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Abstract. We address the problem of connecting line segments to form the boundary 
of a simple polygon--a simple circuit. However, not every set of segments can be 
so connected. We present an O(n log n)-time algorithm to determine whether a set 
of segments, constrained so that each segment has at least one endpoint on the 
boundary of the convex hull of the segments, admits a simple circuit. Furthermore, 
this technique can also be used to compute a simple circuit of minimum perimeter, 
or a simple circuit that bounds the minimum area, with no increase in computational 
complexity. 

1. Introduction 

It is always possible to construct a simple polygon passing through every point 
of  a planar point set, and this task can be accomplished in O(n log n) time [12]. 
However, for a set of  line segments, it is not always possible to obtain a simple 
circuit passing through every line segment. An example is shown in Fig. 1. If  we 
can find a simple circuit that passes through every segment of  a set of  line 
segments, then we say that the set admits a simple circuit. In general it has been 
shown that to determine whether a set of  line segments admits a simple circuit 
is NP-complete [10] and [11]. 

In [10] and [11] it is shown that deciding whether a set o f  segments admits a 
simple circuit is polynomially reducible to deciding whether a planar graph has 
a Hamiltonian circuit. A Hamiltonian circuit is a simple closed path through all 
the nodes of  a graph. To determine whether a planar graph has a Hamiltonian 
circuit is an NP-complete problem [4]. Given a planar graph, a configuration of  



290 D. Rappaport, H. lmai, and G. T. Toussaint 

Fig. I 

/ 

line segments is constructed in polynomial time so that a Hamiltonian circuit 
can be found in the graph if and only if the configuration of segments admits a 
simple circuit. This construction requires that some line segments intersect at 
their endpoints. Therefore, for an input of line segments with disjoint closed 
intervals the NP-completeness result does not necessarily hold. To remain con- 
sistent with the results in [ 10] and [ 11 ] we allow the possibility of  some segments 
intersecting at their endpoints. We denote a sequence of segments with disjoint 
interiors but intersecting at their endpoints as a chain of segments. 

We consider a constrained version of the simple circuit problem. An 
O(n log n)-time algorithm is presented to determine whether a set of line seg- 
ments, where each line segment has at least one endpoint on the boundary of 
the convex hull of the segments, admits a simple circuit. Furthermore, this 
technique can also be used to compute a simple circuit of  minimum perimeter, 
or a simple circuit that bounds the minimum area, with no increase in computa- 
tional complexity. 

A set of  line segments S is represented as S = (So, s ~ , . . . ,  s,_~) (to be referred 
to from now on as segments). The endpoints of  S are represented by the set of 
2n points, P = (Po, P ~ , . . . ,  P2~-t). A polygon is defined as a sequence of distinct 
points in the plane, called vertices, where each consecutive pair xi, x~+t (modulo 
n) is connected by a straight line segment, or edge. A polygon is simple if no 
point in the plane belongs to more than two edges and the only points of  the 
plane that do belong to more than one edge are endpoints of the edges, that is, 
the vertices. In the literature it is common for the term simple polygon to denote 
a boundary and the area it encloses, the interior. In order to deaf ly  distinguish 
between the two, we use simple circuit to denote only the boundary of  a simple 
polygon. We say that S admits a simple circuit if it is possible to construct a 
simple circuit R w S, where R is a set of nonintersecting segments whose endpoints 
augmenting segments of  S. In Fig. 2 a set of segments is shown as solid lines with 
a set of  augmenting segments as dashed lines. The convex hull of  a set of points, 
P, is the smallest convex region enclosing P. Let CH (P )  denote the vertices (in 
clockwise order) of the convex hull of  P. We define a set of  segments as 
CH-connected, if for every segment s ~ S, at least one of the endpoints of  s is in 
CH(P) .  
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In Section 2 some preliminary observations regarding S are made. In Section 
3 some geometric properties of  S are established. We show that every simple 
circuit from a CH-connected set of  segments passes through the segments in the 
same order that the segments appear  on CH(P) .  We also show that we can obtain 
a set of  candidates that includes the set of  all potential augmenting segments. A 
graph is then constructed to reflect these properties. In Section 4 a linear-time 
algorithm is introduced which finds, if there is one, a Hamiltonian circuit in the 
graph we have created. The structure of  the graph allows us to find a Hamiltonian 
circuit by solving an easy matching problem. Section 5 relates some computational 
details regarding finding intersections of  augmenting segments and the original 
segments S. The paper  is summarized in Section 6 where a proof  of  optimality 
is given. 

2. Preliminaries 

Consider a set, S, of  n line segments. There are some preliminary tests that can 
be made to determine whether S does not admit a simple circuit. It is obvious 
that if  any pair of  segments intersect in both their interiors, then clearly S cannot 
admit a simple circuit. Three further conditions that preclude the admission of  
a simple circuit are: if  an endpoint  of  one segment meets the interior o f  another, 
if three or more segments meet at the same endpoint, or a subset of  the segments 
intersect at their endpoints to form a simple circuit. We can test for the four 
forbidden conditions above in O(n log n) time, by using the line-sweep technique 
for determining line-segment intersections [13]. I f  any two segments intersect in 
their interiors we immediately reject the set. Similarly, if we encounter an endpoint 
at the intersection of  three segments, or in the interior of  another segment, we 
also reject the set. I f  the line-sweep procedure terminates without rejecting the 
segments, then we traverse the segments that intersect at their endpoints to 
determine whether a circuit is present. I f  any circuits are found we can again 
reject the set of  line segments. 
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There is yet another simple preliminary test that can be undertaken to determine 
if a set of segments does not admit a simple circuit, as suggested by the following 
lemma. 

Lemma 2.1. Let S be a set of  segments that admits a simple circuit represented by 
a sequence of vertices T={to ,  t, . . . .  , t2~_,}. Let B={bo,  b~, . . . ,  bin} be the 
sequence of  vertices representing CH(T) .  B is a subsequence of every simple 
circuit T. 

Proof. Assume that B is not a subsequence of T, so at least one pair of points 
in the sequence B are interchanged. Without loss of generality we can assume 
that b2 and b~ are interchanged, and {bo, b2, b~, b3} is a subsequence of T (see 
Fig. 3). Since {bo, b~, b2, b3} is a subsequence of  B, bo, bl, b2, b3 are the vertices 
of  a convex quadrilateral Q. Let C(x, y) denote the polygonal chain formed by 
a contiguous subsequence of T beginning at x and ending at y. The polygonal 
chains C(bo, b2) and C(bl,  b3) must intersect the interior of Q, since every simple 
circuit is contained in CH(P) .  Because bo, b2 and b~, b3 are diagonals of  a convex 
quadrilateral, the polygonal chains C(bo, b2) and C(bl,  b3) must intersect each 
other. Therefore, {bo, b2, bj, b3} cannot be a subsequence of  a simple circuit, and 
therefore T cannot be a simple circuit, which is a contradiction. [] 

It should be noted that the above lemma is not restrictive to CH-connected 
sets of  segments, but applies to all sets of  segments. We say that S contains a 
cutting chain, if  there exists a chain of segments in S, that intersects the interior 
of  the convex hull of  S, and also intersects two nonadjacent vertices on the 
boundary of  the convex hull of  S. As a direct consequence of Lemma 2.1 a set 
of  segments that contains a cutting chain does not admit a simple circuit. An 
algorithm to determine whether a set of  segments contains a cutting chain is 
readily available. Given S and P, we first compute CH(P) .  A linear scan can 
then test all chains of  segments (as computed above) to see if any are cutting 
chains. The convex hull o f  a set of  n points can be computed in O(n log n) time 
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[5] or O(n log h) time [8] and [9] where h is the cardinality of  the convex hull 
points. See [16] for a historical account of the planar convex hull problem. 

We have given some preliminary methods to reject sets of  segments that do 
not admit a simple circuit. However, a set of  segments may pass the above tests 
and still not admit a simple circuit. A set of  five CH-connected segments that 
illustrate this phenomenon is shown in Fig. 4. We assume in the ensuing discussion 
that S is a set of  four or more CH-connected segments such that: 

(1) the interiors of  the segments are disjoint, 
(2) no endpoint of  one segment lies in the interior of  another, 
(3) no more than two segments meet at an endpoint, 
(4) no circuits are formed by subsets of  the segments, and 
(5) there are no cutting chains. 

3. Geometric  Results 

We examine the geometric properties of  $, to arrive at an appropriate graph 
representation G. We then solve a combinatorial problem using G to determine 
whether our original segments S admit a simple circuit. The vertices of  G 
correspond to the endpoints of S. For every endpoint Pi of  a segment there is a 
corresponding vertex vi in G. The edges in G are a combination of edges 
corresponding to the segments S, and edges corresponding to a set of candidates 
for augmenting segments. Denote these edges as Es and Ec, respectively. In this 
section we show how an appropriate set of candidates leading to the edges 
E,., can be obtained from S. Denote by an E~-required Hamiltonian circuit a 
Hamiltonian circuit o f  G that passes through every edge in Es. The edges E, are 
chosen so that we will be able to prove that S admits a simple circuit if and only 
if G has an Es-required Hamiltonian circuit. 

Initially we can consider as candidates all segments P x P such that (p~, pj) ~ S 
and p~ # pj. However, this is far too many to consider. Denote segments of  $ 
whose endpoints are adjacent on C H ( P )  as neighbors. It is convenient to label 
the segments of  S so that s~ is a neighbor of  s~+l for all i = 0 . . . .  , n - 1 (addition 
modulo n). As a consequence of  Lemma 2.1 we see that augmenting segments 
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must connect the endpoints of  neighbors. Therefore, we only have to consider 
edges connecting neighboring segments as candidates. This pool of  O(n) candi- 
dates is further reduced. Consider the case where two segments intersect at their 
endpoints. Clearly, the only admissible candidate between two segments that 
meet at an endpoint is the degenerate candidate formed by the coincident 
endpoints. Including any other candidates connecting such segments is redundant, 
so we call these candidates redundant candidates. All redundant candidates can 
be eliminated. We can also eliminate any candidate that intersects the interior 
o f  any segment in S. Denote these as segment-intersecting candidates. By a naive 
algorithm it would require at most O(n 2) time to determine which of the current 
O(n) candidates intersect any of the n segments of  S. However, using a variant 
of  Shamos and Hoey's  line-sweep technique [13] and a careful decomposition 
of  the segments this can be done in O(n log n) time. To avoid a lengthy digression 
from the current discussion a detailed description of this algorithm is postponed 
until Section 5. We must also ensure that if an Es-required Hamiltonian circuit 
is found in G, then no pair  of  edges from E,. correspond to a pair of  candidates 
that intersect. It is useful to distinguish between three types of  these intersections. 

Let a and b be two candidates that are not redundant or segment-intersecting. 

Case 1. All four endpoints of candidates a and b are endpoints of  only two of 
the segments of S (see Fig. 5). In this case we can allow the images of  both a 
and b to appear  in the final graph (3. Any Es-required Hamiltonian circuit of  G 
cannot contain both a and b. We would visit both endpoints of  the segments 
connected by a and b, before visiting the rest of  the segments of  S, therefore, a 
and b cannot appear  together in a Hamiltonian circuit. 

Case 2. The four endpoints of  a and b lie on three different segments of  S (see 
Fig. 6). Therefore, one of  the segments of  S has a candidate at both of  its 
endpoints. It will be shown that we can eliminate at least one of these candidates. 
Consider a candidate c connecting segments si and si-2. Let o'i and cri_l be the 
respective endpoints of  s~ and s H  that are not endpoints of  c. I f  every candidate 
adjacent to o-i that connects si to si+~ intersects c, or if  every candidate adjacent 
to o'~_l that connects sj_~ to s~_2 intersects c, then call c a blocking candidate. In 
Fig. 6, a is a blocking candidate. Obviously a blocking candidate cannot be an 
augmenting segment. Every blocking candidate can be identified in constant time. 

oSsS ~ ~ 

Fig. 5 
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Therefore, all blocking candidates can be eliminated from the pool of  candidates 
in O(n)  time. 

Lemma 3.1. I f  two candidates a and b intersect and both o f  them are incident to 
the same segment, then either a or b (or both) is a blocking candidate. 

Proof. Let si denote the segment incident to both a and b, with Pa being the 
endpoint of  st on a, and Pb being the endpoint of  si on b (see Fig. 6). At least 
one endpoint of s~ is on C H(P ) ,  so one endpoint of a or b (or both) must also 
be on CH(P) .  Without loss of  generality assume Pa is on CH(P) ,  and the other 
endpoint  of  a is on s~_~. Because a and b intersect they cannot be edges of  
CH(P) .  Observe that the candidates connecting Pb with each of the endpoints 
of  s~+~ must intersect a. Therefore, a is a blocking candidate. [] 

Case 3. The four endpoints of  a and b lie on four different segments of  S. 

Lemma 3.2. I f  two candidates a and b intersect, and the four endpoints of  a and 
b lie on four different segments of  S, then a or b must intersect one o f  those four 
segments. 

Proof Let a be a candidate with endpoints on s~ and si+t, and let b be a 
candidate with endpoints on sj and sj+t (see Fig. 7). Let h~ denote the convex 
hull edge from si to s~+t, and let hj denote the convex hull edge from segment s~ 
to sj+~. Therefore, the quadrilaterals Qi = ( s ,  a, si+l, hi) and Q~ = (sj, b, sj+l, hi) 
intersect. (Observe that if one of the endpoints a or b is on h~ or h~, then we 
must consider triangles rather than quadri lateralsNhowever this does not affect 
the argument.) Two intersecting circuits intersect in at least two points. The 
intersection of  a and b accounts for one of  the intersections. Since no edge can 
intersect a convex hull edge and none of  the segments of  S intersect, we must 
conclude that one of  the candidates intersects a segment of  S. [] 

The construction of  a graph with the property that the original segments admit 
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Fig. 7 

a simple circuit if  and only if the graph admits an E~-required Hamiltonian circuit 
can now be obtained. Let C represent the set of  candidates with endpoints on 
neighbors that are not segment-intersecting, are not redundant and not blocking. 
The edges in G we call Ec correspond to the set of candidates C. The edges of 
G are E = E c u E ~ .  

Lemma 3.3. The segments S admit a simple circuit i f  and only i f  G = ( V, E)  has 
an Es-required Hamiltonian circuit. 

Proof. Assume S admits a simple circuit. It is required to show that the augment- 
ing segments have their counterparts in G. From the preceding lemmas we know 
that all augmenting segments connect neighbors, and are not redundant nor 
blocking segments. Every edge with these properties has been included in G, 
therefore G must have an E~-required Hamiltonian circuit if S admits a simple 
circuit. 

On the other hand, assume G has an E,-required Hamiltonian circuit. Clearly, 
every E~-required Hamiltonian circuit in G is a circuit in $. It remains to show 
that the circuit is simple. Assume the circuit obtained results in a nonsimple 
circuit. No segments of  S and C can cross. If two segments from C cross then 
they cross in a Case 1, Case 2, or Case 3 intersection as defined above. However, 
as was shown above, a Case 1 intersection cannot occur, a Case 2 intersection 
is prevented by eliminating blocking candidates, and a Case 3 intersection is 
prevented by eliminating any candidate intersecting a segment. Therefore the 
circuit must be simple. [] 

In general, it is an NP-complete problem to determine whether there is a 
Hamiltonian circuit in a graph [7]. In the next section a linear-time algorithm is 
presented to determine whether an E,-required Hamiltonian circuit is present in 
G. Furthermore, the same algorithm is used to determine minimum weight 
E~-required Hamiltonian circuits. These polynomial-time algorithms rely on the 
special structure of  the graph G. 
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4. Matchings that Lead to Simple  Circuits 

Let G = (V, E)  be a graph as obtained in the previous section, where V= 
( V 0 ,  V 1 . . . .  , v2,-~). We denote E, ={(v2~, v2 ,+31i=0  . . . .  , n - l }  as edges of G 
corresponding to S and Ec as the edges of  G corresponding to C. The edges of 
Ec are a subset of edges connecting endpoints of s~ to s~+l. See Fig. 8. 

Denote Gc as the graph G = (V, E~). The graphs G and Gc have cyclic 
structures. It is more convenient to designate a vertex a start vertex and a vertex 
an end vertex and "break" the cyclic structure. Remove from Ec (if they exist) 
the edges (vo, v2), (vo, v3), (v~, v2,-t), and (vt,  v2,-2). Call the resulting graph 

f - -  r Gc - ( 1,, E ' ) .  We also need a subgraph of  G~, G~. This graph contains the edges 
Ec with (v~, v2), (v~, v3), (vo, v2,-~), and (Vo, t~,_2) removed (if they exist). We 
use the graphs G" and G~ to find an E~-required Hamiltonian circuit in G. 

A matching in a graph is a set of  edges no two of which share a vertex. A 
maximal matching is a matching on the maximum number of  vertices in the 
graph. A matching is said to be complete if a maximal matching in the graph 
contains all vertices of  the graph. The following theorem immediately leads to 
an algorithm for finding an E~-required Hamiltonian circuit in G. 

Theorem 4.1. Given the graph G and G" as described above, if  a maximal matching 
in the graph G'~ is a complete matching, then there is an E,-required Hamiltonian 
circuit in G. 

Proof. Every complete matching in G" must match vl with either v2 or v3. 
Choosing either of these edges in the matching and deleting edges on matched 
vertices we are left with a graph having the same structure as our original graph. 
This gives the complete matching M the property that every edge m contained 

vg~ ~ v$ 

v:r v 5 
Fig. 8. A ten vertex example of the graph G. Dashed edges represent E~. Ec is a subset of the 
solid edges. 
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in M connects two edges in E~, and there are no disjoint cycles. The edges E~ u M 
comprise a Hamiltonian circuit in G. [] 

If  both G" and G~ do not contain a complete matching then we can conclude 
that Gc does not have an Es-required Hamiltonian circuit. Otherwise, we can use 
a complete matching from G'~ or G',' to construct an E~-required Hamiltonian 
circuit as suggested by Theorem 4.1. There are several algorithms found in the 
literature that can be used to compute the maximum matchings in G~ and G~. 
In particular, since these graphs are bipartite graphs (a bipartite graph is defined 
as a graph whose vertices can be divided into two disjoint subsets, such that 
every edge in the graph has an endpoint in each subset) we can use an efficient 
method based on a network flow algorithm to find maximal matchings in 
o(I vII'21EI) time [6]. In the problem considered here the edges and the vertices 
are both of  cardinality O(n) so the running time is 0(n3/2). However, the structure 
of  the graphs G'c and G~ permit a more efficient method to determine whether 
there is a complete matching. This algorithm will now be discussed. 

Construct a weighted graph G .  = ( V, E , ) ,  where V is defined as above and 
E .  consists of all edges connecting endpoints of s~ to S~+l. We assign weights 
w(e )=  1 to an edge e ~ E , ,  if e is also contained in E'c, and w(e) =2  if e~E'~. 
The minimum weight complete matching in G .  is computed in stages. Let 
to[i] denote the cost of the minimum weight matching using the vertex v; in 
G , - { v i + I ,  1)i+ 2 . . . .  , l)2n_l, I)0}. The following lemma leads to a simple dynamic 
programming algorithm. 

Lemma 4.2. The minimum weight matching in G, is 

min(to[2n - 1] +w(½n-2, Vo), to[2n - 2 ]  + w(v2,_l, Vo)). 

Proof. Since Vo is only adjacent to v2,-~ and ~, -2 ,  every candidate matching 
must contain either the edge (v2~-~, Vo) or the edge (½,-2, Vo). The result 
follows. [] 

The following algorithm is an iterative implementation of  the dynamic 
programming algorithm suggested by Lemma 4.2. 

Algorithm MATCH 
to[2],--w(vl, v2); 
to[3],-- w(vl, v3); 
for i~- 2 to n - 1 

do begin 
to[2i] ~- min(to[2i - 1] + w(v2;-2, v2,), to[2i - 2] + w(v2,_l, t~,)); 
to[2i + 1] ~ min( to [2 i -  1] +w(v2,-2, v2,), t o [2 i -  2] + w(v2i_~, v2i)) 
end; 

to[0] ~ min(to[2n - 1] + w(v2,_2, v0), to[2n - 2] + w(½n_l, Vo)); 

The cost of  the minimum weight matching is kept in to[0]. Correctness follows 
from Lemma 4.2, and the linear running time is obvious. If the cost is n then a 
complete matching exists in G~.. Otherwise there is no complete matching. The 
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algorithm OBTAIN-M can be used to obtain, in O(n) time, the edges of the 
complete matching M = (m~, m 2 , . . . ,  m,). The following algorithm follows the 
approach used in the proof of Lemma 4.1. 

Algorithm OBTAIN-M 
k~-0; 
for i ~-n downto 1 
if t o [2 i -2 ]  = w[k] - w(v:~_~, Vk) 

then 
mi *-(v2i-l, Vk); k ~ 2 i - 2  

else 
m~ <- (v2/-2, vk); k <-- 2i - 1; 

Assume a complete matching in G ,  has been found..As a direct consequence 
of  the previous result we can determine a minimum perimeter simple circuit from 
S. A weighted graph G = ( V, E~) is constructed, where E~ is the same as E ,  except 
for the weight assignments. Assign the Euclidean length of  a candidate as the 
weight given to the corresponding edge in E~ ~ E'c. For any edge in Et ~ E~. assign 
a weight of ~ .  A minimum perimeter simple circuit corresponds to a minimum 
weight complete matching in Gj. 

The simple circuit which encloses the minimum area can also be found by 
using a weighted graph. The weights assigned to edges in G hinge on the 
observation that the area of a simple circuit P is the area of CH(P)  less the sum 
of  the areas of the polygonal regions that constitute the difference between CH(P)  
and P. Denote the polygonal regions that constitute the difference between CH(P)  
and P as convex deficiency circuits of P. The convex deficiency circuits of every 
simple polygon from S consist of two segments st, s~+~ and the augmenting 
segment connecting s~ and s~÷~. (If  the augmenting segment happens to connect 
two convex hull vertices we can conveniently define this as a zero area convex 
deficiency circuit.) Therefore, every candidate describes a unique convex 
deficiency circuit. Assign weights to G to obtain the weighted graph G, where 
edges in G~ corresponding to candidates are given weights equal to the negation 
of  area of the deficiency circuit described by that candidate. For edges not in E'c 
assign a weight of 1. A complete matching in G~ with minimum weight is a 
simple circuit that encloses the smallest area. 

5. Finding Intersections of Candidates and Segments 

As described in Section 3, a necessary step to obtain the final set of  candidates 
is to determine candidate-segment intersections. It was stated in Section 3 
that this could be computed in O(n log n) time. In this section the details 
of  this algorithm are described. One possibility to consider is to compute all 
segment intersections. Given a set of  n line segments in the plane the algorithm 
of  Bentley and Ottmann [2] can be used to report all pairwise intersections, in 
O(n log n + k log n) time, where k represents the number of  pairwise intersections 
found. Unfortunately, the number of  pairwise intersections may be large. In fact, 
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Fig. 9 

k may be as large as O(n2). AII example illustrating this phenomenon is shown 
in Fig. 9. This example can be generalized, showing that as many as O(n  2) 
intersections may occur. 

It is not necessary to compute all pairwise segment intersections for the problem 
considered here. We only need to find candidates that are intersected by segments. 
Since there are a linear number of  candidates the output is at most linear. We 
need not compute all O(n  2) pairwise intersections. 

Consider two sets of  line segments A and B, where the interiors of  the segments 
in A are pairwise disjoint, and so are the interiors of the segments in B. It will 
be useful to be able to report in O ( n  log n) time all segments of  A that are 
intersected by any segment of B. An algorithm used to accomplish this is based 
on the line-sweep technique of Shamos and Hoey [13]. The algorithm scans a 
vertical line from left to right while maintaining a balanced tree that represents 
the order in the y direction of  the segments intersected by the scanning line. 
Denote this as the y-order of  the segments. The balanced tree allows insert and 
delete operations on the y-order in O(log n) time. Intersecting line segments will 
be adjacent in this ordering. The y-order changes when: the left endpoint of a 
segment is encountered and the segment is inserted into the y-order; the right 
endpoint is encountered and the segment is deleted from the y-order; or two 
segments cross thus interchanging their relative position in the y-order. In our 
problem, any time an intersection is found, one of  the intersected edges can be 
dispensed with. Therefore, the case of segments changing their relative position 
in the y-order  does not occur. This observation leads to an algorithm that is a 
straightforward extension of  the result of  Shamos and Hoey [13]. We now show 
how this algorithm can be applied to the candidate-segment intersection problem. 

Let the endpoints of  each segment si be denoted by si h and s~ where s~ h denotes 
an endpoint of S on CH(P) .  The candidates considered for intersection can now 
be expressed as C = Co u C, u C2 u Cs, where Co = {(sih, si+l~)[i = 0 , . . . ,  n - 1}, 
C m = { ( s ~ k , s ~ + ~ ) l i = o , . . . , n - 1 } ,  C 2 = { ( s i ~ , s ~ + l ~ ) [ i = O , . . . , n - 1 } ,  and C3= 
{(Sih, S i+lk) l i=O . . . .  , n-- l} .  Candidates from Co do not have to be tested for 
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intersection, since they are on the convex hull. Handling candidates from the 
other classes requires an examination of  the different types of candidate intersec- 
tions. The terminology of  Section 3 is used to distinguish candidate intersections. 
It is easy to see that candidates from within the same class Ci, i = 1, 2, 3, cannot 
intersect in a Case 1 intersection. Blocking candidates, those candidates which 
intersect in a Case 2 intersection, can be predetermined and eliminated using the 
method suggested in Section 3. Thus after all blocking candidates have been 
removed, the only way two candidates from within the same class C~ can intersect 
is in a Case 3 intersection. Recall that in Lemma 3.2 it was shown that two 
candidates involved in a Case 3 intersection necessarily intersect a segment in S. 
Furthermore, the segment in S is one of  four segments, namely the segments 
connected by the intersecting candidates. Therefore, the decomposition of  C into 
the classes C~, C2, and C3 can be used to determine candidate-segment intersec- 
tions. With an input of  candidates in C ,  i = 1, 2, 3, and S, any intersection found 
is either a candidate-segment intersection which can be easily handled, or a 
candidate-candidate intersection of Case 3. We are assured one of  these candi- 
dates also intersects a segment of S, and in constant time we can determine this 
candidate. Any candidate-candidate intersection we may encounter is also a 
candidate-segment intersection and can be easily handled as such. Therefore, 
we can conclude that all intersections of candidates and segments can be 
determined in O(n log n) time. 

An alternate method to compute candidate-segment intersections has been 
proposed by Suri [ 14]. Suri has observed that candidates for augmenting segments 
are a subset of any triangulation of the line segments. If  CH(P)  is known, the 
candidates can be obtained in O(n log log n) time by applying the triangulation 
algorithm of Tarjan and Van Wyk [15]. As is shown in the next section [ l(n log n) 
is required for obtaining a simple circuit from a set of CH-connected line segments. 
Therefore, the contribution of  Suri cannot affect the overall complexity of  the 
algorithm unless the segments are already given in their convex hull order. 

In the next section the results of this paper are summarized. 

6. Computational Complexity 

The main result of  this paper is: given a set of  CH-connected segments S an 
O(n log n) algorithm is presented that returns a simple circuit from the segments, 
if such a simple circuit is admitted by S. 

Algorithm SIMPLE CIRCUIT 
Input: A set of  segments S with endpoints P. 
Output: A set of  augmenting segments R, where T = R w S represents 

a simple circuit. If  there is no simple circuit, then report this. 
Compute the corresponding graph G and get the subgraphs of  G, Go, 
G', and G~; 
Compute a maximal matching M in G' ;  



302 D. Rappaport, H. lmai, and G, T. Toussaint 

if M is not a complete matching then 
Compute a maximal matching M in G~; 

if M is a complete matching then 
Es u M is a Hamiltonian circuit in (3, and R corresponds to the edges 
M in G; 

otherwise report no simple circuit; 

The results of the previous sections lead to the following theorem. 

Theorem 6.1. Given a set S of  n CH-connected segments in the plane it can be 
determined whether S admits a simple circuit, in O(n log n) operations, and the 
circuit will be delivered in the same time bound. 

A lower bound for delivering a simple circuit from a set of CH-connected 
segments is given. 

Theorem 6.2. f~(n log n) is necessary to deliver a simple circuit on a CH-connected 
set of  segments. 

Proof. The problem will be reduced to sorting real numbers. Given a set of n 
distinct reals, r~, i = 0 , . . . ,  n -  1, we can determine the minimum and maximum 
values, denoted by rt and rr, respectively, in O(n) time. Construct n vertical line 
segments Si, i = 0 , . . . ,  n -  1, where S~ has endpoints ( r ,  0), (ri, 1), except where 
i = l or r the endpoints are (rt, 0), (rt, 2) and (rr. 0), (rr, 2). By inspection we see 
that these segments are CH-connected and they admit a simple circuit. A cyclic 
permutation of the real numbers in sorted order is obtained by traversing the 
segments in the order dictated by the augmenting segments. In [3] it is shown 
that f~(n log n) is a lower bound for sorting if comparisons between arbitrary 
functions are allowed. Quadratic functions can be used to handle the two- 
dimensional problems discussed in this section. Therefore, f~(n log n) is necessary 
to deliver a simple circuit on a CH-connected set of  segments. [] 

Thus we have shown that our algorithm is optimal. It should be noted that 
although we have given a lower bound for the case that the line segments are 
given in arbitrary order, the lower bound does not hold if the segments are given 
convex hull order. We may argue that since we know that the segments are 
CH-connected, it is also likely that we have the segments in order. As was pointed 
out in the previous section an O(n log log n) algorithm is possible if the segments 
are indeed given in order. It would be interesting to determine whether we could 
do better under those circumstances. 

7. Discussion 

The paradigm followed in this paper has been to take a geometric problem and 
convert it to a combinatorial problem by extracting the essential geometric 
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properties and then dealing with the problem in a more "pristine" combinatorial 
setting. This technique may have introduced some unnecessary complexity during 
the segment to graph conversion discussion, since in principle we could have 
used the same methods directly on the segments. However, in the transformed 
domain all of  the geometric issues can be ignored resulting in a very compact 
algorithm. By using weighted graphs, obtaining the optimum perimeter and 
optimum area simple circuits is achieved with very little additional work. 

Other problems concerning simple circuits from line segments are explored 
in [1] and [10]. Constrained versions of  this problem are examined where 
polynomial solutions exist. In particular, it is shown that to determine if a set of 
line segments admits a monotone or star-shaped simple circuit is polynomial. It 
is also shown that optimum (with respect to area and perimeter) monotone or 
star-shaped simple circuits from a set of line segments can be obtained in the 
same time bounds. 
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