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Abstract

We propose a novel solution for computing the relative

pose between two generalized cameras that includes recon-

ciling the internal scale of the generalized cameras. This

approach can be used to compute a similarity transforma-

tion between two coordinate systems, making it useful for

loop closure in visual odometry and registering multiple

structure from motion reconstructions together. In contrast

to alternative similarity transformation methods, our ap-

proach uses 2D-2D image correspondences thus is not sub-

ject to the depth uncertainty that often arises with 3D points.

We utilize a known vertical direction (which may be easily

obtained from IMU data or vertical vanishing point detec-

tion) of the generalized cameras to solve the generalized

relative pose and scale problem as an efficient Quadratic

Eigenvalue Problem. To our knowledge, this is the first

method for computing similarity transformations that does

not require any 3D information. Our experiments on syn-

thetic and real data demonstrate that this leads to improved

performance compared to methods that use 3D-3D or 2D-

3D correspondences, especially as the depth of the scene

increases.

1. Introduction

Computing the relative pose between two cameras is one

of the most fundamental problems in multi-view geometry.

A generalization of this problem is to compute the relative

pose between two sets of multiple cameras. Each set of mul-

tiple cameras may be described by the generalized camera

model which allows a set of image rays that do not necessar-

ily have the same ray origin to be represented in a uniform

expression. Generalized cameras are extremely useful for

many practical applications such as omni-directional cam-

era systems and vehicle-mounted multi-camera systems.

Solutions exist for computing relative pose between gen-

eralized cameras [9, 15, 21]; however, these methods re-

quire that the internal scale of the multi-camera system (i.e.,

Figure 1. We present a method to solve the generalized relative

pose and scale problem. We first align the generalized cameras to

a common vertical direction then use image rays obtained from 5

2D-2D correspondences to solve for the remaining degrees of free-

dom. Solving this problem is equivalent to computing a similarity

transformation

the distance between all camera centers within the multi-

camera system) is known. This limits the use of general-

ized cameras to cases where scale calibration can be easily

captured. In this paper, we provide a further generalization

of the relative pose problem and remove the requirement of

known scale to solve a new problem: the generalized rela-

tive pose and scale problem.

Reconciling the relative pose between two generalized

cameras as well as the unknown scale is equivalent to re-

covering a 7 degrees-of-freedom (d.o.f.) similarity trans-

formation. This allows for a much broader use of general-

ized cameras. In particular, similarity transformations can

be used for loop closure in SLAM (where scale drift occurs)

and for merging multiple Structure-from-Motion (SfM) re-

constructions when the scale between the reconstructions

is unknown. This problem arises frequently because scale

cannot be explicitly recovered from images alone without

metric calibration, so developing accurate, efficient, and ro-

bust methods to solve this problem is of great importance.

Using generalized cameras to compute similarity trans-

formations was recently introduced with the generalized
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pose-and-scale problem [24, 28] which computes similar-

ity transformations from 4 or more 2D-3D correspondences.

These methods, however, are subject to the quality of the

estimated 3D points. In SfM, it is common for 3D points

to have a high uncertainty especially as the depth of the

3D point relative to the cameras that observe it increases.

The solution proposed in this paper solves the generalized

relative pose and scale problem from 5 2D-2D correspon-

dences, eliminating the dependence on potentially uncer-

tain 3D points. We solve this problem in two steps. First,

we align the vertical directions of the generalized cameras

and describe a robust method for performing this alignment

when IMU data is not available (c.f . Section 4.1). Then

we utilize the knowledge of the vertical direction to formu-

late the generalized relative pose and scale problem as a

Quadratic Eigenvalue Problem which is simple to construct

and efficient to solve. We demonstrate that our method

has comparable or better accuracy to the state-of-the-art

methods through experiments with synthetic and real data.

We have provided an efficient C++ implementation of our

method as publicly available open-source software incorpo-

rated into the Theia structure from motion library[22] 1.

The rest of the paper is as follows: Section 2 provides an

overview of related work. The generalized relative pose and

scale problem is then introduced in Section 3. Our approach

is described in detail in Section 4 along with a description

of several techniques for estimating the vertical direction.

We describe synthetic and real data experiments with com-

parisons to alternative approaches in Section 5, before pro-

viding concluding remarks in Section 6.

2. Related Work

There has been much interest in developing minimal

pose solvers in computer vision [5, 10, 11, 12, 16, 23].

Most works have been focused on single perspective cam-

era setups, though there has recently been an increased

interested in developing methods for generalized cameras

[14, 15, 9, 17, 21, 23]. We build on previous work for gen-

eralized cameras as well as work that estimates similarity

transformations for SfM and SLAM loop closure.

Grossberg and Nayar first introduced the generalized

camera model [6] which has since become the standard rep-

resentation for multi-camera setups [7, 18], particularly for

multi-camera rigs on moving vehicles [13, 23]. Generalized

cameras can produce highly stable motion estimates be-

cause of their potentially large visual coverage. Stewénius

et al. solved the problem of determining the relative pose

between generalized cameras using 6 correspondences. The

authors employ the Gröbner basis techniqe to compute up

to 64 solutions. However, their method is very slow and the

1The Theia library is located at: http://cs.ucsb.edu/

˜cmsweeney/theia/

authors advise that it is not suitable for real-time use. Li

et al. [15] provide an efficient linear approach to the gen-

eralized relative pose problem but it requires 17 correspon-

dences, making it insuitable for use in a RANSAC scheme

in low-inlier scenarios. Nı́ster and Stewénius solve the ab-

solute pose problem for generalized cameras from 3 corre-

spondences [17] by solving for the roots of an octic polyno-

mial. All of these methods are limited because they assume

that the internal scale between the two generalized cameras

is known. This is a suitable assumption if you are comput-

ing the relative pose between known cameras or if a met-

ric calibration is available. However, there are many cases

where this calibration is difficult or impossible to accurately

obtain and so the scale ambiguity must be estimated.

Ventura et al. [28] presented the first minimal solu-

tion to the generalized absolute pose and scale problem.

This method uses 4 2D-3D correspondences and employ

the Gröbner basis technique to estimate rotation, transla-

tion, and scale to localize a generalized camera efficiently.

Sweeney et al. [24] extended this method to a globally opti-

mal non-minimal solver that has significantly increased ac-

curacy, however, it is much slower than the work of Ven-

tura et al. The accuracy of these methods degrades as the

depth of the scene increases because of the reliance on 3D

points. Further, using these methods to repeatedly merge

many reconstructions will give different results depending

on the order in which the reconstructions are merged. This

is because the 3D points are given greater importance in the

localization.

In contrast, our method utilizes 2D-2D correspondences

and thus avoids relying on 3D points whose uncertainty de-

pends directly on the depth from the observing cameras.

To our knowledge, no previous work has been presented

that computes the generalized relative pose and scale. The

proposed algorithm is especially useful in applications like

loop closure in visual odometry, SLAM, and SfM. Most

strategies for loop closure involve computing the absolute

orientation to align known scene landmarks, or they utilize

PnP algorithms repeatedly to localize individual cameras

[2, 3, 4, 8, 25, 29]. Iterative Closest Point (ICP) [1, 30]

methods may also be used to align two 3D point clouds,

though are often slow to converge and depend heavily on

initialization. Our proposed algorithm is a direct method

that will return an estimate for a full 7 d.o.f. similarity

transformation from just 5 correspondences and is effec-

tively a drop-in replacement for the aforementioned loop

closure methods.

3. The Generalized Relative Pose and Scale

Problem

The generalized relative pose and scale problem is a di-

rect generalization of the generalized relative pose prob-

lem. The generalized relative pose problem uses ray cor-

http://cs.ucsb.edu/~cmsweeney/theia/
http://cs.ucsb.edu/~cmsweeney/theia/


respondences to compute the rotation and translation that

will transform one set of rays so that they intersect with the

second set of rays. Let fi and f ′

i
be corresponding unit vec-

tors that intersect in 3D space with ray origins oi and o′
i
.

These rays can be represented in Plücker coordinates [19]

such that:

li =

(

fi
oi × fi

)

and l′
i
=

(

f ′

i

o′
i
× f ′

i

)

. (1)

The generalized epipolar constraint [18] that describes

the intersection of two Plücker coordinates may then be

written as:

(fi ×Rf ′

i
)⊤t+ f⊤

i
([oi]×R−R[o′

i
]×)f

′

i
= 0, (2)

where R and t are the rotation and translation that transform

f ′

i
and o′

i
such that the ray correspondences intersect in 3D

space. This problem has been solved previously with min-

imal [21], linear [15], and nonlinear approaches [9]. How-

ever, these methods assume that the scale between the two

generalized cameras has been reconciled yet in many cases

the scale is not available or may be inherently ambiguous

without metric calibration (e.g., in SfM reconstructions).

Thus, we are interested in additionally solving for the un-

known scale transformation between the two generalized

camera.

To solve the generalized relative pose and scale prob-

lem we must additionally recover the unknown scale s that

stretches the ray origins o′
i
. Thus, the generalized epipolar

constraint becomes:

(fi ×Rf ′

i
)⊤t+ f⊤

i
([oi]×R−Rs[o′

i
]×)f

′

i
= 0 (3)

(fi ×Rf ′

i
)⊤t− sf⊤

i
R[o′

i
]×f

′

i
+ f⊤

i
[oi]×Rf ′

i
= 0. (4)

Inspired by [9] and [23], this equation may be rewritten as:

m⊤

i
· t̃ = 0,where (5)

mi =





fi ×Rf ′

i

−f⊤

i
R[o′

i
]×f

′

i

f⊤

i
[oi]×Rf ′

i
)



 and t̃ =





t
s
1



 . (6)

The generalized relative pose and scale problem has 7 d.o.f.

and thus requires 7 correspondences in the minimal case.

We may stack the constraints from each correspondence

such that

M⊤t̃ = (m1 . . . m7)
⊤t̃ = 0. (7)

Notice that the matrix M is a function of only the

unknown rotation R and known parameters fi and oi.
Let us consider the quaternion rotation parameterization

q = (x, y, z, α)⊤ such that the rotation matrix

R = 2(vv⊤ + α[v]×) + (α2 − 1)I, (8)

where v = (x, y, z)⊤ and [v]x is the skew-symmetric cross

product matrix of v. Thus, M is quadratic in the quaternion

parameters and the generalized epipolar constraint of Eq.

(7) is a 4-parameter Quadratic Eigenvalue Problem (QEP).

No methods currently exist to directly solve a 4-parameter

QEP and it should be noted that a non-iterative solution to

Multiparameter Eigenvalue Problems with more than two

parameters is an open problem in mathematics. However,

an iterative optimization similar to [9] may be used to min-

imize the smallest eigenvalue of M and determine the un-

knowns if a good initialization is available. Indeed, solving

the generalized relative pose and scale problem directly is

quite difficult as there are 140 solutions in the minimal case,

and a closed form solution would likely be very unstable.

4. Solution Method

To compute a solution to the generalized relative pose

and scale problem we use a slight relaxation of the original

problem so that we are left with a 1-parameter QEP that can

be efficiently solved with only 5 correspondences. Rather

than attempt to directly compute the full 7 d.o.f. similarity

transformation, we solve the problem in two steps. First, we

align the vertical direction of the generalized cameras. This

removes 2 d.o.f. from the rotation, leaving only a single

unknown d.o.f. in the rotation. It is important to note that

aligning the vertical direction (and rotations in general) is

independent of the scale and translation. Next, once the

vertical direction is known, our 4-parameter QEP of Eq. (7)

becomes a 1-parameter QEP and we can directly solve for

the single remaining unknown rotation d.o.f. as well as the

translation and scale.

In this section we will first discuss how to align the ver-

tical direction even when IMU data is not available before

providing a detailed explanation of how to solve for the

generalized relative pose and scale from our simplified 1-

parameter QEP.

4.1. Determining a Vertical Direction

The vertical direction of a camera provides knowledge

of the gravity vector or the “up” direction of the camera rel-

ative to a known environment. Often, this direction may be

obtained from IMU or accelerometer data that is increas-

ingly provided on cameras and smartphones. These sen-

sor measurements typically have an accuracy within 0.5 de-

grees. However, in cases where IMU data is not available

the vertical direction may still be obtained with computer

vision techniques. One common technique is to detect ver-

tical vanishing points in each image and align this vanishing

point to the “up” vector (0, 1, 0)⊤. This method has been

proven to be efficient and accurate when used in the context

of SfM [20].

Detecting and aligning vertical vanishing points is well-

suited as a repeated operation on single images. However,



0 1 2 3 4
0

1000

2000

3000

Vertical Direction Error (deg)

Figure 2. We measured the error in our vertical direction alignment

method over 10,000 trials on our real data experiments. The error

is quite small in all cases, resulting in a good initialization to our

QEP solution.

using this method in the context of generalized cameras

would be suboptimal because it ignores the fact that we

have explicit knowledge of the relative poses between each

individual camera in our generalized camera (e.g., in a cali-

brated multi-camera rig or in a posed SLAM sequence). We

would instead like to utilize this relative pose information to

align the vertical direction for all cameras simultaneously

with a single rotation.

We may assume that the vertical direction is v =
(0, 1, 0)⊤ without loss of generality, and that we are at-

tempting to rotate the generalized cameras so that the ver-

tical directions are aligned. A straightforward procedure to

align the vertical direction of a generalized camera is to first

determine the vertical direction vi of each camera within

the generalized camera then compute a rotation R such that

d(Rvi, v) is minimized over all cameras where d(x, y) is

the angular distance between two unit-norm vectors x and

y. This formulation is most useful if the generalized cam-

era is perfectly calibrated. In many cases, however, there

is noise in the computed vertical direction. To increase ro-

bustness to noise we propose to instead compute R using

only a subset of n cameras in a RANSAC-like procedure.

We compute the alignment through many random trials and

choose R such that the highest number of cameras have

an error d(Rvi, v) < τ . We demonstrate the error in the

RANSAC vertical alignment technique (using n = 5, τ = 3
degrees and ground plane detection to determine the verti-

cal direction vi for each camera) in 10,000 trials in Figure 2.

The dataset from Section 5.6 was used for this experiment,

demonstrating that this method works well in practice.

4.2. A Quadratic Eigenvalue Problem Solution

Recall our quaternion rotation parameterization of Eq. 8.

Now that the vertical directions of the two generalized cam-

eras have been aligned, we have removed 2 d.o.f. from the

unknown rotation and are left with solving one remaining

unknown d.o.f. in the rotation. If we consider the rotation

as an angle-axis rotation, it is clear to see that the vertical

direction may serve as the axis and we must solve for the

unknown rotation angle about this axis. In the quaternion

parameterization, this means that v = (0, 1, 0)⊤ and we

are left with solving for the unknown parameter α which is

related to the rotation angle about the axis v [23].

Let us now consider this in the context of the general-

ized relative pose and scale problem. The intractable 4-

parameter QEP from Eq. 7 has now been reduced to a single

unknown parameter α in matrix M :

(α2A+ αB + C) · t̃ = 0, (9)

where A, B, and C are 5 × 5 matrices formed from matrix

M in Eq. (7). Note that after the vertical directions have

been aligned, the minimal solution to this problem only

requires 5 correspondences instead of 7. We now have a

standard 1-parameter QEP which has been thoroughly ex-

amined in linear algebra [26]. To solve this QEP, we first

convert it to a Generalized Eigenvalue Problem of the form:

[

B C
−I 0

]

z = s

[

−A 0
0 −I

]

z, (10)

where z =
[

αt̃ ⊤ t̃ ⊤
]⊤

is the eigenvector and s is the

eigenvalue. This can be converted to a standard eigenvalue

problem by inverting the right-hand matrix of Eq. (10). The

inverse is particularly simple and efficient in this case:

[

−A 0
0 −I

]−1

=

[

−A−1 0
0 −I

]

.

The Generalized Eigenvalue Problem of Eq. (10) may now

be reduced to a standard eigenvalue problem,

[

−A−1B −A−1C
I 0

]

z = sz,

which can be solved with standard methods. The solution

to this produces 10 candidate solutions where the eigenval-

ues correspond to α and the translation and scale may be

extracted from the eigenvector. We may eliminate some of

the candidate solutions by only considering real eigenvalues

and the eigenvectors where the first 5 entries are equal to the

last 5 entries scaled by α to ensure our solution is consistent

with the construction of vector z.

4.3. A Closed Form Solution

An alternative method for solving Eq. (9) arises by ex-

amining the determinant. Note that M from Eq. (7) will be

rank-deficient in non-degenerate cases, so it must hold that:

det(α2A+ αB + C) = 0. (11)

This leads to a degree 10 univariate polynomial in α such

that the roots correspond to valid solutions to α. Further,

it can be shown that this polynomial is always divisible by

α2 + 1, leading to at most 8 real solutions. This result also
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Figure 3. We measured the numerical stability of our algorithm

with zero pixel noise and a perfect known axis of rotation. The

translation and scale errors are very small, and the rotation error

cannot be displayed because it was within the machine precision.

means our QEP method will have at most 8 real solutions

since the roots of this polynomial correspond to the eigen-

values of our QEP. However, in practice this polynomial is

ill-conditioned and solutions are very unstable. The signif-

icant loss in numerical precision and accuracy is not worth

the 10-20% speed increase so we only consider the QEP

method for the remainder of the paper.

5. Experiments

5.1. Numerical stability

We tested the numerical stability of our QEP method

over 105 random trials. We generated random camera con-

figurations that placed cameras (i.e., ray origins) in the cube

[−1, 1]×[−1, 1]×[−1, 1] around the origin. 3D points were

randomly placed in the cube [−1, 1] × [−1, 1] × [4, 6] and

ray directions were computed as unit vectors from camera

origins to 3D points. Correspondences were computed from

image rays that observed the same 3D points. An identity

similarity transformation was used (i.e., R = I , t = 0,

s = 1). For each trial, we computed solutions using the

minimal 5 correspondences. We calculated the angular ro-

tation error, the translation error, and the scale error for each

trial, and plot the results in Figure 3. The errors are very sta-

ble, with 99% of all errors less than 10−12.

5.2. Image noise experiment

We performed experiments on synthetic data to deter-

mine the effect of image noise on our algorithm. We com-

pared our algorithm to three alternative algorithms: the

gDLS algorithm [24], the gP+s algorithm [28], and the Ab-

solute Orientation algorithm [27].

For our synthetic setup we generated two generalized

cameras that each consist of 5 cameras randomly placed in

the 2 × 2 × 2 cube centered at the origin. 3D points were

then randomly generated with a mean distance of 5 units

from the origin, and correspondences were established as

rays that observed the same 3D points such that each cam-

era observes a single 3D point. We then applied a similar-

ity transformation with a random rotation, a translation in

a random direction with a random baseline in the range of

[0.1, 100], and a random scale in the range of [0.1, 100]
to the second generalized camera. Image noise is added to

the second generalized camera and the similarity transfor-

mation is estimated. We report the angular rotation error,

absolute translation error, and the normalized scale error

|s− ŝ|/s.

For all synthetic experiments we used the ground truth

vertical direction and added 0.5 degrees of gaussian noise to

simulatel the real accuracy of vertical direction estimation

for our algorithm (c.f . Figure 2). For the Absolute Orienta-

tion algorithm, we created 3D-3D matches by triangulating

3D points in the second generalized camera from the noisy

image rays and used these 3D points to establish correspon-

dences. Additionally, we used 5 correspondences for each

algorithm for a fair comparison.

Using the setup described, we ran 1000 trials testing the

accuracy of each algorithm as increasing levels of image

pixel noise were added (Figure 4 top). Scenes were ran-

domly generated for each trial, and all algorithms used the

same scene configuration for a given trial. Our algorithm

performed best at estimating the rotation and translation of

the similarity transformation but is less accurate than the

gDLS and Absolute Orientation algorithms for estimating

scale. It should noted that the scale errors are very small for

all algorithms. Our algorithm is robust to image noise be-

cause ray intersection in 3D space is a very tight constraint

that is independent of the depth of the 3D point.

5.3. Scene depth experiment

In SLAM and SfM it is common to have 3D points with

large and varying scene depth. It is especially important in

the case of urban and large-scale SfM to be robust to large

scene depths when computing a similarity transformation

to align models. To examine our algorithm’s robustness to

scene depth, we ran an experiment using the same setup as

above while increasing the mean scene depth from 5 units

to 200 units. We used an image noise of 1 pixel for all

depth levels and executed 1000 trials at each depth level.

The results of our experiment are shown in the bottom row

of Figure 4. It is clear to see that our algorithm is least

affected by scene depth. The Absolute Orientation and gP+s

algorithms completely degrade as the scene depth increases.

The gDLS algorithm has comparable depth robustness to

our algorithm in terms of the rotation and translation but is

not as accurate at computing scale.

Conceptually, our algorithm has an advantage over

gDLS [24], gP+s [28], and the Absolute Orientation algo-

rithm [27] because it does not use 3D points and thus is not

subject to uncertainty in the 3D position. It is well known

that the uncertainty of a triangulated 3D point increases as

the depth of the point relative to the baseline of the cameras

observing it increases. Therefore, our algorithm should pro-

duce more accurate similarity transformations as the scene

depth increase. Indeed, the results of this experiment sup-

port this notion.
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Figure 4. We measured the error in the computed similarity transformation as the amount pixel noise increased and plot the mean rotation,

translation and scale error. All cameras were randomly generated within a 2 × 2 × 2 cube centered at the origin. Top row: we generated

random 3d points with an average depth of 5 units away from the orign. Our algorithm is the most accurate at computing the rotation and

translation but is not as accurate at computing scale, however, the scale errors are very small for all algorithms. Bottom row: we kept the

image noise at 1.0 pixels standard deviation while increasing the average depth of hte 3D points used to establish correspondences. Our

algorithm is least affected by the change in scene depth meaning that it is robust to uncertainty in 3D point positions.

5.4. IMU noise experiment

We performed experiments on synthetic data to deter-

mine how the accuracy of the estimated vertical direction

affects our algorithm. To simulate noise in the estimated

vertical direction we added gaussian noise to a synthetic

IMU ranging from 0 to 1 degree of standard deviation.

Using the same scene setup as the image noise experi-

ment, we ran 1000 trials testing the similarity transforma-

tion accuracy as increasing levels of IMU noise were added

(Figure 5). Standard mobile devices have less than 0.5 de-

gree of IMU noise with high quality sensors often having

less than 0.01 degrees of noise. Our algorithm demonstrates

good accuracy in the presence of IMU noise within this

range, verifying its robustness to potentially inaccurate ver-

tical direction estimations.

5.5. Time Complexity

A major benefit of our method is that the QEP solution

is simple to construct and very efficient. The most costly

operations involved in our method are inversion of a 5 × 5
matrix and computing the eigenvectors and eigenvalues of a

10×10 matrix. Both of these operations are highly efficient

on small matrices in standard linear algebra packages. Over

10,000 trials our algorithm ran with a mean execution time

of 44µs. In comparison, the gDLS [24] method had a mean

execution time of 606µs and the gP+s [28] method had a

mean execution time of 118 µs. All timing experiments

were run on a 2011 Macbook Pro with a 2GHz Intel Core

i7 processor. While the Absolute Orientation algorithm is

more efficient at 3µs, it is not as accurate or as robust to

image noise and depth variance as our algorithm (c.f . Fig-

ure 4). Our algorithm has comparable accuracy to gDLS

in the presence of image noise and is more robust to depth

variance, yet it has a speedup of over 10×. This makes our

algorithm more desirable for real-time use in a RANSAC

scheme because of speed gains that will be realized.

5.6. Real­data experiments

Our method’s robustness to 3D point and depth variance

makes it well-suited for real-world applications. We tested

the performance of our solver using the SLAM dataset from

[28] that has highly accurate ground truth poses obtained

with an ART-2 optical tracker for measuring the error of

our similarity transformation registration method. Exam-

ple images from this dataset are provided in Figure 6. For

our experiment, we created an SfM reconstruction (using

the ground truth poses) from one image sequence to use as

our reference image sequence and point cloud. We then

run 12 image sequences through a keyframe-based SLAM

system to obtain a local tracking sequence that can be reg-

istered with respect to the reference sequence with a sim-

ilarity transformation (see Figure 7). We then compute a

similarity transformation in the following manner:

Our 5 pt.: 2D-2D feature correspondences are estab-

lished between the reference and query image sequences us-

ing an approximate nearest neighbor search (ANN), and the

vertical directions are aligned using ground plane detection

and computing the normal. These correspondences are then
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Figure 5. Using the same scene configuration as the image noise experiment, we measured the similarity transformation error as noise was

added to the synthetic IMU to perturb the vertical direction. We only show our algorithm since it is the only one that depends on knowledge

of the vertical direction. We used 1 pixel of image noise for all experiments. For levels of IMU noise expected on mobile devices (less than

0.5 degrees) our algorithm still maintains good accuracy, demonstrating robustness to noise in the vertical direction estimation.

Table 1. Average position error in centimeters for aligning a SLAM sequence to a pre-existing SfM reconstruction. An ART-2 tracker

was used to provide highly accurate ground truth measurements for error analysis. Camera positions were computed using the respective

similarity transformations and the mean camera position error of each sequence is listed below. Our method is has comparable or better

accuracy than the state-of-the-art method, gDLS, but does not require any 3D points.

Sequence # Images Abs. Ori. [27] gP+s[28] gDLS [24] Our 5 pt.

office1 9 6.37 6.12 3.97 4.30

office2 9 8.09 9.32 5.89 4.17

office3 33 8.29 6.78 6.08 5.10

office4 9 4.76 4.00 3.81 2.61

office5 15 3.63 4.75 3.39 3.41

office6 24 5.15 5.91 4.51 4.81

office7 9 6.33 7.07 4.65 4.06

office8 11 4.72 4.59 2.85 3.12

office9 7 8.41 6.65 3.19 2.62

office10 23 5.88 5.88 4.94 3.55

office11 58 5.19 6.74 4.77 5.03

office12 67 5.53 4.86 4.81 4.12

used in a RANSAC loop with the 5 pt. method described in

this paper to determine a similarity transformation.

gDLS:We obtain 2D-3D correspondences with an ANN

search between the 3D points in the point cloud generated

by the reference sequence and the 2D image features in the

query sequences. These correspondences are then used in a

RANSAC loop using the minimal number of 4 correspon-

dences with the gDLS algorithm of Sweeney et al. [24].

gP+s:We obtain 2D-3D correspondences in the same

way as the gDLS method and use these correspondences

in a RANSAC loop with the algorithm of Ventura et al. [28]

to estimate the similarity transformation. This method re-

quires 4 correspondences in the minimal case.

Absolute Orientation: The absolute orientation method

of Umeyama [25] is used to align the 3D points from the ref-

erence point cloud to 3D points triangulated from 2D cor-

respondences in the query point cloud. Correspondences

are determined from an ANN search of the mean descriptor

of the triangulated point and the 3D points in the reference

point cloud. We use 4 correspondences for this method.

After applying the computed similarity transformation

directly from RANSAC (i.e., no refinement is performed),

we compute the average position error of all keyframes with

respect to the ground truth data. We report the mean posi-

tion error of all keyframes in the image sequence (in cen-

timeters) over 1000 trials in Table 1. Our method performs

better than all other methods in most of the scenes. The

globally optimal gDLS algorithm [24] is the only method

that is competitive with our algorithm. We expect that our

algorithm will perform even better for large-scale SfM ap-

plications. However, acquiring ground truth datasets for

large-scale SfM is difficult and we leave the incorporation

and evaluation of our algorithm into a large-scale hierarchi-

cal SfM pipeline for future work.

6. Conclusion

We have presented a new problem called the generalized

relative pose and scale problem and to our knowledge pro-

vide the first solution to this problem. The generalized rel-

ative pose and scale problem is equivalent to estimating a

7 d.o.f. similarity transformation and so this work is use-

ful for loop closure in visual odometry and merging SfM



Figure 6. Example images from our real data experiments. The im-

ages created a SLAM sequence that was then aligned to a reference

sequence with our method to estimate a similarity transformation.

Figure 7. We compare our method with several alternative meth-

ods for computing similarity transformation using a dataset com-

prised of SLAM sequences that contain highly accurate ground

truth poses. Each method is used to align 12 image sequences and

the camera position errors are reported in Table 1. Green repre-

sents the ground truth SLAM sequence and blue SLAM sequence

after applying the similarity transformation with our method in a

RANSAC scheme.

reconstructions. We showed that the standard generalized

relative pose and scale problem leads to an intractable 4-

parameter QEP and instead provide a two step solution to

the problem where we first align the vertical directions of

all cameras then reduce the problem to a 1-parameter QEP

that can be solved with standard linear algebra. Our method

is simple, efficient, and robust to image noise and scene

depth. We show on synthetic and real data experiments that

our method has comparable or better performance to alter-

native algorithms. We have published a C++ implementa-

tion of our algorithm as open source software for fellow

researchers to utilize. In future work, we plan to remove

the necessity for vertical alignment to allow additional flex-

ibility to our algorithm, and would like to incorporate this

method into a large scale multi-camera SfM pipeline where

the scale of reconstructions may be ambiguous.
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