(P) =

Ω
(

1

dn1/d

)
. Hence, for any ε ∈ (0, 1) and δ ∈ (0, 1), the (ε,

δ)-computing time of the algorithm for computing separable

functions is O(ε−2(1 + log δ−1)(log n + log δ−1)dn1/d).

5.4 Comparison with Iterative Averaging
We briefly contrast the performance of our algorithm for

computing separable functions with that of the iterative av-
eraging algorithm in [5]. When our algorithm is used to
compute the average of a set of numbers (by estimating the
sum of the numbers and the number of nodes in the graph)
on a d-dimensional grid graph, it follows from the analysis in
Section 5.3 that the amount of time required to ensure the

estimate is within a (1± ε) factor of the average with proba-

bility at least 1−δ is O(ε−2(1+log δ−1)(log n+log δ−1)dn1/d)
for any ε ∈ (0, 1) and δ ∈ (0, 1). So, for a constant ε ∈ (0, 1)

and δ = 1/n, the computation time scales as O(dn1/d log2 n)
with the size of the graph, n. The algorithm in [5] requires

Ω(n2/d log n) time for this computation. Hence, the running
time of our algorithm is (for fixed d, and up to logarithmic
factors) the square root of the runnning time of the itera-
tive algorithm! This relationship holds on other graphs for
which the spectral gap is proportional to the square of the
conductance.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we presented a novel algorithm for com-

puting separable functions in a totally distributed manner.
The algorithm is based on properties of exponential random
variables, and the fact that the minimum of a collection of
numbers is an order- and duplicate-insensitive statistic.

Operationally, our algorithm makes use of an information
spreading mechanism as a subroutine. This led us to the
analysis of a randomized gossip mechanism for information
spreading. We obtained an upper bound on the information
spreading time of this algorithm in terms of the conductance
of a matrix that characterizes the algorithm.

In addition to computing separable functions, our algo-
rithm improves the computation time for the canonical task
of averaging. For example, on graphs such as paths, rings,
and grids, the performance of our algorithm is of a smaller
order than that of a known iterative algorithm.

We believe that our algorithm will lead to the following to-
tally distributed computations: (1) an approximation algo-
rithm for convex minimization with linear constraints; and
(2) a “packet marking” mechanism in the Internet. These
areas, in which summation is a key subroutine, will be topics
of our future research.

7. ACKNOWLEDGMENTS
We thank Ashish Goel for useful discussions and sugges-

tions.

8. REFERENCES
[1] M. C. Azizoğlu and Ö. Eğecioğlu. The isoperimetric

number of d-dimensional k-ary arrays. International
Journal of Foundations of Computer Science,
10(3):289–300, 1999.

[2] Z. Bar-Yossef, T. Jayram, R. Kumar, D. Sivakumar,
and L. Trevisan. Counting distinct elements in a data
stream. In Proceedings of RANDOM 2002, pages 1–10,
2002.

[3] N. Berger, C. Borgs, J. T. Chayes, and A. Saberi. On
the spread of viruses on the internet. In Proceedings of
the Sixteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 301–310, 2005.

[4] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and
Distributed Computation: Numerical Methods.
Prentice Hall, 1989.

[5] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah.
Gossip algorithms: Design, analysis and applications.
In Proceedings of IEEE INFOCOM 2005, pages
1653–1664, 2005.

[6] J. Considine, F. Li, G. Kollios, and J. Byers.
Approximate aggregation techniques for sensor
databases. In Proceedings of the 20th International
Conference on Data Engineering, pages 449–460, 2004.

[7] A. Dembo and O. Zeitouni. Large Deviations
Techniques and Applications. Springer, second edition,
1998.

[8] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry.
Epidemic algorithms for replicated database
maintenance. In Proceedings of the Sixth Annual ACM
Symposium on Principles of Distributed Computing,
pages 1–12, 1987.

[9] P. Flajolet and G. N. Martin. Probabilistic counting
algorithms for data base applications. Journal of
Computer and System Sciences, 31(2):182–209, 1985.

[10] A. M. Frieze and G. R. Grimmett. The shortest-path
problem for graphs with random arc-lengths. Discrete
Applied Mathematics, 10:57–77, 1985.

[11] A. Ganesh, L. Massoulié, and D. Towsley. The effect
of network topology on the spread of epidemics. In
Proceedings of IEEE INFOCOM 2005, pages
1455–1466, 2005.

[12] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based
computation of aggregate information. In Proceedings
of the 44th Annual IEEE Symposium on Foundations
of Computer Science, pages 482–491, 2003.

[13] D. Kempe and J. Kleinberg. Protocols and
impossibility results for gossip-based communication
mechanisms. In Proceedings of the 43rd Annual IEEE
Symposium on Foundations of Computer Science,
pages 471–480, 2002.

[14] D. Kempe, J. Kleinberg, and A. Demers. Spatial
gossip and resource location protocols. In Proceedings
of the 33rd Annual ACM Symposium on Theory of
Computing, pages 163–172, 2001.

[15] D. Kempe and F. McSherry. A decentralized
algorithm for spectral analaysis. In Proceedings of the
36th Annual ACM Symposium on Theory of
Computing, pages 561–568, 2004.

[16] E. Modiano, D. Shah, and G. Zussman. Maximizing
throughput in wireless networks via gossip. Submitted,
2005.

[17] S. Nath, P. B. Gibbons, S. Seshan, and Z. R.
Anderson. Synopsis diffusion for robust aggregation in
sensor networks. In Proceedings of the 2nd
International Conference on Embedded Networked
Sensor Systems, pages 250–262, 2004.

[18] B. Pittel. On spreading a rumor. SIAM Journal of
Applied Mathematics, 47(1):213–223, 1987.

[19] R. Ravi. Rapid rumor ramification: Approximating
the minimum broadcast time. In Proceedings of the
35th Annual IEEE Symposium on Foundations of
Computer Science, pages 202–213, 1994.

[20] O. Reingold, S. Vadhan, and A. Wigderson. Entropy
waves, the zig-zag graph product, and new
constant-degree expanders and extractors. In
Proceedings of the 41st Annual IEEE Symposium on
Foundations of Computer Science, pages 3–13, 2000.

[21] A. Sinclair. Algorithms for Random Generation and
Counting: A Markov Chain Approach. Birkhäuser,
Boston, 1993.

[22] J. N. Tsitsiklis. Problems in Decentralized Decision
Making and Computation. PhD thesis, Department of
Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, 1984.

[23] J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans.
Distributed asynchronous deterministic and stochastic
gradient optimization algorithms. IEEE Transactions
on Automatic Control, 31(9):803–812, 1986.

