
Discrete Comput Geom 5:289-304 (1990) Discrete & C~anputati*mal

eometry
© 1990 Springer-Verlag New York Inc.

Computing Simple Circuits from a Set of Line Segments

David Rappaport , ~ Hiroshi Imai, 2 and Godfried T. Toussaint 3

1 Department of Computing and Information Science, Queen's University,
Kingston, Ontario, Canada K7L 3N6

2 Department of Computer Science and Communication Engineering, Faculty of Engineering,
Kyushu University, Hakozaki, Fukuoka 812 Japan

3 School of Computer Science, McGill University, 805 Sherbrooke Street West,
Montreal, Quebec, Canada H3A 2K6

Abstract. We address the problem of connecting line segments to form the boundary
of a simple polygon--a simple circuit. However, not every set of segments can be
so connected. We present an O(n log n)-time algorithm to determine whether a set
of segments, constrained so that each segment has at least one endpoint on the
boundary of the convex hull of the segments, admits a simple circuit. Furthermore,
this technique can also be used to compute a simple circuit of minimum perimeter,
or a simple circuit that bounds the minimum area, with no increase in computational
complexity.

1. Introduction

It is always possible to construct a simple polygon passing through every point
of a planar point set, and this task can be accomplished in O(n log n) time [12].
However, for a set of line segments, it is not always possible to obtain a simple
circuit passing through every line segment. An example is shown in Fig. 1. If we
can find a simple circuit that passes through every segment of a set of line
segments, then we say that the set admits a simple circuit. In general it has been
shown that to determine whether a set of line segments admits a simple circuit
is NP-complete [10] and [11].

In [10] and [11] it is shown that deciding whether a set o f segments admits a
simple circuit is polynomially reducible to deciding whether a planar graph has
a Hamiltonian circuit. A Hamiltonian circuit is a simple closed path through all
the nodes of a graph. To determine whether a planar graph has a Hamiltonian
circuit is an NP-complete problem [4]. Given a planar graph, a configuration of

290 D. Rappaport, H. lmai, and G. T. Toussaint

Fig. I

/

line segments is constructed in polynomial time so that a Hamiltonian circuit
can be found in the graph if and only if the configuration of segments admits a
simple circuit. This construction requires that some line segments intersect at
their endpoints. Therefore, for an input of line segments with disjoint closed
intervals the NP-completeness result does not necessarily hold. To remain con-
sistent with the results in [10] and [11] we allow the possibility of some segments
intersecting at their endpoints. We denote a sequence of segments with disjoint
interiors but intersecting at their endpoints as a chain of segments.

We consider a constrained version of the simple circuit problem. An
O(n log n)-time algorithm is presented to determine whether a set of line seg-
ments, where each line segment has at least one endpoint on the boundary of
the convex hull of the segments, admits a simple circuit. Furthermore, this
technique can also be used to compute a simple circuit of minimum perimeter,
or a simple circuit that bounds the minimum area, with no increase in computa-
tional complexity.

A set of line segments S is represented as S = (So, s ~ , . . . , s,_~) (to be referred
to from now on as segments). The endpoints of S are represented by the set of
2n points, P = (Po, P ~ , . . . , P2~-t). A polygon is defined as a sequence of distinct
points in the plane, called vertices, where each consecutive pair xi, x~+t (modulo
n) is connected by a straight line segment, or edge. A polygon is simple if no
point in the plane belongs to more than two edges and the only points of the
plane that do belong to more than one edge are endpoints of the edges, that is,
the vertices. In the literature it is common for the term simple polygon to denote
a boundary and the area it encloses, the interior. In order to deaf ly distinguish
between the two, we use simple circuit to denote only the boundary of a simple
polygon. We say that S admits a simple circuit if it is possible to construct a
simple circuit R w S, where R is a set of nonintersecting segments whose endpoints
augmenting segments of S. In Fig. 2 a set of segments is shown as solid lines with
a set of augmenting segments as dashed lines. The convex hull of a set of points,
P, is the smallest convex region enclosing P. Let CH (P) denote the vertices (in
clockwise order) of the convex hull of P. We define a set of segments as
CH-connected, if for every segment s ~ S, at least one of the endpoints of s is in
CH(P) .

Computing Simple Circuits from a Set of Line Segments

Fig. 2

291

In Section 2 some preliminary observations regarding S are made. In Section
3 some geometric properties of S are established. We show that every simple
circuit from a CH-connected set of segments passes through the segments in the
same order that the segments appear on CH(P) . We also show that we can obtain
a set of candidates that includes the set of all potential augmenting segments. A
graph is then constructed to reflect these properties. In Section 4 a linear-time
algorithm is introduced which finds, if there is one, a Hamiltonian circuit in the
graph we have created. The structure of the graph allows us to find a Hamiltonian
circuit by solving an easy matching problem. Section 5 relates some computational
details regarding finding intersections of augmenting segments and the original
segments S. The paper is summarized in Section 6 where a proof of optimality
is given.

2. Preliminaries

Consider a set, S, of n line segments. There are some preliminary tests that can
be made to determine whether S does not admit a simple circuit. It is obvious
that if any pair of segments intersect in both their interiors, then clearly S cannot
admit a simple circuit. Three further conditions that preclude the admission of
a simple circuit are: if an endpoint of one segment meets the interior o f another,
if three or more segments meet at the same endpoint, or a subset of the segments
intersect at their endpoints to form a simple circuit. We can test for the four
forbidden conditions above in O(n log n) time, by using the line-sweep technique
for determining line-segment intersections [13]. I f any two segments intersect in
their interiors we immediately reject the set. Similarly, if we encounter an endpoint
at the intersection of three segments, or in the interior of another segment, we
also reject the set. I f the line-sweep procedure terminates without rejecting the
segments, then we traverse the segments that intersect at their endpoints to
determine whether a circuit is present. I f any circuits are found we can again
reject the set of line segments.

292 D. Rappaport, H. lmai, and G. T. Toussaint

b~

Fig. 3

There is yet another simple preliminary test that can be undertaken to determine
if a set of segments does not admit a simple circuit, as suggested by the following
lemma.

Lemma 2.1. Let S be a set of segments that admits a simple circuit represented by
a sequence of vertices T={to , t, , t2~_,}. Let B={bo, b~, . . . , bin} be the
sequence of vertices representing CH(T) . B is a subsequence of every simple
circuit T.

Proof. Assume that B is not a subsequence of T, so at least one pair of points
in the sequence B are interchanged. Without loss of generality we can assume
that b2 and b~ are interchanged, and {bo, b2, b~, b3} is a subsequence of T (see
Fig. 3). Since {bo, b~, b2, b3} is a subsequence of B, bo, bl, b2, b3 are the vertices
of a convex quadrilateral Q. Let C(x, y) denote the polygonal chain formed by
a contiguous subsequence of T beginning at x and ending at y. The polygonal
chains C(bo, b2) and C(bl, b3) must intersect the interior of Q, since every simple
circuit is contained in CH(P) . Because bo, b2 and b~, b3 are diagonals of a convex
quadrilateral, the polygonal chains C(bo, b2) and C(bl, b3) must intersect each
other. Therefore, {bo, b2, bj, b3} cannot be a subsequence of a simple circuit, and
therefore T cannot be a simple circuit, which is a contradiction. []

It should be noted that the above lemma is not restrictive to CH-connected
sets of segments, but applies to all sets of segments. We say that S contains a
cutting chain, if there exists a chain of segments in S, that intersects the interior
of the convex hull of S, and also intersects two nonadjacent vertices on the
boundary of the convex hull of S. As a direct consequence of Lemma 2.1 a set
of segments that contains a cutting chain does not admit a simple circuit. An
algorithm to determine whether a set of segments contains a cutting chain is
readily available. Given S and P, we first compute CH(P) . A linear scan can
then test all chains of segments (as computed above) to see if any are cutting
chains. The convex hull o f a set of n points can be computed in O(n log n) time

Computing Simple CRcuits from a Set of Line Segments 293

Fig. 4

[5] or O(n log h) time [8] and [9] where h is the cardinality of the convex hull
points. See [16] for a historical account of the planar convex hull problem.

We have given some preliminary methods to reject sets of segments that do
not admit a simple circuit. However, a set of segments may pass the above tests
and still not admit a simple circuit. A set of five CH-connected segments that
illustrate this phenomenon is shown in Fig. 4. We assume in the ensuing discussion
that S is a set of four or more CH-connected segments such that:

(1) the interiors of the segments are disjoint,
(2) no endpoint of one segment lies in the interior of another,
(3) no more than two segments meet at an endpoint,
(4) no circuits are formed by subsets of the segments, and
(5) there are no cutting chains.

3. Geometric Results

We examine the geometric properties of $, to arrive at an appropriate graph
representation G. We then solve a combinatorial problem using G to determine
whether our original segments S admit a simple circuit. The vertices of G
correspond to the endpoints of S. For every endpoint Pi of a segment there is a
corresponding vertex vi in G. The edges in G are a combination of edges
corresponding to the segments S, and edges corresponding to a set of candidates
for augmenting segments. Denote these edges as Es and Ec, respectively. In this
section we show how an appropriate set of candidates leading to the edges
E,., can be obtained from S. Denote by an E~-required Hamiltonian circuit a
Hamiltonian circuit o f G that passes through every edge in Es. The edges E, are
chosen so that we will be able to prove that S admits a simple circuit if and only
if G has an Es-required Hamiltonian circuit.

Initially we can consider as candidates all segments P x P such that (p~, pj) ~ S
and p~ # pj. However, this is far too many to consider. Denote segments of $
whose endpoints are adjacent on C H (P) as neighbors. It is convenient to label
the segments of S so that s~ is a neighbor of s~+l for all i = 0 , n - 1 (addition
modulo n). As a consequence of Lemma 2.1 we see that augmenting segments

294 D. Rappaport, H. lmai, and G. T. Toussaint

must connect the endpoints of neighbors. Therefore, we only have to consider
edges connecting neighboring segments as candidates. This pool of O(n) candi-
dates is further reduced. Consider the case where two segments intersect at their
endpoints. Clearly, the only admissible candidate between two segments that
meet at an endpoint is the degenerate candidate formed by the coincident
endpoints. Including any other candidates connecting such segments is redundant,
so we call these candidates redundant candidates. All redundant candidates can
be eliminated. We can also eliminate any candidate that intersects the interior
o f any segment in S. Denote these as segment-intersecting candidates. By a naive
algorithm it would require at most O(n 2) time to determine which of the current
O(n) candidates intersect any of the n segments of S. However, using a variant
of Shamos and Hoey's line-sweep technique [13] and a careful decomposition
of the segments this can be done in O(n log n) time. To avoid a lengthy digression
from the current discussion a detailed description of this algorithm is postponed
until Section 5. We must also ensure that if an Es-required Hamiltonian circuit
is found in G, then no pair of edges from E,. correspond to a pair of candidates
that intersect. It is useful to distinguish between three types of these intersections.

Let a and b be two candidates that are not redundant or segment-intersecting.

Case 1. All four endpoints of candidates a and b are endpoints of only two of
the segments of S (see Fig. 5). In this case we can allow the images of both a
and b to appear in the final graph (3. Any Es-required Hamiltonian circuit of G
cannot contain both a and b. We would visit both endpoints of the segments
connected by a and b, before visiting the rest of the segments of S, therefore, a
and b cannot appear together in a Hamiltonian circuit.

Case 2. The four endpoints of a and b lie on three different segments of S (see
Fig. 6). Therefore, one of the segments of S has a candidate at both of its
endpoints. It will be shown that we can eliminate at least one of these candidates.
Consider a candidate c connecting segments si and si-2. Let o'i and cri_l be the
respective endpoints of s~ and s H that are not endpoints of c. I f every candidate
adjacent to o-i that connects si to si+~ intersects c, or if every candidate adjacent
to o'~_l that connects sj_~ to s~_2 intersects c, then call c a blocking candidate. In
Fig. 6, a is a blocking candidate. Obviously a blocking candidate cannot be an
augmenting segment. Every blocking candidate can be identified in constant time.

oSsS ~ ~

Fig. 5

Computing Simple Circuits from a Set of Line Segments 295

T ~" '~' '% '% ÷,/

Pb ~,,

Fig. 6

Therefore, all blocking candidates can be eliminated from the pool of candidates
in O(n) time.

Lemma 3.1. I f two candidates a and b intersect and both o f them are incident to
the same segment, then either a or b (or both) is a blocking candidate.

Proof. Let si denote the segment incident to both a and b, with Pa being the
endpoint of st on a, and Pb being the endpoint of si on b (see Fig. 6). At least
one endpoint of s~ is on C H(P) , so one endpoint of a or b (or both) must also
be on CH(P) . Without loss of generality assume Pa is on CH(P) , and the other
endpoint of a is on s~_~. Because a and b intersect they cannot be edges of
CH(P) . Observe that the candidates connecting Pb with each of the endpoints
of s~+~ must intersect a. Therefore, a is a blocking candidate. []

Case 3. The four endpoints of a and b lie on four different segments of S.

Lemma 3.2. I f two candidates a and b intersect, and the four endpoints of a and
b lie on four different segments of S, then a or b must intersect one o f those four
segments.

Proof Let a be a candidate with endpoints on s~ and si+t, and let b be a
candidate with endpoints on sj and sj+t (see Fig. 7). Let h~ denote the convex
hull edge from si to s~+t, and let hj denote the convex hull edge from segment s~
to sj+~. Therefore, the quadrilaterals Qi = (s , a, si+l, hi) and Q~ = (sj, b, sj+l, hi)
intersect. (Observe that if one of the endpoints a or b is on h~ or h~, then we
must consider triangles rather than quadri lateralsNhowever this does not affect
the argument.) Two intersecting circuits intersect in at least two points. The
intersection of a and b accounts for one of the intersections. Since no edge can
intersect a convex hull edge and none of the segments of S intersect, we must
conclude that one of the candidates intersects a segment of S. []

The construction of a graph with the property that the original segments admit

296 D. Rappaport, H. Imai, and G. T. Toussaint

$i ~ . • $i÷I

Fig. 7

a simple circuit if and only if the graph admits an E~-required Hamiltonian circuit
can now be obtained. Let C represent the set of candidates with endpoints on
neighbors that are not segment-intersecting, are not redundant and not blocking.
The edges in G we call Ec correspond to the set of candidates C. The edges of
G are E = E c u E ~ .

Lemma 3.3. The segments S admit a simple circuit i f and only i f G = (V, E) has
an Es-required Hamiltonian circuit.

Proof. Assume S admits a simple circuit. It is required to show that the augment-
ing segments have their counterparts in G. From the preceding lemmas we know
that all augmenting segments connect neighbors, and are not redundant nor
blocking segments. Every edge with these properties has been included in G,
therefore G must have an E~-required Hamiltonian circuit if S admits a simple
circuit.

On the other hand, assume G has an E,-required Hamiltonian circuit. Clearly,
every E~-required Hamiltonian circuit in G is a circuit in $. It remains to show
that the circuit is simple. Assume the circuit obtained results in a nonsimple
circuit. No segments of S and C can cross. If two segments from C cross then
they cross in a Case 1, Case 2, or Case 3 intersection as defined above. However,
as was shown above, a Case 1 intersection cannot occur, a Case 2 intersection
is prevented by eliminating blocking candidates, and a Case 3 intersection is
prevented by eliminating any candidate intersecting a segment. Therefore the
circuit must be simple. []

In general, it is an NP-complete problem to determine whether there is a
Hamiltonian circuit in a graph [7]. In the next section a linear-time algorithm is
presented to determine whether an E,-required Hamiltonian circuit is present in
G. Furthermore, the same algorithm is used to determine minimum weight
E~-required Hamiltonian circuits. These polynomial-time algorithms rely on the
special structure of the graph G.

Computing Simple Circuits from a Set of Line Segments 297

4. Matchings that Lead to Simple Circuits

Let G = (V, E) be a graph as obtained in the previous section, where V=
(V 0 , V 1 , v2,-~). We denote E, ={(v2~, v2 ,+31i=0 , n - l } as edges of G
corresponding to S and Ec as the edges of G corresponding to C. The edges of
Ec are a subset of edges connecting endpoints of s~ to s~+l. See Fig. 8.

Denote Gc as the graph G = (V, E~). The graphs G and Gc have cyclic
structures. It is more convenient to designate a vertex a start vertex and a vertex
an end vertex and "break" the cyclic structure. Remove from Ec (if they exist)
the edges (vo, v2), (vo, v3), (v~, v2,-t), and (vt, v2,-2). Call the resulting graph

f - - r Gc - (1,, E ') . We also need a subgraph of G~, G~. This graph contains the edges
Ec with (v~, v2), (v~, v3), (vo, v2,-~), and (Vo, t~,_2) removed (if they exist). We
use the graphs G" and G~ to find an E~-required Hamiltonian circuit in G.

A matching in a graph is a set of edges no two of which share a vertex. A
maximal matching is a matching on the maximum number of vertices in the
graph. A matching is said to be complete if a maximal matching in the graph
contains all vertices of the graph. The following theorem immediately leads to
an algorithm for finding an E~-required Hamiltonian circuit in G.

Theorem 4.1. Given the graph G and G" as described above, if a maximal matching
in the graph G'~ is a complete matching, then there is an E,-required Hamiltonian
circuit in G.

Proof. Every complete matching in G" must match vl with either v2 or v3.
Choosing either of these edges in the matching and deleting edges on matched
vertices we are left with a graph having the same structure as our original graph.
This gives the complete matching M the property that every edge m contained

vg~ ~ v$

v:r v 5
Fig. 8. A ten vertex example of the graph G. Dashed edges represent E~. Ec is a subset of the
solid edges.

298 D. Rappaport, H. Imai, and G. T. Toussaint

in M connects two edges in E~, and there are no disjoint cycles. The edges E~ u M
comprise a Hamiltonian circuit in G. []

If both G" and G~ do not contain a complete matching then we can conclude
that Gc does not have an Es-required Hamiltonian circuit. Otherwise, we can use
a complete matching from G'~ or G',' to construct an E~-required Hamiltonian
circuit as suggested by Theorem 4.1. There are several algorithms found in the
literature that can be used to compute the maximum matchings in G~ and G~.
In particular, since these graphs are bipartite graphs (a bipartite graph is defined
as a graph whose vertices can be divided into two disjoint subsets, such that
every edge in the graph has an endpoint in each subset) we can use an efficient
method based on a network flow algorithm to find maximal matchings in
o(I vII'21EI) time [6]. In the problem considered here the edges and the vertices
are both of cardinality O(n) so the running time is 0(n3/2). However, the structure
of the graphs G'c and G~ permit a more efficient method to determine whether
there is a complete matching. This algorithm will now be discussed.

Construct a weighted graph G . = (V, E ,) , where V is defined as above and
E . consists of all edges connecting endpoints of s~ to S~+l. We assign weights
w(e)= 1 to an edge e ~ E , , if e is also contained in E'c, and w(e) =2 if e~E'~.
The minimum weight complete matching in G . is computed in stages. Let
to[i] denote the cost of the minimum weight matching using the vertex v; in
G , - { v i + I , 1)i+ 2 , l)2n_l, I)0}. The following lemma leads to a simple dynamic
programming algorithm.

Lemma 4.2. The minimum weight matching in G, is

min(to[2n - 1] +w(½n-2, Vo), to[2n - 2] + w(v2,_l, Vo)).

Proof. Since Vo is only adjacent to v2,-~ and ~, -2 , every candidate matching
must contain either the edge (v2~-~, Vo) or the edge (½,-2, Vo). The result
follows. []

The following algorithm is an iterative implementation of the dynamic
programming algorithm suggested by Lemma 4.2.

Algorithm MATCH
to[2],--w(vl, v2);
to[3],-- w(vl, v3);
for i~- 2 to n - 1

do begin
to[2i] ~- min(to[2i - 1] + w(v2;-2, v2,), to[2i - 2] + w(v2,_l, t~,));
to[2i + 1] ~ min(to [2 i - 1] +w(v2,-2, v2,), t o [2 i - 2] + w(v2i_~, v2i))
end;

to[0] ~ min(to[2n - 1] + w(v2,_2, v0), to[2n - 2] + w(½n_l, Vo));

The cost of the minimum weight matching is kept in to[0]. Correctness follows
from Lemma 4.2, and the linear running time is obvious. If the cost is n then a
complete matching exists in G~.. Otherwise there is no complete matching. The

Computing Simple Circuits from a Set of Line Segments 299

algorithm OBTAIN-M can be used to obtain, in O(n) time, the edges of the
complete matching M = (m~, m 2 , . . . , m,). The following algorithm follows the
approach used in the proof of Lemma 4.1.

Algorithm OBTAIN-M
k~-0;
for i ~-n downto 1
if t o [2 i -2] = w[k] - w(v:~_~, Vk)

then
mi *-(v2i-l, Vk); k ~ 2 i - 2

else
m~ <- (v2/-2, vk); k <-- 2i - 1;

Assume a complete matching in G , has been found..As a direct consequence
of the previous result we can determine a minimum perimeter simple circuit from
S. A weighted graph G = (V, E~) is constructed, where E~ is the same as E , except
for the weight assignments. Assign the Euclidean length of a candidate as the
weight given to the corresponding edge in E~ ~ E'c. For any edge in Et ~ E~. assign
a weight of ~ . A minimum perimeter simple circuit corresponds to a minimum
weight complete matching in Gj.

The simple circuit which encloses the minimum area can also be found by
using a weighted graph. The weights assigned to edges in G hinge on the
observation that the area of a simple circuit P is the area of CH(P) less the sum
of the areas of the polygonal regions that constitute the difference between CH(P)
and P. Denote the polygonal regions that constitute the difference between CH(P)
and P as convex deficiency circuits of P. The convex deficiency circuits of every
simple polygon from S consist of two segments st, s~+~ and the augmenting
segment connecting s~ and s~÷~. (If the augmenting segment happens to connect
two convex hull vertices we can conveniently define this as a zero area convex
deficiency circuit.) Therefore, every candidate describes a unique convex
deficiency circuit. Assign weights to G to obtain the weighted graph G, where
edges in G~ corresponding to candidates are given weights equal to the negation
of area of the deficiency circuit described by that candidate. For edges not in E'c
assign a weight of 1. A complete matching in G~ with minimum weight is a
simple circuit that encloses the smallest area.

5. Finding Intersections of Candidates and Segments

As described in Section 3, a necessary step to obtain the final set of candidates
is to determine candidate-segment intersections. It was stated in Section 3
that this could be computed in O(n log n) time. In this section the details
of this algorithm are described. One possibility to consider is to compute all
segment intersections. Given a set of n line segments in the plane the algorithm
of Bentley and Ottmann [2] can be used to report all pairwise intersections, in
O(n log n + k log n) time, where k represents the number of pairwise intersections
found. Unfortunately, the number of pairwise intersections may be large. In fact,

300 D. Rappaport, H. Imai, and G. T. Toussaint

Fig. 9

k may be as large as O(n2). AII example illustrating this phenomenon is shown
in Fig. 9. This example can be generalized, showing that as many as O(n 2)
intersections may occur.

It is not necessary to compute all pairwise segment intersections for the problem
considered here. We only need to find candidates that are intersected by segments.
Since there are a linear number of candidates the output is at most linear. We
need not compute all O(n 2) pairwise intersections.

Consider two sets of line segments A and B, where the interiors of the segments
in A are pairwise disjoint, and so are the interiors of the segments in B. It will
be useful to be able to report in O (n log n) time all segments of A that are
intersected by any segment of B. An algorithm used to accomplish this is based
on the line-sweep technique of Shamos and Hoey [13]. The algorithm scans a
vertical line from left to right while maintaining a balanced tree that represents
the order in the y direction of the segments intersected by the scanning line.
Denote this as the y-order of the segments. The balanced tree allows insert and
delete operations on the y-order in O(log n) time. Intersecting line segments will
be adjacent in this ordering. The y-order changes when: the left endpoint of a
segment is encountered and the segment is inserted into the y-order; the right
endpoint is encountered and the segment is deleted from the y-order; or two
segments cross thus interchanging their relative position in the y-order. In our
problem, any time an intersection is found, one of the intersected edges can be
dispensed with. Therefore, the case of segments changing their relative position
in the y-order does not occur. This observation leads to an algorithm that is a
straightforward extension of the result of Shamos and Hoey [13]. We now show
how this algorithm can be applied to the candidate-segment intersection problem.

Let the endpoints of each segment si be denoted by si h and s~ where s~ h denotes
an endpoint of S on CH(P) . The candidates considered for intersection can now
be expressed as C = Co u C, u C2 u Cs, where Co = {(sih, si+l~)[i = 0 , . . . , n - 1},
C m = { (s ~ k , s ~ + ~) l i = o , . . . , n - 1 } , C 2 = { (s i ~ , s ~ + l ~) [i = O , . . . , n - 1 } , and C3=
{(Sih, S i+lk) l i=O , n-- l} . Candidates from Co do not have to be tested for

Computing Simple Circuits from a Set of Line Segments 301

intersection, since they are on the convex hull. Handling candidates from the
other classes requires an examination of the different types of candidate intersec-
tions. The terminology of Section 3 is used to distinguish candidate intersections.
It is easy to see that candidates from within the same class Ci, i = 1, 2, 3, cannot
intersect in a Case 1 intersection. Blocking candidates, those candidates which
intersect in a Case 2 intersection, can be predetermined and eliminated using the
method suggested in Section 3. Thus after all blocking candidates have been
removed, the only way two candidates from within the same class C~ can intersect
is in a Case 3 intersection. Recall that in Lemma 3.2 it was shown that two
candidates involved in a Case 3 intersection necessarily intersect a segment in S.
Furthermore, the segment in S is one of four segments, namely the segments
connected by the intersecting candidates. Therefore, the decomposition of C into
the classes C~, C2, and C3 can be used to determine candidate-segment intersec-
tions. With an input of candidates in C , i = 1, 2, 3, and S, any intersection found
is either a candidate-segment intersection which can be easily handled, or a
candidate-candidate intersection of Case 3. We are assured one of these candi-
dates also intersects a segment of S, and in constant time we can determine this
candidate. Any candidate-candidate intersection we may encounter is also a
candidate-segment intersection and can be easily handled as such. Therefore,
we can conclude that all intersections of candidates and segments can be
determined in O(n log n) time.

An alternate method to compute candidate-segment intersections has been
proposed by Suri [14]. Suri has observed that candidates for augmenting segments
are a subset of any triangulation of the line segments. If CH(P) is known, the
candidates can be obtained in O(n log log n) time by applying the triangulation
algorithm of Tarjan and Van Wyk [15]. As is shown in the next section [l(n log n)
is required for obtaining a simple circuit from a set of CH-connected line segments.
Therefore, the contribution of Suri cannot affect the overall complexity of the
algorithm unless the segments are already given in their convex hull order.

In the next section the results of this paper are summarized.

6. Computational Complexity

The main result of this paper is: given a set of CH-connected segments S an
O(n log n) algorithm is presented that returns a simple circuit from the segments,
if such a simple circuit is admitted by S.

Algorithm SIMPLE CIRCUIT
Input: A set of segments S with endpoints P.
Output: A set of augmenting segments R, where T = R w S represents

a simple circuit. If there is no simple circuit, then report this.
Compute the corresponding graph G and get the subgraphs of G, Go,
G', and G~;
Compute a maximal matching M in G' ;

302 D. Rappaport, H. lmai, and G, T. Toussaint

if M is not a complete matching then
Compute a maximal matching M in G~;

if M is a complete matching then
Es u M is a Hamiltonian circuit in (3, and R corresponds to the edges
M in G;

otherwise report no simple circuit;

The results of the previous sections lead to the following theorem.

Theorem 6.1. Given a set S of n CH-connected segments in the plane it can be
determined whether S admits a simple circuit, in O(n log n) operations, and the
circuit will be delivered in the same time bound.

A lower bound for delivering a simple circuit from a set of CH-connected
segments is given.

Theorem 6.2. f~(n log n) is necessary to deliver a simple circuit on a CH-connected
set of segments.

Proof. The problem will be reduced to sorting real numbers. Given a set of n
distinct reals, r~, i = 0 , . . . , n - 1, we can determine the minimum and maximum
values, denoted by rt and rr, respectively, in O(n) time. Construct n vertical line
segments Si, i = 0 , . . . , n - 1, where S~ has endpoints (r , 0), (ri, 1), except where
i = l or r the endpoints are (rt, 0), (rt, 2) and (rr. 0), (rr, 2). By inspection we see
that these segments are CH-connected and they admit a simple circuit. A cyclic
permutation of the real numbers in sorted order is obtained by traversing the
segments in the order dictated by the augmenting segments. In [3] it is shown
that f~(n log n) is a lower bound for sorting if comparisons between arbitrary
functions are allowed. Quadratic functions can be used to handle the two-
dimensional problems discussed in this section. Therefore, f~(n log n) is necessary
to deliver a simple circuit on a CH-connected set of segments. []

Thus we have shown that our algorithm is optimal. It should be noted that
although we have given a lower bound for the case that the line segments are
given in arbitrary order, the lower bound does not hold if the segments are given
convex hull order. We may argue that since we know that the segments are
CH-connected, it is also likely that we have the segments in order. As was pointed
out in the previous section an O(n log log n) algorithm is possible if the segments
are indeed given in order. It would be interesting to determine whether we could
do better under those circumstances.

7. Discussion

The paradigm followed in this paper has been to take a geometric problem and
convert it to a combinatorial problem by extracting the essential geometric

Computing Simple Circuits from a Set of Line Segments 303

properties and then dealing with the problem in a more "pristine" combinatorial
setting. This technique may have introduced some unnecessary complexity during
the segment to graph conversion discussion, since in principle we could have
used the same methods directly on the segments. However, in the transformed
domain all of the geometric issues can be ignored resulting in a very compact
algorithm. By using weighted graphs, obtaining the optimum perimeter and
optimum area simple circuits is achieved with very little additional work.

Other problems concerning simple circuits from line segments are explored
in [1] and [10]. Constrained versions of this problem are examined where
polynomial solutions exist. In particular, it is shown that to determine if a set of
line segments admits a monotone or star-shaped simple circuit is polynomial. It
is also shown that optimum (with respect to area and perimeter) monotone or
star-shaped simple circuits from a set of line segments can be obtained in the
same time bounds.

Acknowledgments

We are indebted to the attendants of a seminar in Computational Geometry held
at McGill University in the fall of 1984, where this problem was originally
introduced by the third author. In particular, we thank Minou Mansouri who
first showed an example similar to the one in Fig. 3, and Hossam ElGindy who
inspired the concept of blocking segments. Finally, a discussion between the first
author and Ryan Hayward led to Algorithm MATCH.

References

1. D. Avis and D. Rappaport, Computing monotone simple circuits in the plane, in Computational
Morphology (G. Toussaint, ed.), 13-23, North-Holland, Amsterdam (1988).

2. J. L. Bentley and T. A. Ottmann, Algorithms for reporting and counting geometric intersections,
IEEE Trans. Comput. 28, 9 (1979), 643-647.

3. N. Friedman, Some results on the effect of arithmetics on comparison problems, Proc. 13th IEEE
Syrup. Switching Automata Theory (1972), 139-142.

4. M. R. Garey, D. S. Johnson, and R. E. Tarjan, The planar Hamittonian circuit problem is
NP-complete, SIAM Z Comput. 5 (1976), 704-714.

5. R. L. Graham, An efficient algorithm for determining the convex hull of a finite planar set, Inform.
Process. Lett. 1 (1972), 132-133.

6. J. E. Hopcroft and R. M. Karp, An n s/2 algorithm for maximum matchings in bipartite graphs,
S lAM J. Comput. 2 (1973), 225-231.

7. R. M. Karp, On the complexity of combinatorial problems, Networks 5 (1975), 45-68.
8. D. Kirkpatrick and R. Seidel, The ultimate convex hull algorithm, S lAM Z Comput. 15 (1986),

287-299.
9. M. McQueen and G. T, Toussaint, On the ultimate convex hull algorithm in practice, Pattern

Recognition Left. 3 (1985), 29-34.
10. D. Rappaport, The Complexity of Computing Simple Circuits in the Plane, Ph.D. thesis, McGill

University (1986).
!1. D. Rappaport, Computing simple circuits from a set of line segments is NP-complete, Proc. 3rd

ACM Syrup. Comput. Geom. (1987), 322-330.

304 D. Rappaport, H. Imai, and G. T. Toussaint

12. M. I. Shamos, Geometric complexity, Proc. 7th ACM Annu. Syrup. Theory Comput. (1975), 224-233.
13. M. L Shamos and D. Hoey, Geometric intersection problems, Proc. 17th IEEE Annu. Syrup.

Found. Comput. Sci. (1976), 208-215.
14. S. Suri, Personal communication (1986).
15. R. E. Tarjan and C. Van Wyk, An O(n log log n) algorithm for triangulating a simple polygon,

SIAM J. Comput. 17 (1988), 143-178.
16. G. T. Toussaint, A historical note on convex bull finding algorithms, Pattern Recognition Lett. 3

(1985), 21-28.

Received April 20, 1987, and in revised form August 1, 1988.

