
University of Pennsylvania University of Pennsylvania 

ScholarlyCommons ScholarlyCommons 

Departmental Papers (ESE) Department of Electrical & Systems Engineering 

October 2002 

Computing Shortest Paths for Any Number of Hops Computing Shortest Paths for Any Number of Hops 

Roch A. Guérin 
University of Pennsylvania, guerin@acm.org 

Ariel Orda 
Technion-Israel Institute of Technology 

Follow this and additional works at: https://repository.upenn.edu/ese_papers 

Recommended Citation Recommended Citation 
Roch A. Guérin and Ariel Orda, "Computing Shortest Paths for Any Number of Hops", . October 2002. 

Copyright 2002 IEEE. Reprinted from IEEE/ACM Transactions on Networking, Volume 10, Issue 5, October 2002, 
pages 613-620. 
Publisher URL: http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=22314&puNumber=90 

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply 
IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this 
material is permitted. However, permission to reprint/republish this material for advertising or promotional 
purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing 
to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws 
protecting it. 

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/ese_papers/28 
For more information, please contact repository@pobox.upenn.edu. 

https://repository.upenn.edu/
https://repository.upenn.edu/ese_papers
https://repository.upenn.edu/ese
https://repository.upenn.edu/ese_papers?utm_source=repository.upenn.edu%2Fese_papers%2F28&utm_medium=PDF&utm_campaign=PDFCoverPages
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=22314&puNumber=90
https://repository.upenn.edu/ese_papers/28
mailto:repository@pobox.upenn.edu


Computing Shortest Paths for Any Number of Hops Computing Shortest Paths for Any Number of Hops 

Abstract Abstract 
In this paper, we introduce and investigate a “new” path optimization problem that we denote the all hops 
optimal path (AHOP) problem. The problem involves identifying, for all hop counts, the optimal, i.e., 
minimum weight, path(s) between a given source and destination(s). The AHOP problem arises naturally 
in the context of quality-of-service (QoS) routing in networks, where routes (paths) need to be computed 
that provide services guarantees, e.g., delay or bandwidth, at the minimum possible “cost” (amount of 
resources required) to the network. Because service guarantees are typically provided through some form 
of resource allocation on the path (links) computed for a new request, the hop count, which captures the 
number of links over which resources are allocated, is a commonly used cost measure. As a result, a 
standard approach for determining the cheapest path available that meets a desired level of service 
guarantees is to compute a minimum hop shortest (optimal) path. Furthermore, for efficiency purposes, it 
is desirable to precompute such optimal minimum hop paths for all possible service requests. Providing 
this information gives rise to solving the AHOP problem. The paper’s contributions are to investigate the 
computational complexity of solving the AHOP problem for two of the most prevalent cost functions 
(path weights) in networks, namely, additive and bottleneck weights. In particular, we establish that a 
solution based on the Bellman–Ford algorithm is optimal for additive weights, but show that this does not 
hold for bottleneck weights for which a lower complexity solution exists. 

Keywords Keywords 
Hop-restricted shortest paths, maximum bandwidth, minimum delay, networks, quality-of-service routing 

Comments Comments 
Copyright 2002 IEEE. Reprinted from IEEE/ACM Transactions on Networking, Volume 10, Issue 5, October 
2002, pages 613-620. 
Publisher URL: http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=22314&puNumber=90 

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way 
imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or 
personal use of this material is permitted. However, permission to reprint/republish this material for 
advertising or promotional purposes or for creating new collective works for resale or redistribution must 
be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, 
you agree to all provisions of the copyright laws protecting it. 

This journal article is available at ScholarlyCommons: https://repository.upenn.edu/ese_papers/28 

http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=22314&puNumber=90
https://repository.upenn.edu/ese_papers/28


IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 5, OCTOBER 2002 613

Computing Shortest Paths for Any Number of Hops
Roch Guérin, Fellow, IEEE,and Ariel Orda, Senior Member, IEEE

Abstract—In this paper, we introduce and investigate a “new”
path optimization problem that we denote theall hops optimal path
(AHOP) problem. The problem involves identifying, for all hop
counts, the optimal, i.e., minimum weight, path(s) between a given
source and destination(s). The AHOP problem arises naturally in
the context of quality-of-service (QoS) routing in networks, where
routes (paths) need to be computed that provide services guar-
antees, e.g., delay or bandwidth, at the minimum possible “cost”
(amount of resources required) to the network. Because service
guarantees are typically provided through some form of resource
allocation on the path (links) computed for a new request, the hop
count, which captures thenumberof links over which resources are
allocated, is a commonly used cost measure. As a result, a standard
approach for determining the cheapest path available that meets a
desired level of service guarantees is to compute a minimum hop
shortest (optimal) path. Furthermore, for efficiency purposes, it is
desirable to precomputesuch optimal minimum hop paths for all
possible service requests. Providing this information gives rise to
solving the AHOP problem. The paper’s contributions are to inves-
tigate the computational complexity of solving the AHOP problem
for two of the most prevalent cost functions (path weights) in net-
works, namely, additive and bottleneck weights. In particular, we
establish that a solution based on the Bellman–Ford algorithm is
optimal for additive weights, but show that this does not hold for
bottleneck weights for which a lower complexity solution exists.

Index Terms—Hop-restricted shortest paths, maximum band-
width, minimum delay, networks, quality-of-service routing.

I. INTRODUCTION

T HE problem that this paper investigates, namely, the all
hops optimal path (AHOP) problem, is one that arises

naturally from several routing problems that have recently
received significant attention in the data networking com-
munity.1 Data networks are increasingly used by streaming
applications that require both bandwidth and delay guarantees.
Similarly, the introduction of virtual private network (VPN)
offerings and the use of service level agreements (SLAs) are
also associated with service guarantees such as minimum
bandwidth or maximum delay. Hence, it has become important
to ensure that traffic with specific service guarantees is routed

Manuscript received May 30, 2000; revised April 3, 2001; approved by IEEE
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1Archives of the mailing lists of several IETF (http://www.ietf.org) Working
Groups such as MPLS and Traffic Engineering, contain ample evidences of as-
sociated activities and numerous pointers to relevant publications, RFCs, and
Internet Drafts.

over paths that are capable of meeting them (see [1] for a
comprehensive survey). Furthermore, for efficiency purposes,
it is also important to do so at the minimum possible cost to
the network.

From an algorithmic standpoint, this calls for algorithms that
compute paths satisfying specific (service) constraints, while
minimizing the network cost function. This corresponds to a
standard optimal path selection under constraints that has been
widely studied in many different settings (see [2] and [3] for a
general discussion and presentation of numerous algorithms).
The problem in its most general form, i.e., multiple additive
constraints, is known to be NP-complete [4], and, as a result,
much effort has been devoted to developing efficient heuristics
(again, see [1] for a recent survey). However, there are a number
of “special” cost functions that are of interest in data networks,
not only because they provide practical cost measures, but also
because they are amenable to tractable solutions (see, e.g., [5],
[6]). In particular, the number (count) of hops in a path is both
a realistic and popular measure of cost.

Hop count accurately captures network cost as it mea-
sures the number of links over which network resources are
expended. For example, a path that has been guaranteed a
minimum available bandwidth of, say, 10 Mb/s (10bits/s),
will consume that amount of bandwidth on each one of the
links that it traverses. Hence, the more links on a path, the more
expensive in terms of the total amount of network resources
that are consumed. As a result, minimizing path length, or
hop count, is a natural criterion for computing efficient paths
for traffic with specific service requirements. In addition to
being a reasonably realistic cost measure, minimum hop paths
that meet service constraints can be computed using simple
algorithms, e.g., the Bellman–Ford (BF) algorithm, as we shall
discuss later, and this makes them attractive from a computa-
tional standpoint. As a result, computing minimum hop paths
with service constraints has become a recurring problem in
data networks, e.g., see [7] and [8] for recent examples and
proposals.

The extension from this single minimum hop path computa-
tion to the AHOP problem, originates from the need to amortize
the associated computational cost over multiple path requests.
This is because even if the algorithms involved are tractable, per-
forming them repeatedly for every new request can translate into
a significant computational load (see [9] for an experimental
investigation). One option for minimizing this overhead is to
precomputeminimum cost (hop count) paths for all possible
requests. Assuming that this is feasible, such a precomputation
can then be performed only occasionally, e.g., as the state of the
network changes significantly (see [10] for a discussion of this
issue), and the precomputed paths are reused each time a new
request is made.

1063-6692/02$17.00 © 2002 IEEE
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The main challenge associated with such a precomputation
is that the full range of possible future requests is typically not
known ahead of time. Solving the AHOP problem eliminates
this difficulty by computing, for each hop count, thebestservice
guarantees that are feasible between a source (the computing
node) and all other destinations in the network. For example,
when service guarantees correspond to bottleneck metrics such
as bandwidth guarantees, solving the AHOP problem amounts
to computing, for each hop count, the maximum bandwidth
path between the source node and all destinations. Higher hop
count paths are considered only if they offer higher bandwidth.
Once this information is available, the optimal (cheapest) path
meeting the bandwidth requirements of a new request is then
found simply by choosing from the computed paths the one with
the smallest hop count for which the available bandwidth ex-
ceeds the required amount. A similar approach can be used when
service guarantees are associated with additive metrics such as
delay. As a result, solving the AHOP problem has the potential
for offering a practical and computationally efficient solution
for computing paths that meet certain service guarantees. It is,
therefore, important to develop efficient solutions to the AHOP
problem, especially for service metrics that are commonly used
by users of data networks. A first step in that direction is to de-
velop a better understanding of the intrinsic complexity of the
AHOP problem, and this is the focus of this paper.

Specifically, in this paper we investigate the computational
complexity of the AHOP problem for the two most important
service metrics in practice, namely, bottleneck and additive
metrics. In the case of bottleneck metrics, the weight of a
path is given by the maximum (or minimum) value of its link
weights. The most common example of a bottleneck metric
in data networks is bandwidth, where many users require
paths that can guarantee the availability of a given amount of
bandwidth. As illustrated in our earlier example, setting link
weights to theinverseof their available bandwidth yields a
minimum (bottleneck) weight path that is one with maximum
bandwidth. Additive metrics arise in many settings. For ex-
ample, end-to-end delay, jitter (delay variation), and reliability
all correspond to additive metrics for which the weight of a
path is given by the sum of its link weights, i.e., the sum of
link delays, or delay variations, or, in the case of reliability,
the sum of the logarithms of the link failure probabilities. Our
goal in this paper is to provide a thorough understanding of
the computational cost of solving the AHOP problem for these
two major types of service metrics, and, in particular, either
identify minimum complexity solutions or obtain bounds on
the complexity of any solution.

Our starting point is the solution proposed in [8], which relies
on the BF algorithm. This algorithm is a natural match for the
AHOP problem, as it proceeds by increasing hop count, and can
therefore be readily modified to generate shortest paths foreach
hop count. Consequently, we know from basic results on the
complexity of the BF algorithm that for a network with edges
and a maximum possible hop count offor simple paths,2 there

2Obviously,H � N � 1, but the actual value ofH is usually much smaller,
not only because in typical network topologies the diameter is considerably
smaller thanN , but also because the value ofH is often restricteda priori by
the routing protocol.

exists a solution to the AHOP problem of complexity .
The basic question we are interested in answering is whether
this is indeed the best we can do for the two types of metrics we
consider. For example, in the case of the standard shortest path
problem, there exists a solution of lower complexity than the
BF algorithm, namely, of complexity , which
is offered by the Fibonacci-heap implementation of Dijkstra’s
algorithm.

The answer to this question is somewhat surprising. Unlike
the standard shortest path problem, for which the same (effi-
cient) solution can be used forboth bottleneck and additive
metrics, we show in the paper that this does not hold for the
AHOP problem. Specifically, we establish that for additive
metrics, is a (tight) lower bound on the complexity of
any solution to the AHOP problem among a certain class of
path-comparison-basedalgorithms, which includes standard
solutions such as Dijkstra’s and Bellman–Ford’s. The proof
is based on an extension of a similar result, obtained in [11]
for the all-pairs shortest path problem, and establishes the
optimality of a BF-based solution for additive metrics. How-
ever, for bottleneck metrics, we show that a lower complexity
solution is available. Specifically, we present and validate an
algorithm, based on several modifications to the BF scheme,
which solves the AHOP problem within steps.
These findings have several interesting theoretical as well as
practical implications, which are discussed in Section V of this
paper.

The rest of the paper is organized as follows. The AHOP
problem is formulated more precisely in Section II. The lower
bound for the case of additive metrics is established in Sec-
tion III, while the existence of a more efficient algorithm for
bottleneck metrics is derived in Section IV. Section V summa-
rizes the results of the paper and their significance, and points
to some potentially interesting extensions.

II. M ODEL AND PROBLEM FORMULATION

Given a directed graph , where is the set of nodes
and is the set of edges, let and . A (simple)
path is a finite sequence of nodes , such
that for , , and for all

, ; is then said to be thenumber of hops(or
hop count) of . We denote by the maximal possible number
of hops in a path.

Each edge has aweight . Corresponding
to a path , there is apath weight , which is a nonde-
creasing function of the weights of the links along the path. For-
mally, for additive weights, we have

while for bottleneck weights we have

Given edge weights and source and destination nodes
, an optimal pathis a path between and of min-

imum weight. An -hop constrained optimal path is a path of
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minimum weight, among paths betweenand with hop count
of at most . We are now ready to define the AHOP problem.

All Hops Optimal Path (AHOP) Problem:For a given source
node and maximal hop count , , find, for each
hop count value , , and destination node , an

-hop constrained optimal path betweenand .
The distinction between additive and bottleneck weights

gives rise to two classes of the AHOP problem, namely,Addi-
tive AHOP (Add-AHOP)and Bottleneck AHOP (Bot-AHOP).
A straightforward solution to both Add-AHOP and Bot-AHOP,
of complexity , is offered by the BF shortest path
algorithm [3]. It is a property of the BF algorithm that, at itsth
iteration, it identifies the optimal path between a given source
and each destination,among paths of at most hops. In the
worst case, the complexity of this solution is .

III. L OWER BOUND FORADDITIVE WEIGHTS

In this section, we show that is a (tight) lower bound
on the complexity of any solution to the Add-AHOP problem
that belongs to a class ofcomparison-basedalgorithms.

We begin by quoting, from [11], the presentation of the class
of comparison-based algorithms to which our result applies.

Definition: A path-comparison-basedshortest-path algo-
rithm accepts as input a graphand a weight function. The
algorithm can perform all standard operations. However,
the only way it can access the edge weights is to compare the
weights of two different paths.

We can think of a path-comparison-based algorithm as being
given only the graph and a black-box path-weight comparator.
The path weights can be accessed only through the black
box. The algorithm must output a reasonable encoding of the
shortest paths in the graph. We require that the output has no
information about path weights. For example, the weighted
graph itself is not a reasonable encoding of the solution.
Most commonly used shortest-path algorithms, in particular
Dijkstra’s and Bellman–Ford’s, fit into this class; this is the
case also with many other algorithms, e.g., [12], [13]. However,
some algorithms are not path-comparison-based, e.g., [14], as
it adds weights of edges that do not form a single path. The
latter belongs to a class of “algebraic” algorithms that consider
shortest paths from the perspective of matrix multiplication.
We note that, to the best of our knowledge, such algorithms
have not been deployed in communication networks.

In [11], it is established that is a lower bound on the
complexity of a path-comparison-based solution to theall-pairs
shortest path problem. Specifically, it is shown there that there
exists a directed graph of nodes on which any path-com-
parison-based algorithm for that problem must perform at least

path weight comparisons. We shall establish our proof by
employing a similar idea. To that end, we begin by presenting
the following construction, depicted in Fig. 1. The constructed
graph is a directed graph with nodes and paths. The
idea is to show that, if a path-comparison-based algorithm(for
the Add-AHOP problem) fails to examine one of these paths,
then the link weights can be modified to make that path “op-
timal” (i.e., part of the required solution) without being able

Fig. 1. Graph used for lower bound.

to detect the change. We proceed to describe the details of the
construction.

The graph is composed of a “core” (depicted by full-line
edges) and a “prefix” (depicted by dashed-line edges). The core
of is a directed tripartite graph on vertices, , and ,
where range from 0 to . The edge set is

. The prefix is composed of a sourceand nodes
, . For , is connected to

each core node through a path ;
in addition, there is a (direct) edge . Note that is
connected to each through a path of hops. We proceed
to define the edge weights. For a base, define (for any positive
integer )

where denotes to the power of . Then, the weights of core
edges are defined to be

(1)

Note that negative digits are allowed to appear in the numbers
[i.e., note the “ ” in (1)]. The standard positive-digit represen-
tation of these numbers would require that a carry be taken from
the next number to the left; as in [11], this does not affect the
correctness of the upcoming proof. The weights of prefix edges,
i.e., on a path betweenand a node , are simply 0. We note
that all the above weights comply with our model assumptions.
A path weight is defined as the sum of weights of its edges, i.e.,
we assume additive weights. We use the above construction in
order to establish the following lower bound for the Add-AHOP
problem.

Theorem 1: There exists a directed graph of nodes and
some , for which any path-comparison-based solution
for the Add-AHOP problem, with maximum hop-count value

, must perform comparisons.
Proof: By contradiction, assume that there is such a solu-

tion, of lower complexity.
Consider an instance of the Add-AHOP problem on the graph

depicted in Fig. 1, where the source node isand . A
solution to Add-AHOP would need to find, in particular, paths
to each of the nodes .
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In [11], it is shown that the optimal path between a
node and a node goes through and has weight

. It follows that, for , the
optimal -hop constrained path betweenand goes through

and , where , and has the above weight.
Suppose that we have a solution which avoids the comparison

of paths that have the suffix , .3 Define
new weights for some of the “core” edges4 as follows:

• For all , ;
• ;
• otherwise, .

Following [11], it can be shown that, under the new weights,
is the optimal path between and , its

weight is , and the ordering by
weight of all other paths remains the same. It can be verified that,
with the new weights, for , the optimal -hop
constrained path betweenand goes through and .
Therefore, if we run the algorithm on the modified weights, all
comparisons of paths which do no involve as
their suffix give the same result as with the original weights,
and since the algorithm never performed a comparison involving
such paths while running on the original metric, we deduce that
it still outputs the same solution, which, for, is now incorrect.

We conclude that any solution must perform at least
path comparisons. As , this establishes the claim.

IV. I MPROVEDALGORITHM FORBOTTLENECK WEIGHTS

In this section, we show that for bottleneck metrics, the above
lower bound does not hold. Specifically, we present and val-
idate an algorithm that solves the Bot-AHOP problem within

steps.
Before proceeding, we point out that our focus is on the key

ideas behind the new solution, hence, we do not attempt to op-
timize storage space nor number of computations, as long as
the asymptotic worst case computational complexity expres-
sion remains unaffected. We also note that a proper choice of
the link weights, which would correspond to the formulation
of Section II, would be the reciprocal of the link’s bandwidth.
Nonetheless, for the sake of simplicity, we shall consider the
link metric to be its (plain) bandwidth.

We begin by specifying, in pseudocode, the BF algorithm for
a bottleneck (bandwidth) metric.

Algorithm BF

Input:
set of vertices, labeled by integers

1 to .
set of edges, labeled by ordered

pairs ( ) of vertex labels.
source vertex.

For all edges ( ) in :
bandwidth of edge ( ).

3Note that, otherwise, the solution involves
(n ) path comparisons, as there
are�(n ) triplets (u ; v ; w ), for 0 � i � n � 1, 0 < j � n � 1,
0 � k � n � 1.

4In Fig. 1, edges with modified weights are depicted by thicker lines.

maximum hop count.

Variables:
: the maximal bandwidth

computed for each node at each
iteration (initialized to

infinity and
for , for ).

The Algorithm:

begin
for to

for all in do ;
for all ( ) in do

if (
then ;

end.

The improved algorithm, to be presented in the following, is
based on the exploitation of the following two simple observa-
tions.

1) If a node has already at least as much bandwidth as an
incoming link , then that link cannot affect any longer the
outcome for node, hence, it can be deleted.

2) At any iteration, a link should be considered only if
the current bandwidth of nodeis higher than that of node.

Before proceeding, we note without proof5 the following
properties of Algorithm BF.

Lemma 1: Upon completion of Algorithm BF, if for some
it holds that , then for all

.
Lemma 2: In Algorithm BF, the following relation holds, for

all and :

(A)
(B)
(C)
(2)

Corollary 1: In Algorithm BF, for an edge , the
result of (2) is: 1) according to either line (A) or line (B) at most
once per iteration , and 2) according to line (C) at most once
over all iterations.

Proof: The first part is trivial; the second part is due to
Lemma 1.

Another simple but useful observation is the following.
Lemma 3: During the execution of Algorithm BF,

takes at most different values, over all , and all
iterations .

Proof: It is easy to verify (e.g., by induction on the
iteration number ) that for all and , there is some

such that .
Consider now the following assumption, which will be

dropped later.

5Proofs are either immediate or directly obtainable from basic properties of
the BF algorithm.
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Assumption A:The test can be per-
formed with no penalty, in terms of computation complexity.

With this assumption, we can use the following modified
algorithm.

Algorithm BF :

begin
for to

for all in do ;
for all ( ) in :
i) if

then begin
i.a) if

then
else if

then ;
i.b) if

then ;
end;

end.

By AssumptionA, the test i) would incur no computational
penalty. Next, consider step i.a): each execution of that step falls
within the category of one of the three cases (A), (B), or (C), as
defined in (2); hence, the computational penalty incurred by that
step can be obtained by counting the times it is executed under
the conditions of each of the three cases. By Corollary 1, step i.a)
would be performed times as case (C) and as
case (B); moreover, it is easy to verify that, due to the test in
step i), step i.a) is performed as case (A) only when

holds, which, in view of step i.b), implies that the step
would be performed as case (A) times. Finally, turning to
step i.b), it is clear that it would be performed at most
times.

Next, suppose that we maintain the list of nodes ordered by
decreasing value of , such that at each iterationthey
are scanned (in the “for all in ” loop) according to that order.
Then, we would perform step i.a) as case (B) at most once,
per node and iteration . Indeed, suppose, by way of con-
tradiction, that we perform and later

, for some ; due to the test in
step i), we have that , contradicting
the assumed order in which nodes are scanned. The above also
implies that the test at step i.b) can fail at most once per node
and iteration , which then implies that this step is performed

times over all iterations.
Thus, we conclude that, under the above assumptions,

step i.a) would be performed, overall, times as either
case (A) or (C), and times as case (B), while step i.b)
would be performed, overall, times.

Next, we establish the penalty incurred for maintaining the
ordered list of nodes and for dropping AssumptionA. Specifi-
cally, we show the following:

Claim 1: The node ordering can be done with an overall com-
plexity of .

Claim 2: The test can be done with
an overall complexity of .

We begin by establishing Claim 1. Consider an array
of size , where each entry is a tree data structure.
On each of the trees, each (tree) vertexconsists of a (band-
width) value and a linked list of network nodes .
Assume, inductively, that, at the beginning of theth iteration:

1) the tree is balanced according to the (band-
width) values of its vertices;

2) the linked list of each of its vertices vertex
consists of all network nodeswith bandwidth at
the end of iteration , i.e., all nodes for which

;
3) for each network node there is a pointer to its location

in .

Note that the tree consists of elements,
which can be scanned in linear time by decreasing bandwidth
values. At the beginning of iteration, the tree is
copied into a new tree , and, for each network node, a
pointer to its location in is created; this operation incurs

steps. During iteration, we scan the nodes according to
and by decreasing bandwidth value. Upon every

change performed in step i.a), we need to update and
keep it balanced. Each such operation incurs steps.
The number of such changes is as follows.

• A change according to case (B) happens at most once per
network node per iteration. Thus, we have an overall complexity
of .

• A change according to case (C) happens at most once per
edge, over all iterations. Thus, we have an overall complexity of

.
Hence, the overall complexity for maintaining the node

ordering is indeed .
Next, we proceed to establish Claim 2. Suppose that, for each

node , there is a (dynamic) -bits array which indi-
cates which nodes are (“active”) neighbors of. We shall also
keep an array of words of size bits each,
which together constitute bits; each of these bits serves
as a flag for one of the nodes, which signals whether that node
should still be considered within a certain iteration (such a node
shall be said to be “in the forward direction”). At the beginning
of an iteration, all flags are initialized to, incurring an overall
complexity of .6 When, at an iteration ,
we begin handling a new tree vertex in , we
scan all tree vertices in for which
and reset (to ) the flags of all nodes in their lists , in-
curring an overall complexity of . Then, for each of
the nodes in , we perform a bitwiseAND between the

bits in the neighbors array and the flag bits.
Denote the resulting flags as , for all

. The production of the array con-
stitutes the “test” in Claim 2, and it incurs an overall complexity
of , thus, estab-
lishing Claim 2.

While we have shown how we can efficiently
identify the “forward” neighbors through the flag arrays

6Note that operations onN bits incurO(N= logN) complexity.
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, it still remains to be shown how they
can be efficiently accessed, i.e., their identities reconstructed,
through these flags. This will be done by establishing the
following claim.

Claim 3: When scanning a nodeat some iteration , the
identities of its forward neighbors can be reconstructed in

steps, where is the number
of forward neighbors of node at the th iteration.

The above claim indicates that accessing the forward
neighbors requires steps per such neighbor, plus

over all scanned nodes and iterations.
While the first term forms part of the iterations required
for dealing with a forward neighbor, the second term is equal
to that of Claim 2. Hence, Claim 3 implies that accessing
the forward neighbors incurs no additional computational
complexity. We proceed to establish this. To that end, we
maintain a (precomputed) table of size , in which
each row consists of a linked list of the values of the positions
in which the address of that row has “1” bits. For example,
for , has a null list in the first row, the list “1”
in the second row, the list “2” in the third row, and the list
“1,2” in the fourth row. We split into

words of size bits each, and use each
word as a pointer to the table , in the following way: when
the th ( -bits long) word of is
considered, the identity of each forward neighbor is obtained
by adding the offset to each value obtained from
the corresponding linked list in . Thus, we access the table

times, and, in addition, perform operations
for reconstructing the identity of each forward neighbor, hence,
establishing Claim 3.

Thus, we conclude:
Theorem 2: For bottleneck metrics, there is a solution7

which solves the AHOP problem with maximal hop count
within [hence, at most

] operations.
Proof: We have for the test at step i)

and for steps i.a) and i.b) except for the main-
tenance of , which incurs .

In the Appendix, we make the ideas that led to Theorem 2
more concrete by providing a pseudocode specification of the
algorithm.

V. CONCLUSION

In this paper, we introduced the class of AHOP problems,
which, given a path-weight function, seek an optimal hop-con-
strained path for all possible hop values. This problem was mo-
tivated by computational cost considerations (precomputation)
in QoS routing problems. The contributions of this paper are
threefold. First, we formulated the problem in a general frame-
work of edge and path weights, and showed that, for additive
weights, is a lower bound for the (worst case) compu-
tational complexity of any path-comparison-based solution to
the problem. This result implies that the standard BF shortest
path algorithm is optimal in terms of worst case computational

7Algorithm Improved Bellman–Ford (IBF), specified in the Appendix.

complexity. Second, we relied on a proof technique presented
in [11] to establish the result, and we feel that illustrating how
this technique can be used in the context of networking prob-
lems is useful in itself. Third, we showed that in the impor-
tant case of bottleneck weights, such as bandwidth, a more effi-
cient solution existed. In particular, we presented an algorithm
(Algorithm IBF, given in the Appendix) that solved this instance
of the AHOP problem with

complexity.
The main significance of Algorithm IBF is in indicating that

the lower bound does not necessarily apply to all metrics, and,
in particular, not to bottleneck metrics. However, in practice, the
basic BF algorithm may still be appropriate for communication
networks, as their topology is typically sparse. Indeed, for sparse
topologies, the complexity of the basic BF algorithm, ,
is below , while that of Algorithm IBF re-
mains unaffected, i.e., it is still . Therefore,
a potential topic for future research is to devise a solution for the
AHOP problem under bottleneck metrics which would improve
upon the basic BF solution in the case of sparse topologies; see
[15] for related results. More generally, it would be interesting
to obtain a lower bound for the AHOP problem under bottleneck
metrics, in both cases of general and sparse topologies, and, in
addition, to obtain a tight, i.e., optimal, solution with respect
to that bound. Another potentially interesting extension of our
study is to generalize the AHOP problem to include not only
all possible hop counts and destinations, but also all possible
sources. This is motivated by the fact that aroute serverwould
be faced with such a task. Route servers are potentially impor-
tant in practice, e.g., see [16], as they allow the deployment of
new QoS routing algorithms with minimal impact, i.e., upgrade
requirements, on the existing infrastructure.

On a more general level, the results obtained for IBF indicate
that the AHOP problem is fundamentally simpler for bottleneck
weights than for additive weights. It is well known that additive
metrics are often more difficult to handle than bottleneck met-
rics; for example, the restricted shortest path problem, which
considers two link weights, is NP-hard when both weights are
additive [4], but solvable in polynomial time when at least one
is bottleneck. On the other hand, standard shortest path prob-
lems (e.g., finding a path of minimum delay or finding a path
of maximum bandwidth) can usually be solved using the same
algorithmic scheme, incurring the same complexity. However,
our results indicate that there are path optimization problems,
such as AHOP, which are solvable for the two types of metrics,
yet still fundamentally easier for bottleneck metrics.

Finally, our study has several practical implications. One is
to provide designers of new routing (in particular, QoS routing)
protocols with a greater confidence in the fact that using the BF
scheme is an adequate solution, at least when additive metrics
are involved. Another important implication is the additional ev-
idence on the advantage of substituting additive metrics with
bottleneck metrics. For example, certain (rate-based) schedulers
often enable mapping delay constraints onto rate constraints
(see, e.g., [17], [5], [6], [18]–[20]), hence, our results may pro-
vide additional support for their deployment.
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APPENDIX

PSEUDOCODE OFALGORITHM IBF

This Appendix provides a pseudocode specification of the
algorithm that led to Theorem 2.

Algorithm IBF:

Input
set of vertices, labeled by integers

1 to .
set of edges, labeled by ordered

pairs ( ) of vertex labels.
source vertex.

For all edges ( ) in :
the bandwidth of edge ( ).

maximum hop count.

Variables

: adjacency matrix
(assumed to be initialized according
to topology).

: the maximal bandwidth
computed for each node at each
iteration.

: an array of (balanced)
trees.
Each tree vertex consists of a
(bandwidth) value and a linked
list of nodes .

- : two-dimensional
array of pointers, where -
points to the location of node in

.

: array of flags; shows
for each node whether it is still in
the forward direction.

: array of flags;
shows for each node whether it is a
neighbor of the currently scanned node
that is in the forward direction.

begin

infinity;
by “ ” we denote all entries in an

array
For all nodes do ;
Create a balanced tree according
to the values ;
Set the pointers - accord-
ingly;

for to do
begin

;
;

- - ;
;

consider all vertices in and
as “unscanned”;

while there are unscanned vertices in
do

begin;
let be the next (by decreasing
bandwidth value) unscanned vertex in

;
mark as “scanned”;
while there are unscanned vertices

in with do
begin;

let be the next (by decreasing
bandwidth value) unscanned vertex
in ;
mark as “scanned”;
for all nodes in do

;
end;
for all network node in do

for all in do

and ;
Reproduce_List_of_Neighbors;

As explained, this can be done
in , where is
the number of forward neighbors,
i.e., “1” bits in

.
for all forward neighbors do
begin

if then
begin

;
move node to a vertex in

for which ;
update - ;
if then

;
end;
if then

;
end;

end;
end;

end.
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