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Abstract

Coalition formation is a key problem in automated negotia-
tion among self-interested agents. In order for coalition for-
mation to be successful, a key question that must be answered
is how the gains from cooperation are to be distributed. Var-
ious solution concepts have been proposed, but the computa-
tional questions around these solution concepts have received
little attention.
We study a concise representation of characteristic functions
which allows for the agents to be concerned with a number of
independent issues that each coalition of agents can address.
For example, there may be a set of tasks that the capacity-
unconstrained agents could undertake, where accomplishing
a task generates a certain amount of value (possibly depend-
ing on how well the task is accomplished). Given this rep-
resentation, we show how to quickly compute the Shapley
value—a seminal value division scheme that distributes the
gains from cooperation fairly in a certain sense. We then
show that in (distributed) marginal-contribution based value
division schemes, which are known to be vulnerable to ma-
nipulation of the order in which the agents are added to the
coalition, this manipulation is NP-complete. Thus, compu-
tational complexity serves as a barrier to manipulating the
joining order. Finally, we show that given a value division,
determining whether some subcoalition has an incentive to
break away (in which case we say the division is not in the
core) is NP-complete. So, computational complexity serves
to increase the stability of the coalition.

1. Introduction
Coalition formation is a key part of automated negotiation
among self-interested agents. A coalition of agents can
sometimes accomplish things that the individual agents can-
not, or can do things more efficiently. Besides being of in-
terest to the distributed AI / multiagent systems community,
coalition formation has electronic commerce applications as
well. For example, consider a large number of companies,
some subsets of which could form profitable virtual orga-
nizations that can respond to larger or more diverse orders
than the individual companies can.

In order for coalition formation to be successful, a key
question that must be answered is how the gains from coop-
eration are to be distributed. This question has been stud-
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ied extensively in cooperative game theory, and some of
the resulting solution concepts have already been adopted
in the multiagent systems literature (e.g., (Ketchpel 1994;
Zlotkin & Rosenschein 1994; Shehory & Kraus 1996; 1998;
Conitzer & Sandholm 2003a)). One objective that these so-
lution concepts pursue is that of fairness. For instance, the
Shapley value divides the value fairly in a certain sense. An-
other objective is that of stability. For instance, a value divi-
sion is in the core if no subcoalition of agents has an incen-
tive to break away and form their own coalition.

The computational questions around these solution con-
cepts have received relatively little attention. (As excep-
tions, constructing solutions in the core has been stud-
ied under a concise representation relying on superadditiv-
ity (Conitzer & Sandholm 2003a), as well as for a routing
game on graphs (Markakis & Saberi 2003), and a facility lo-
cation game (Goemans & Skutella 2004).) When it comes
to coalition formation among software agents (that represent
real-world parties), these questions become increasingly ex-
plicit. Additionally, there are many potential commercial
applications for methods that compute value divisions with
certain properties. For instance, one possible application of
being able to compute a value division in the core is to deter-
mine how much each employee of a company should be paid
so that the company does not collapse as a result of a group
of employees being bought away by another company.

One important source of computational complexity could
be that each potential coalition has some hard optimization
problem, making it difficult to ascertain a single coalition’s
value. For example, when the agents are carrier companies
with their own trucks and delivery tasks, they can save costs
by forming a coalition (pooling their trucks and tasks), but
each potential coalition faces a hard optimization problem:
a vehicle routing problem defined by the coalition’s trucks
and tasks. The effect of such hard optimization problems
on coalition formation has been studied by Sandholm and
Lesser (Sandholm & Lesser 1997), but the bulk of research
on coalition formation (Aumann 1959; Charnes & Kortanek
1966; Shapley 1967; Kahan & Rapoport 1984; van der Lin-
den & Verbeek 1985; Bernheim, Peleg, & Whinston 1987;
Chatterjee et al. 1993; Ketchpel 1994; Moreno & Wooders
1996; Okada 1996; Ray 1996; Shehory & Kraus 1996; Mil-
grom & Roberts 1996; Evans 1997; Shehory & Kraus 1998;
Conitzer & Sandholm 2003a) does not address this issue.
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A second source of computational complexity, more di-
rectly related to the coalition formation process itself, is that
even if we can compute each coalition’s value, we still need
a method to choose a value division among the agents that
is consistent with the solution concept. Finding such a value
division can be a nontrivial problem. How complex is it?
There are other, related, important computational questions
as well. For instance, how hard is it for an agent to manip-
ulate (to its advantage) which of the consistent value divi-
sions is chosen? Or, can we perhaps use a weaker notion of
stability because it is computationally difficult to find a sub-
coalition that has an incentive to break away? In this paper
we address all of these three questions.

We study the questions in a problem representation where
the agents are concerned with a number of distinct issues
that each coalition of agents can address. (That there can be
multiple independent issues does not in any way restrict the
settings that we can capture; in the worst case the problem
is not decomposable, so there will be just one issue.) For
example, there may be a set of tasks that the agents could
undertake, where accomplishing a task generates a certain
amount of value (possibly depending on how well the task is
accomplished). Here, each coalition of agents would have
a different collective skill set, and thereby achieve a dif-
ferent level of success on each task. We assume that each
coalition’s optimization problem for each individual issue
is solved already (or easy to solve), thereby largely assum-
ing away the first source of computational complexity. This
paper belongs to the relatively new set of papers that study
computational considerations directly related to value divi-
sion among the agents—the second source of complexity.

The rest of the paper is organized as follows. In Section
2, we formalize our problem representation. In Section 3,
we show how to efficiently compute the Shapley value. In
Section 4, we show that manipulating marginal-contribution
based value division schemes is hard. Finally, in Section 5,
we show that it is hard to determine whether a given value
division is stable—that is, belongs to the core.

2. Multi-issue characteristic function games
Characteristic function games
Value division in coalition formation is usually studied in
characteristic function games, where each potential coali-
tion S has a value v(S) that it can obtain. This assumes that
utility is transferable (e.g., payments are possible),1 and that
a coalition’s value is independent of what nonmembers of
the coalition do. In some settings, nonmembers’ actions af-
fect the coalition’s value, for example, due to usage of shared
limited resources. Such general games can be modeled in the
characteristic function framework by either optimistically
assuming that the nonmembers will do what maximizes the

1In the general case where utility transfers are not necessarily
possible, each coalition has a set of utility possibility vectors, each
of which contains a utility for each agent. If utility is transferable,
then the set of utility possibility vectors for a coalition is the set of
all utility vectors for that coalition with utilities summing to at most
the value of the coalition. We will only deal with the transferable
utility case in this paper.

coalition’s value, or pessimistically assuming that the non-
members will do what minimizes the coalition’s value. (In
either case, the members of the coalition act to maximize the
coalition’s value.) The optimistic assumption yields stronger
stability (in the sense of the core): if a coalition cannot ben-
eficially deviate even if its value is maximized by the non-
members, then it certainly cannot beneficially deviate.

Definition 1 Given a set of agents A, a characteristic func-
tion v : 2A → R assigns a value to each coalition.

Typically the function is increasing:

Definition 2 v is increasing if S1 ⊆ S2 ⇒ v(S1) ≤ v(S2).

The function being increasing entails that adding more
agents to a coalition never hurts (in the worst case, they can
sit on the side and do nothing). All of our results hold both
with and without the assumption that v is increasing.

Another common assumption on characteristic functions
is that they are superadditive:

Definition 3 v is superadditive if for all disjoint coalitions
S1, S2 ⊆ A, v(S1) + v(S2) ≤ v(S1 ∪ S2).

The motivation behind this is that, at worst, the agents can
pretend that they are in two separate coalitions even though
they are joined into a single one. However, superadditivity
does not always hold, for any of several reasons: 1. There
can be coordination overhead. A larger coalition may need
to expend more effort in coordinating the agents in the coali-
tion. 2. The problem of deciding how a coalition will handle
its tasks can be a hard optimization problem, and the cost of
solving it often increases superlinearly with the number of
agents in the coalition (Sandholm & Lesser 1997). 3. There
may be some penalty to collusion, for example, due to anti-
trust laws. 4. In games where a coalition’s value can depend
on what nonmembers do, and the characteristic function is
derived using the optimistic assumption described above, the
argument of pretending to be in two separate coalitions does
not go through. This is because it would implicitly require
all agents to act in the best interest of S1, as well as in the
best interest of S2, which may not be possible.

Concise representation of multi-issue games
We are now ready to present our concise representation
of characteristic functions, which involves a decomposition
over a number of independent issues. Each issue has its own
characteristic function.

Definition 4 The vector of characteristic functions
(v1, v2, . . . , vT ), with each vi : 2A → R, is a decomposi-
tion over T issues of characteristic function v : 2A → R if

for any S ⊆ A, v(S) =
T∑

i=1

vi(S).

The following lemmas show that if the functions into
which the characteristic function decomposes are increasing
or superadditive, then so is the characteristic function.

Lemma 1 If v =
T∑

i=1

vi is a decomposition of v, and each

vi is increasing, then v is increasing.
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Proof: If S1 ⊆ S2, then v(S1) =
T∑

i=1

vi(S1) ≤
T∑

i=1

vi(S2) =

v(S2).

Lemma 2 If v =
T∑

i=1

vi is a decomposition of v, and each

vi is superadditive, then v is superadditive.

Proof: For disjoint S1, S2 ⊆ A, we have v(S1 ∪ S2) =
T∑

i=1

vi(S1 ∪ S2) ≥
T∑

i=1

vi(S1) + vi(S2) =
T∑

i=1

vi(S1) +

T∑

i=1

vi(S2) = v(S1) + v(S2).

The decomposition can lead to a more concise represen-
tation if the individual vi are concisely representable. In this
paper, we will study the case where each vi only concerns a
subset of the agents that are relevant to issue i. For instance,
in a setting where the issues correspond to tasks, some of the
agents may not have any skills relevant to a given task.

Definition 5 We say that vi concerns only Ci ⊆ A if
vi(S1) = vi(S2) whenever Ci ∩ S1 = Ci ∩ S2. In this
case, we only need to define vi over 2Ci .

Our representation requires the specification of only
T∑

i=1

2|Ci| values, exponentially fewer than the 2|A| we need

to specify in general—presuming the |Ci| are small. We will
conceive of the |Ci| as being small (for example, a constant)
throughout this paper.

3. Computing the Shapley value
We will now review a well-known value division scheme
known as the Shapley value (Shapley 1953). The Shapley
value aims to distribute the gains from cooperation in a fair
manner. It has many equivalent characterizations; we will
review one that gives a formula in closed form for it.

First consider a different value division scheme, which
we will call the marginal-contribution scheme. It imposes
an order π on the agents in A, and adds in the agents one
by one in this order. An agent’s payoff is its marginal con-
tribution to the value of the coalition. This simple value di-
vision scheme has its advantages, not the least of which is
its simplicity, and we will return to it later. A difficulty that
it presents is that the value that an agent receives depends
on the order, π, in which the agents join the coalition. The
Shapley value resolves this by averaging each agent’s payoff
over all possible orderings.

Definition 6 Given an ordering π of A, for any agent a, let
S(π, a) be the set of agents in A that appear before a in
ordering π. Then the Shapley value for agent a is defined as
Sh(A, a) = 1

|A|!
∑

π
(v(S(π, a) ∪ {a}) − v(S(π, a))).

To operationalize a value division scheme, the scheme
should be associated with an algorithm for finding a value
division consistent with the scheme. In the rest of this sec-
tion we derive a fast way of determining the Shapley value.

We first show that to compute the Shapley value in our
representation, we can simply compute the Shapley value

for each term vi, and sum these. That is, if the characteristic
function decomposes, then so does the Shapley value.

Lemma 3 If v =
T∑

i=1

vi is a decomposition of v, then for any

agent a we have Sh(A, a) =
T∑

i=1

Shvi
(A, a), where Shvi

is

the Shapley value computed with respect to characteristic
function vi.

Proof: Sh(A, a) = 1
|A|!

∑

π
(v(S(π, a) ∪ {a}) −

v(S(π, a))) = 1
|A|!

∑

π
(

T∑

i=1

vi(S(π, a) ∪ {a}) −
T∑

i=1

vi(S(π, a))) = 1
|A|!

∑

π

T∑

i=1

(vi(S(π, a) ∪ {a}) −

vi(S(π, a))) =
T∑

i=1

1
|A|!

∑

π
(vi(S(π, a) ∪ {a}) −

vi(S(π, a))) =
T∑

i=1

Shvi
(A, a).

Next, we show that to compute the Shapley value of a
function that only concerns a subset of the agents, we need
to average over the orderings of only those agents.

Lemma 4 If vi only concerns Ci ⊆ A, then for any a ∈
Ci, Shvi

(A, a) = Shvi
(Ci, a) = 1

|Ci|!
∑

πCi

(vi(S(πCi
, a) ∪

{a}) − vi(S(πCi
, a))) (where the πCi

are orderings of the
agents in Ci only, and S(πCi

, a) is the set of agents in Ci

appearing before a in ordering πCi
). For any a /∈ Ci,

Shvi
(A, a) = 0.

Proof: Because vi(S) = vi(S ∪ {a}) for any S ⊆ A and
a /∈ Ci, the marginal contribution of an agent outside Ci

is always 0, and it follows that its Shapley value is 0—
proving the second part of the lemma. For any S ⊆ A
and a ∈ Ci, we have vi(S ∪ {a}) − vi(S) = vi((S ∩
Ci) ∪ {a}) − vi(S ∩ Ci). Using the notation π ⇒ πCi

to indicate that π and πCi
agree on the order of the ele-

ments in Ci, if π ⇒ πCi
, it follows that S(π, a) ∩ Ci =

S(πCi
, a). Combining this with our previous observation,

we have vi(S(π, a) ∪ {a}) − vi(S(π, a)) = vi(S(πCi
, a) ∪

{a}) − vi(S(πCi
, a)). Then, Shvi

= 1
|A|!

∑

π
(vi(S(π, a) ∪

{a}) − vi(S(π, a))) = 1
|A|!

∑

πCi

∑

π:π⇒πCi

(vi(S(π, a) ∪

{a}) − vi(S(π, a))) = 1
|A|!

∑

πCi

∑

π:π⇒πCi

(vi(S(πCi
, a) ∪

{a}) − vi(S(πCi
, a))) = 1

|A|!
∑

πCi

|A|!
|Ci|! (vi(S(πCi

, a) ∪

{a}) − vi(S(πCi
, a))) = 1

|Ci|!
∑

πCi

(vi(S(πCi
, a) ∪ {a}) −

vi(S(πCi
, a))) = Shvi

(Ci, a), proving the first part.

Finally, we show that we do not really need to sum over all
possible orderings, but rather just over all possible subsets,
if we add an appropriate weighting factor to each term.

Lemma 5 We can write Sh(A, a) =
1

|A|!
∑

S⊆A−{a}
|S|!(|A| − |S| − 1)!(v(S ∪ {a}) − v(S)).

GAME THEORY & ECONOMIC MODELS   221  



Similarly, if vi only concerns Ci ⊆ A, then
for any a ∈ Ci, we can write Shvi

(Ci, a) =
1

|Ci|!
∑

S⊆Ci−{a}
|S|!(|Ci| − |S| − 1)!(vi(S ∪ {a}) − vi(S)).

Proof: We have Sh(A, a) = 1
|A|!

∑

π
(v(S(π, a) ∪ {a}) −

v(S(π, a))) = 1
|A|!

∑

S⊆A−{a}

∑

π:S(π,a)=S

(v(S ∪ {a}) −

v(S)) = 1
|A|!

∑

S⊆A−{a}
|S|!(|A| − |S| − 1)!(v(S ∪ {a}) −

v(S)). The proof for the vi is exactly the same, because the
formula has exactly the same structure.

We can conclude that our representation allows for fast
computation of the Shapley value, if the |Ci| are small.

Theorem 1 Suppose we are given a characteristic function

with a decomposition v =
T∑

i=1

vi, represented as follows.

For each i with 1 ≤ i ≤ T we are given Ci ⊆ A, so that
each vi concerns only Ci. Each vi is flatly represented over
2Ci , that is, for each i with 1 ≤ i ≤ T , we are given vi(Si)
explicitly for each Si ⊆ Ci. Then (assuming that table
lookups for the vi(Si), as well computations of factorials,
multiplications and subtractions take constant time), we can
compute the Shapley value of v for any given agent in time

O(
T∑

i=1

2|Ci|), or less precisely O(T2maxi |Ci|). This holds

whether or not the characteristic function is increasing, and
whether or not it is superadditive.

Proof: By Lemma 3, we can simply compute the agent’s
Shapley value for each individual issue, and then sum these
together. By Lemmas 4 and 5, to compute the Shapley
value of an individual issue, we only need to sum weighted
marginal utilities over subsets of the agents that that issue
concerns. The computation of each term in the latter sum-
mation only takes constant time, by assumptions made in the
statement of the theorem.

Thus, the Shapley value can be computed quickly when
the |Ci| are small (especially in the case where the |Ci| are
bounded by a small constant, as will be the case in the rest
of the paper).

4. Manipulating marginal-contribution based
value division schemes

We now return to marginal contribution schemes for value
division where we do not average over all possible orders
(unlike in the Shapley value scheme). In such schemes, we
should be concerned that an agent may have some influence
over which order is chosen, and will attempt to make the
chosen order so that its marginal contribution is maximal
when it joins. Choosing the order completely at random has
been suggested as a solution to this (with the added bonus
that the expected value to an agent is its Shapley value).
This, however, requires either a trusted source of random-
ness, or a distributed cryptographic protocol—for instance,
each agent could pick a permutation of the agents, submit an

encryption of it to all the other agents, and then provide the
decryption key once everybody has submitted an encrypted
permutation. Then, we can choose the composition of all
the permutations as the order with respect to which we com-
pute the marginal contributions. For example, consider a
3-agent example where agent 1 submits the permutation π1,
where π1(1) = 2, π1(2) = 1, and π1(3) = 3, agent 2 sub-
mits the permutation π2, where π2(1) = 3, π2(2) = 1,
and π2(3) = 2, and agent 3 submits the permutation π3,
where π3(1) = 2, π3(2) = 3, and π3(3) = 1. The final
joining order would then be π3(π2(π1(1))), π3(π2(π1(2))),
π3(π2(π1(3))), which is 2, 1, 3. Assuming that the de-
cryption cannot be manipulated, if even one agent picks its
order uniformly at random, then the final resulting order
will be uniformly random. This is the approach suggested
by Zlotkin and Rosenschein (Zlotkin & Rosenschein 1994).
However, a problem with this approach remains that it may
be possible for an agent to change its decryption key (and
thus the plaintext of its submission) on the basis of the plain-
texts of the other agents’ permutations. This way the agent
could again manipulate the joining order to its advantage.

We suggest a different approach to resolving this prob-
lem. Even with perfect control over the (final) order chosen,
it may be computationally hard for an agent to determine
the order most beneficial to it. We want to use this computa-
tional complexity as the barrier to manipulation.2 The fol-
lowing problem captures the predicament of a manipulating
agent with perfect control over the order chosen.

Definition 7 (MAX-MARGINAL-CONTRIBUTION)
We are given a characteristic function with a decomposi-

tion v =
T∑

i=1

vi, represented as follows. For each i with

1 ≤ i ≤ T we are given Ci ⊆ A, so that each vi concerns
only Ci. Each vi is flatly represented over 2Ci , that is, for
each i with 1 ≤ i ≤ T , we are given vi(Si) explicitly for
each Si ⊆ Ci. Additionally, we are given an agent a ∈ A,
and a number k. We are asked if there is some S ⊆ A−{a}
such that v(S ∪ {a}) − v(S) ≥ k.

We show this problem is NP-complete by reducing the
MAX2SAT problem to it (Papadimitriou 1995).

Theorem 2 MAX-MARGINAL-CONTRIBUTION is NP-
complete, even when |Ci| = 3 for all i, vi only takes on
values in {0, 1, 2} for all i, and all vi (and thus, by Lemma 1,
v) are increasing (but not necessarily superadditive).

Proof: The problem is in NP because for a given S ⊆ A −
{a}, we can easily compute the marginal contribution of a
to this set. To show that it is NP-hard, we reduce an arbitrary
MAX2SAT instance (given by a set of Boolean variables V
and a set of clauses C, each of which contains 2 literals (a lit-
eral is a variable or its negation), corresponding to different
variables; and a target number r of satisfied clauses) to the
following MAX-MARGINAL-CONTRIBUTION instance.

2Using computational complexity as the barrier to manipulation
has previously been studied in the context of the complexity of ma-
nipulating voting protocols (Bartholdi, Tovey, & Trick 1989; 1992;
Bartholdi & Orlin 1991; Conitzer & Sandholm 2002; 2003b).
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For each variable v ∈ V , there is an agent av; additionally,
there is the agent a whose marginal contribution we seek
to maximize. For every clause c ∈ C, there is an issue tc
(so that T = |C|). The set of agents that vtc

concerns is
Ctc

= {a} ∪ {av : v ∈ c ∨ −v ∈ c} (exactly 3 agents
because we are reducing from MAX2SAT). The character-
istic function vtc

: 2Ctc → R is defined as follows. Let
Ptc

= {av : v ∈ c} and Ntc
= {av : −v ∈ c}. Then,

for a given Stc
⊆ Ctc

, vtc
(Stc

) = 0 if at least one element
of Ntc

, and a, are not in Stc
; vtc

(Stc
) = 1 if at least one

element of Ntc
is not in Stc

, but a is in Stc
; vtc

(Stc
) = 1 if

Ntc
⊆ Stc

, and: either a /∈ Stc
, or no element of Ptc

is in
Stc

; vtc
(Stc

) = 2 if Ntc
⊆ Stc

, a ∈ Stc
, and some element

of Ptc
is in Stc

. (It is easy to see that each vtc
is increasing.)

Finally, let k = r, that is, the two instances’ target values
are the same. We now show the instances are equivalent.

Suppose there is a solution to the MAX2SAT instance,
that is, an assignment of truth values to the variables so that
at least r clauses are satisfied. Let V + be the variables set
to true. Then, let S = {av : v ∈ V +}. Now, if c ∈ C
is satisfied in this assignment, either some variable v whose
negation occurs in this clause is set to false; or, if this is
not the case, some variable v that occurs in this clause (not
negated) is set to true. In the former case, we have av ∈ Ntc

and av /∈ S; so that v(S) = 0 and v(S ∪ {a}) = 1. In the
latter case, we have Ntc

⊆ Stc
(because the former case did

not apply), av ∈ Ptc
, and av ∈ S; so that v(S) = 1 and

v(S ∪ {a}) = 2. In either case, the marginal contribution
of a to this issue is at least 1, so that the total marginal con-
tribution of a is at least r = k. Thus, S is a solution to the
MAX-MARGINAL-CONTRIBUTION instance.

Now suppose there is a solution to the MAX-
MARGINAL-CONTRIBUTION instance, that is, a set S so
that v(S ∪ {a}) − v(S) ≥ k = r. Then, let our assignment
be to set v to true if av ∈ S, and to false otherwise. The
marginal contribution of a to an issue (relative to S) is either
0 or 1. If the marginal contribution of a to tc is 1 (which
by the previous has to be the case for at least r issues), then
either some av ∈ Ntc

is not in S, or we have that Ntc
⊆ Stc

and some element av of Ptc
is in S. In the former case, the

negation of v occurs in c, and we have set v to false, so c is
satisfied. In the latter case, v occurs in c (not negated), and
we have set v to true, so c is satisfied. It follows that the
number of clauses satisfied by our assignment is at least r.
Thus, our assignment solves the MAX2SAT instance.

We observe that the MAX-MARGINAL-
CONTRIBUTION problem is not necessarily hard if
the characteristic function is known to have special struc-
ture. For instance, a characteristic function is convex if the
marginal contribution of an agent is always increasing in
the subset of agents to which the agent is added—that is, an
agent always adds at least as much value to a coalition as it
does to any subcoalition. In this case, it is easy to see that
an agent always wants to be the last in the order.

An interesting aspect of convex games is that in such
games the Shapley value and any value division stemming
from a marginal-contribution based scheme are always in the
core, so the resulting value division is stable (Shapley 1971;

Mas-Colell, Whinston, & Green 1995; Osborne & Rubin-
stein 1994). So, these payoff schemes seem particularly de-
sirable in that setting. It is thus frustrating that, as we dis-
cussed above, finding a beneficial manipulation of the join-
ing order in convex games is easy!

The complexity of the MAX-MARGINAL-
CONTRIBUTION problem remains open if the char-
acteristic function is superadditive, but not convex.

It should also be observed that, even though the problem
of maximizing an agent’s marginal contribution is hard in
the worst case, there may still exist effective heuristics for
finding an order that makes the agent’s marginal contribution
at least relatively large (even if it is not the largest possible).
For instance, if most other agents’ skills can substitute for
this agent’s skills, then it is likely beneficial for the agent to
be early in the order. On the other hand, with complemen-
tary skills, it is likely beneficial for the agent to be late in the
order (convex games are an extreme example of this).

5. Checking core membership
We finally consider the best-known stability concept, the
core (Gillies 1953; von Neumann & Morgenstein 1947). A
value division is in the core if no subcoalition has an incen-
tive to break away.

Definition 8 A value division d : A → R is blocked by
coalition S if v(S) >

∑

a∈S

d(a). We say that d is in the core

if it is not blocked by any coalition.

Our next result shows that under the multi-issue represen-
tation, even checking whether a given value division is in the
core is coNP-complete. We first define the problem.

Definition 9 (CHECK-IF-BLOCKED) We are given a

characteristic function with a decomposition v =
T∑

i=1

vi,

represented as follows. For each i with 1 ≤ i ≤ T we
are given Ci ⊆ A, so that each vi concerns only Ci. Each
vi is flatly represented over 2Ci , that is, for each i with
1 ≤ i ≤ T , we are given vi(Si) explicitly for each Si ⊆ Ci.
Additionally, we are given a value division d : A → R.3 We
are asked whether d is outside of the core, that is, if there is
some blocking coalition S with v(S) >

∑

a∈S

d(a).

We show this problem is NP-complete by reducing the
VERTEX-COVER problem to it (Papadimitriou 1995).

3We intentionally do not constrain d to be a feasible value di-
vision relative to the given charcteristic function (d is feasible if∑

a∈A d(a) ≤ v(A)). This omission is justified because it does
not introduce any new instances of the computational problem:
when d is not a feasible value division, it is always possible to
increase the value of the grand coalition of all agents to the point
where the value division is feasible, without changing the value of
any other coalition. This new “valid” instance has the exact same
strategic structure as the original instance. Apart from streamlining
the definition, omitting the constraint that d is feasible also makes
it easier to think about scenarios where there is an outside benefac-
tor that gives some of the agents some additional value to prevent
them from blocking the value division.
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Theorem 3 CHECK-IF-BLOCKED is NP-complete, even
when |Ci| = 3 for all i, vi only takes on values in {0, 1}
for all i, and all the vi (and thus, by Lemmas 1 and 2, v) are
increasing and superadditive.

Proof: The problem is in NP because given a subset S, we
can compute v(S) and

∑

a∈S

d(a) in polynomial time, and

check if the former is larger. To show that it is NP-hard,
we reduce an arbitrary VERTEX-COVER instance (given
by a graph G = (V,E) (|V | > 0, |E| > 0) and a maxi-
mal number r > 0 of vertices to cover all the edges with)
to the following CHECK-IF-BLOCKED instance. For ev-
ery vertex v ∈ V , there is an agent av; there is one addi-
tional agent a0. For every edge e ∈ E, there is an issue te
(so that T = |E|). The set of agents that vte

concerns is
Cte

= {a0} ∪ {av : v ∈ e} (we say v ∈ e when one of e’s
endpoints is v). The characteristic function vte

: 2Cte → R

is defined as follows: for a given Ste
⊆ Cte

, vte
(Ste

) = 1
if a0 ∈ Ste

and {av : v ∈ e} ∩ Ste
is nonempty, and

vte
(Ste

) = 0 otherwise. (It is easy to see that each vte
is in-

creasing; each vte
is also superadditive, because when split-

ting a coalition into two disjoint subcoalitions, only one of
them can have a0 in it, and the other hence will have value
0.) Finally, for the value division, we have d(a0) = T − 1

2 ,
and for any v ∈ V , d(av) = 1

2(r+ 1
2 )

. We now show the

instances are equivalent.
Suppose there is a solution to the VERTEX-COVER in-

stance, that is, a subset W ⊆ V such that |W | ≤ r and for
any e ∈ E, {v : v ∈ e} ∩ W is nonempty. Then consider
the set S = {a0} ∪ {av : v ∈ W}. It is straightforward to
check that vte

(S) = 1 for all issues, and thus v(S) = T .
On the other hand,

∑

a∈S

d(a) = T − 1
2 + |W | 1

2(r+ 1
2 )

≤

T − 1
2 + r 1

2(r+ 1
2 )

< T − 1
2 + r 1

2r = T = v(S). Thus, S is

a blocking coalition, and there is a solution to the CHECK-
IF-BLOCKED instance.

Now suppose there is a solution to the CHECK-IF-
BLOCKED instance, that is, a subset S ⊆ A such that
v(S) >

∑

a∈S

d(a). We first observe that a0 ∈ S, because

otherwise we would have v(S) = 0 and S could not be a
blocking coalition. Now consider the set W = {v : av ∈ S}
of the vertices corresponding to agents in the blocking coali-
tion. Then,

∑

a∈S

d(a) = T − 1
2 + |W | 1

2(r+ 1
2 )

. Combining this

with T ≥ v(S) >
∑

a∈S

d(a), and using the fact that |W | is

an integer, we can conclude |W | ≤ r. Additionally, we have
v(S) > d(a0) = T − 1

2 . It follows that vte
(S) = 1 for every

issue te, and thus, for any edge e, there is an agent av ∈ S
(and thus a vertex v ∈ W ) with v ∈ e. It follows that W
covers all the edges, and is thus a solution to the VERTEX-
COVER instance.

This result not only implies that it is difficult computation-
ally to use the core as the solution concept, but also that the
core may be an unnecessarily strong solution concept. If a
value division is unstable in the sense that some subcoalition
is motivated to break away, but nobody can find this coalition

because it is too difficult computationally, then the value di-
vision is still stable in practice. Of course, NP-completeness
is a worst-case measure of hardness, so it is still possible that
in many instances, finding a subcoalition that could do better
by breaking off is easy. Also, the computational hardness is
not a significant barrier if the instances are small enough.

6. Conclusions and future research
Coalition formation is a key problem in automated negotia-
tion among self-interested agents. A coalition of agents can
sometimes accomplish things that the individual agents can-
not, or can do things more efficiently. In order for coali-
tion formation to be successful, a key question that must
be answered is how the gains from cooperation are to be
distributed. This question has been studied extensively in
cooperative game theory, and some of the resulting solu-
tion concepts have already been adopted in the multiagent
systems literature. However, the computational questions
around these solution concepts have received relatively little
attention. When it comes to coalition formation among soft-
ware agents (that represent real-world parties), these ques-
tions become increasingly explicit.

We studied a concise representation of characteristic func-
tions which allows for the agents to be concerned with a
number of distinct independent issues that each coalition
of agents can address. For example, there may be a set
of tasks that the capacity-unconstrained agents could under-
take, where accomplishing a task generates a certain amount
of value (possibly depending on how well the task is ac-
complished). Here, each coalition of agents would have a
different collective skill set, and thereby achieve a differ-
ent level of success on each task. We assumed that each
coalition’s value determination problem (how it would han-
dle the task/issue) for each individual issue is solved already
(or easy to solve), and focused on the computational ques-
tions related to value division among the agents. To make
our representation concise, we also assumed that each indi-
vidual issue concerns only a small number of agents.

We showed how to quickly compute the Shapley value—
a seminal value division scheme that distributes the gains
from cooperation fairly in a certain sense. We then showed
that in (distributed) marginal-contribution based value divi-
sion schemes, which are known to be vulnerable to manip-
ulation of the order in which the agents are added to the
coalition, this manipulation is NP-complete. Thus, compu-
tational complexity serves as a barrier to manipulating the
joining order. Finally, we showed that given a value divi-
sion, determining whether some subcoalition has an incen-
tive to break away (in which case we say the division is not
in the core) is NP-complete. So, computational complexity
serves to increase the stability of the coalition. These results
yield a positive picture, where even fairly complex value di-
visions can be computed quickly, even distributed value di-
vision schemes are not too vulnerable to manipulation, and
economic instability of the coalition is less of a worry.

For future research, an immediate extension would be
to study the questions of this paper in settings where util-
ity transfer is not always possible. More interestingly, is it
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possible to design new value division schemes that are par-
ticularly hard to manipulate, for example, PSPACE-hard or
average-case complete? Also, could one construct stability
concepts that take into account the complexity of finding a
beneficial deviation?
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