
Computing Simulations over Tree Automata
(Efficient Techniques for Reducing Tree Automata)

Parosh A. Abdulla1, Ahmed Bouajjani2, Lukáš Holı́k3, Lisa Kaati1, and Tomáš Vojnar3

1 University of Uppsala, Sweden
{parosh,lisa.kaati}@it.uu.se
2 LIAFA, University Paris 7, France

abou@liafa.jussieu.fr
3 FIT, Brno University of Technology, Czech Republic

{holik,vojnar}@fit.vutbr.cz

Abstract. We address the problem of computing simulation relations over tree
automata. In particular, we consider downward and upward simulations on tree
automata, which are, loosely speaking, analogous to forward and backward
relations over word automata. We provide simple and efficient algorithms for
computing these relations based on a reduction to the problem of computing sim-
ulations on labelled transition systems. Furthermore, we show that downward and
upward relations can be combined to get relations compatible with the tree lan-
guage equivalence, which can subsequently be used for an efficient size reduction
of nondeterministic tree automata. This is of a very high interest, for instance, for
symbolic verification methods such as regular model checking, which use tree
automata to represent infinite sets of reachable configurations. We provide ex-
perimental results showing the efficiency of our algorithms on examples of tree
automata taken from regular model checking computations.

1 Introduction

Tree automata are widely used for modelling and reasoning about various kinds of struc-
tured objects such as syntactical trees, structured documents, configurations of complex
systems, algebraic term representations of data or computations, etc. (see [9]). For in-
stance, in the framework of regular model checking, tree automata are used to represent
and manipulate sets of configurations of infinite-state systems such as parameterized
networks of processes with a tree-like topology, or programs with dynamic linked data-
structures [7,3,5,6].

In the above context, checking language equivalence and reducing automata wrt.
the language equivalence is a fundamental issue, and performing these operations effi-
ciently is crucial for all practical applications of tree automata. Computing a minimal
canonical tree automaton is, of course, possible, but it requires determinisation, which
may lead to an exponential blow-up in the size of the automaton. Therefore, even if
the resulting automaton can be small, we may not be able to compute it in practice due
to the very expensive determinisation step, which is, indeed, a major bottleneck when
using canonical tree automata.

A reasonable and pragmatic approach is to consider a notion of equivalence that is
stronger than language equivalence, but which can be checked efficiently, using a poly-
nomial algorithm. Here, a natural trade-off between the strength of the considered

C.R. Ramakrishnan and J. Rehof (Eds.): TACAS 2008, LNCS 4963, pp. 93–108, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

94 P.A. Abdulla et al.

equivalence and the cost of its computation arises. In the case of word automata, an
equivalence which is widely considered as a good trade-off in this sense is simulation
equivalence. It can be checked in polynomial time, and efficient algorithms have been
designed for this purpose (see, e.g., [10,14]). These algorithms make the computation
of simulation equivalence quite affordable even in comparison with the one of bisimu-
lation, which is cheaper [13], but which is also stronger, and therefore leads in general
to less significant reductions in the sizes of the automata.

In this paper, we study notions of entailment and equivalence between tree automata,
which are suitable in the sense discussed above, and we also provide efficient algorithms
for their computation.

We start by considering a basic notion of tree simulation, called downward simula-
tion, corresponding to a natural extension of the usual notion of simulation defined on
or-structures to and-or structures. This relation can be shown to be compatible with the
tree language equivalence.

The second notion of simulation that we consider, called upward simulation, corre-
sponds intuitively to a generalisation of the notion of backward simulation to and-or
structures. The definition of an upward simulation is parametrised by a downward sim-
ulation: Roughly speaking, two states q and q′ are upward similar if whenever one of
them, say q, considered within some vector (q1, . . . ,qn) at position i, has an upward
transition to some state s, then q′ appears at position i of some vector (q′1, . . . ,q

′
n) that

has also an upward transition to a state s′, which is upward similar to s, and moreover,
for each position j �= i, q j is downward similar to q′j.

Upward simulation is not compatible with the tree language equivalence. It is rather
compatible with the so-called context language equivalence, where a context of a state
q is a tree with a hole on the leaf level such that if we plug a tree in the tree language
of q into this hole, we obtain a tree recognised by the automaton. However, we show
an interesting fact that when we restrict ourselves to upward relations compatible with
the set of final states of automata, the downward and upward simulation equivalences
can be combined in such a way that they give rise to a new equivalence relation which
is compatible with the tree language equivalence. This combination is not trivial. It
is based on the idea that two states q1 and q2 may have different tree languages and
different context languages, but for every t in the tree language of one of them, say q1,
and every C in the context language of the other, here q2, the tree C[t] (where t is plugged
into C) is recognised by the automaton. The combined relation is coarser than (or, in
the worst case, as coarse as) the downward simulation and according to our practical
experiments, it usually leads to significantly better reductions of the automata.

In this way, we obtain two candidates for simulation-based equivalences for use in
automata reduction. Then, we consider the issue of designing efficient algorithms for
computing these relations. A deep examination of downward and upward simulation
equivalences shows that they can be computed using essentially the same algorithmic
pattern. Actually, we prove that, surprisingly, computing downward and upward tree
simulations can be reduced in each case to computing simulations on standard labelled
transition systems. These reductions provide a simple and elegant way of solving in
a uniform way the problem of computing tree simulations by reduction to computing
simulations in the word case. The best known algorithm for solving the latter problem,

Computing Simulations over Tree Automata 95

published recently in [14], considers simulation relations defined on Kripke structures.
The use of this algorithm requires its adaptation to labelled transition systems. We pro-
vide such an adaptation and we provide also a proof for this algorithm which can be
seen as an alternative, more direct, proof of the algorithm of [14]. The combination
of our reductions with the labelled transition systems-based simulation algorithm leads
to efficient algorithms for our equivalence relations on tree automata, whose precise
complexities are also analysed in the paper.

We have implemented our algorithms and performed experiments on automata com-
puted in the context of regular tree model checking (corresponding to representations of
the set of reachable configurations of parametrised systems). The experiments show that,
indeed, the relations proposed in this paper provide significant reductions of these au-
tomata and that they perform better than (existing) bisimulation-based reductions [11].

Related work. As far as we know, this is the first work which addresses the issue of
computing simulation relations for tree automata. The downward and upward simula-
tion relations considered in this work have been introduced first in [4] where they have
been used for proving soundness of some acceleration techniques used in the context
of regular tree model checking. However, the problem of computing these relations has
not been addressed in that paper. A form of combining downward and upward rela-
tions has also been defined in [4]. However, the combinations considered in that paper
require some restrictions which are computationally difficult to check and that are not
considered in this work. Bisimulations on tree automata have been considered in [2,11].
The notion of a backward bisimulation used in [11] corresponds to what can be called
a downward bisimulation in our terminology.

Outline. The rest of the paper is organised as follows. In the next section, we give some
preliminaries on tree automata, labelled transition systems, and simulation relations.
Section 3 describes an algorithm for checking simulation on labelled transition systems.
In Section 4 resp. Section 5, we translate downward resp. upward simulation on tree
automata into corresponding simulations on labelled transition systems. Section 6 gives
methods for reducing tree automata based on equivalences derived form downward and
upward simulation. In Section 7, we report some experimental results. Finally, we give
conclusions and directions for future research in Section 8.

Remark. For space reasons, all proofs are deferred to [1].

2 Preliminaries

In this section, we introduce some preliminaries on trees, tree automata, and labelled
transition systems (LTS). In particular, we recall two simulation relations defined on tree
automata in [4], and the classical (word) simulation relation defined on LTS. Finally,
we will describe an encoding which we use in our algorithms to describe pre-order
relations, e.g., simulation relations.

For an equivalence relation ≡ defined on a set Q, we call each equivalence class of
≡ a block, and use Q/≡ to denote the set of blocks in ≡.

96 P.A. Abdulla et al.

Trees. A ranked alphabet Σ is a set of symbols together with a function Rank : Σ→ N.
For f ∈ Σ, the value Rank(f) is said to be the rank of f . For any n≥ 0, we denote by Σn

the set of all symbols of rank n from Σ. Let ε denote the empty sequence. A tree t over
an alphabet Σ is a partial mapping t : N

∗ → Σ that satisfies the following conditions:

– dom(t) is a finite, prefix-closed subset of N
∗, and

– for each p ∈ dom(t), if Rank(t(p)) = n > 0, then {i | pi ∈ dom(t)}= {1, . . . ,n}.

Each sequence p ∈ dom(t) is called a node of t. For a node p, we define the ith child
of p to be the node pi, and we define the ith subtree of p to be the tree t ′ such that
t ′(p′) = t(pip′) for all p′ ∈N

∗. A leaf of t is a node p which does not have any children,
i.e., there is no i ∈ N with pi ∈ dom(t). We denote by T (Σ) the set of all trees over the
alphabet Σ.

Tree Automata. A (finite, non-deterministic, bottom-up) tree automaton (TA) is a 4-
tuple A = (Q,Σ,Δ,F) where Q is a finite set of states, F ⊆ Q is a set of final states, Σ
is a ranked alphabet, and Δ is a set of transition rules. Each transition rule is a triple of
the form ((q1, . . . ,qn), f ,q) where q1, . . . ,qn,q ∈ Q, f ∈ Σ, and Rank(f) = n. We use

(q1, . . . ,qn)
f−→ q to denote that ((q1, . . . ,qn), f ,q) ∈ Δ. In the special case where n = 0,

we speak about the so-called leaf rules, which we sometimes abbreviate as
f−→ q. We

use Lhs(A) to denote the set of left-hand sides of rules, i.e., the set of tuples of the form

(q1, . . . ,qn) where (q1, . . . ,qn)
f−→ q for some f and q. Finally, we denote by Rank(A)

the smallest n ∈ N such that n ≥ m for each m ∈ N where (q1, . . . ,qm) ∈ Lhs(A) for
some qi ∈ Q, 1≤ i≤ m.

A run of A over a tree t ∈ T (Σ) is a mapping π : dom(t) → Q such that for each
node p ∈ dom(t) where q = π(p), we have that if qi = π(pi) for 1 ≤ i ≤ n, then Δ has

a rule (q1, . . . ,qn)
t(p)−→ q. We write t

π=⇒ q to denote that π is a run of A over t such
that π(ε) = q. We use t =⇒ q to denote that t

π=⇒ q for some run π. The language of
a state q ∈ Q is defined by L(q) = {t|t =⇒ q}, while the language of A is defined by
L(A) =

⋃
q∈F L(q).

Labelled Transition Systems. A (finite) labelled transition system (LTS) is a tuple
T = (S,L,→) where S is a finite set of states, L is a finite set of labels, and → ⊆
S×L×S is a transition relation.

Given an LTS T = (S,L,→), a label a ∈ L , and two states q,r ∈ S, we denote by
q

a−→ r the fact that (q,a,r) ∈→. We define the set of a-predecessors of a state r as
prea(r) = {q ∈ S | q

a−→ r}. Given X ,Y ⊆ S, we denote prea(X) the set
⋃

s∈X prea(s),
we write q

a−→ X iff q ∈ prea(X), and Y
a−→ X iff Y ∩prea(X) �= /0.

Simulations. For a tree automaton A = (Q,Σ,Δ,F), a downward simulation D is a bi-

nary relation on Q such that if (q,r) ∈D and (q1, . . . ,qn)
f−→ q, then there are r1, . . . ,rn

such that (r1, . . . ,rn)
f−→ r and (qi,ri) ∈ D for each i such that 1 ≤ i ≤ n. It is easy to

show [4] that any downward simulation can be closed under reflexivity and transitivity.
Moreover, there is a unique maximal downward simulation over a given tree automaton,
which we denote as �down in the sequel.

Computing Simulations over Tree Automata 97

Given a TA A = (Q,Σ,Δ,F) and a downward simulation D, an upward simulation U

induced by D is a binary relation on Q such that if (q,r)∈U and (q1, . . . ,qn)
f−→ q′ with

qi = q, 1 ≤ i ≤ n, then there are r1, . . . ,rn,r′ such that (r1, . . . ,rn)
f−→ r′ where ri = r,

(q′,r′) ∈U , and (q j,r j) ∈ D for each j such that 1≤ j �= i ≤ n. In [4], it is shown that
any upward simulation can be closed under reflexivity and transitivity. Moreover, there
is a unique maximal upward simulation with respect to a fixed downward simulation
over a given tree automaton, which we denote as �up in the sequel.

Given an initial pre-order I ⊆ Q×Q, it can be shown that there are unique maxi-
mal downward as well as upward simulations included in I on the given TA, which we
denote �I

x in the sequel, for x ∈ {down,up}. Further, we use ∼=x to denote the equiva-
lence relation �x ∩�−1

x on Q for x ∈ {down,up}. Likewise, we define the equivalence
relations ∼=I

x for an initial pre-order I on Q and x ∈ {down,up}.
For an LTS T = (S,L,→), a (word) simulation is a binary relation R on S such that

if (q,r) ∈ R and q
a−→ q′, then there is an r′ with r

a−→ r′ and (q′,r′) ∈ R. In a very
similar way as for simulations on trees, it can be shown that any given simulation on an
LTS can be closed under reflexivity and transitivity and that there is a unique maximal
simulation on the given LTS, which will we denote by �. Moreover, given an initial
pre-order I ⊆ S×S, it can be shown that there is a unique maximal simulation included
in I on the given LTS, which we denote �I in the sequel. We use ∼= to denote the
equivalence relation � ∩�−1 on S and consequently∼=I to denote �I ∩ (�I)−1.

Encoding. Let S be a set. A partition-relation pair over S is a pair (P,Rel) where
(1) P ⊆ 2S is a partition of S (i.e., S = ∪B∈PB, and for all B,C ∈ P, if B �= C, then
B∩C = /0), and (2) Rel ⊆ P×P. We say that a partition-relation pair (P,Rel) over S
induces (or defines) the relation δ =

⋃
(B,C)∈Rel B×C.

Let � be a pre-order defined on a set S, and let ≡ be the equivalence � ∩ �−1

defined by�. The pre-order� can be represented—which we will use in our algorithms
below—by a partition-relation pair (P,Rel) over S such that (B,C) ∈ Rel iff s1 � s2 for
all s1 ∈ B and s2 ∈ C. In this representation, if the partition P is as coarse as possible
(i.e., such that s1,s2 ∈ B iff s1 ≡ s2), then, intuitively, the elements of P are blocks of≡,
while Rel reflects the partial order on P corresponding to �.

3 Computing Simulations on Labelled Transition Systems

We now introduce an algorithm to compute the (unique) maximal simulation relation
�I on an LTS for a given initial pre-order I on states. Our algorithm is a re-formulation
of the algorithm proposed in [14] for computing simulations over Kripke structures.

3.1 An Algorithm for Computing Simulations on LTS

For the rest of this section, we assume that we are given an LTS T = (S,L,→) and an
initial pre-order I⊆ S×S. We will use Algorithm 1 to compute the maximum simulation
�I⊆ S×S included in I. In the algorithm, we use the following notation. Given ρ⊆ S×S
and an element q ∈ S, we denote ρ(q) the set {r ∈ S | (q,r) ∈ ρ}.

98 P.A. Abdulla et al.

The algorithm performs a number of iterations computing a sequence of relations,
each induced by a partition-relation pair (P,Rel). During each iteration, the states
belonging to a block B′ ∈ P are those which are currently assumed as capable of simu-
lating those from any B with (B,B′) ∈ Rel. The algorithm starts with an initial partition-
relation pair (Pinit ,Relinit) that induces the initial pre-order I on S. The partition-relation
pair is then gradually refined by splitting blocks of the partition P and by restricting
the relation Rel on P. When the algorithm terminates, the final partition-relation pair
(Psim,Relsim) induces the required pre-order �I .

The refinement performed during the iterations consists of splitting the blocks in P
and then updating the relation Rel accordingly. For this purpose, the algorithm maintains
a set Removea(B) for each a∈L and B∈P. Such a set contains states that do not have an
a-transition going into states that are in B nor to states of any block B′ with (B,B′)∈Rel.
Clearly, the states in Removea(B) cannot simulate states that have an a-transition going
into

⋃
(B,B′)∈Rel B′. Therefore, for any Removea(B) �= /0, we can split each block C ∈ P to

C∩Removea(B) and C \Removea(B). This is done using the function Split on line 6.
After performing the Split operation, we update the relation Rel and the Remove sets.

This is carried out in two steps. First, we compute an approximation of the next values
of Rel and Remove. More precisely, after a split, all Rel relations between the original
“parent” blocks of states are inherited to their “children” resulting from the split (line
8)—the notation parentPprev(C) refers to the parent block from which C arose within
the split. On line 10, the remove sets are then inherited from parent blocks to their
children. To perform the second step, we observe that the inheritance of the original
relation Rel on parent blocks to the children blocks is not consistent with the split we
have just performed. Therefore, on line 14, we subsequently prune Rel such that blocks
C that have an a-transition going into B states cannot be considered as simulated by
blocks D which do not have an a-transition going into

⋃
(B,B′)∈Rel B′—notice that due

to the split that we have performed, the D blocks are now included in Remove. This
pruning can then cause a necessity of further refinements as the states that have some b-
transition into a D block (that was freshly found not to simulate C), but not to C nor any
block that is still viewed as capable of simulating C, have to stop simulating states that
can go into

⋃
(C,C′)∈RelC

′. Therefore, such states are added into Removeb(C) on line 17.

3.2 Correctness and Complexity of the Algorithm

In the rest of the section, we assume that Algorithm 1 is applied on an LTS T = (S,L,→)
with an initial partition-relation pair (Pinit ,Relinit). The correctness of the algorithm is
formalised in Theorem 1.

Theorem 1. Suppose that I is the pre-order induced by (Pinit ,Relinit). Then, Algo-
rithm 1 terminates and the final partition-relation pair (Psim,Relsim) computed by it
induces the simulation relation �I , and, moreover, Psim = S/∼=I .

A similar correctness result is proved in [14] for the algorithm on Kripke structures,
using notions from the theory of abstract interpretation. In [1], we provide an alterna-
tive, more direct proof, which is, however, beyond the space limitations of this paper.
Therefore, we will only mention the key idea behind the termination argument. In par-
ticular, the key point is that if we take any block B from Pinit and any a ∈ L , if B or any

Computing Simulations over Tree Automata 99

Algorithm 1. Computing simulations on states of an LTS
Input: An LTS T = (S,L ,→), an initial partition-relation pair (Pinit ,Relinit) on S inducing

a pre-order I ⊆ S×S.
Data: A partition-relation pair (P,Rel) on S, and for each B ∈ P and a ∈ L , a set

Removea(B)⊆ S.
Output: The partition-relation pair (Psim,Relsim) inducing the maximal simulation on T

contained in I.

/* initialisation */
(P,Rel)← (Pinit ,Relinit);1

forall a ∈ L ,B ∈ P do Removea(B)← S\prea(
⋃

Rel(B));2

/* computation */
while ∃a ∈ L . ∃B ∈ P. Removea(B) �= /0 do3

Remove← Removea(B);Removea(B)← /0;4

Pprev ← P;Bprev ← B;Relprev ← Rel;5

P← Split(P,Remove);6

forall C ∈ P do7

Rel(C)← {D ∈ P | D⊆ ⋃
Relprev(parentPprev

(C))};8

forall b ∈ L do9

Removeb(C)← Removeb(parentPprev
(C))10

forall C ∈ P. C
a−→ Bprev do11

forall D ∈ P. D⊆ Remove do12

if (C,D) ∈ Rel then13

Rel ← Rel\{(C,D)};14

forall b ∈ L do15

forall r ∈ preb(D)\preb(
⋃

Rel(C)) do16

Removeb(C)← Removeb(C)∪{r}17

(Psim,Relsim)← (P,Rel);18

of its children B′, which arises by splitting, is repeatedly selected to be processed by
the while loop on line 3, then the Removea(B) (or Removea(B′)) sets can never contain
a single state s ∈ S at an iteration i of the while loop as well as on a later iteration j,
j > i. Therefore, as the number of possible partitions as well as the number of states is
finite, the algorithm must terminate.

The complexity of the algorithm is equal to that of the original algorithm from [14],
up to the new factor L that is not present in [14] (or, equivalently, |L|= 1 in [14]). The
complexity is stated in Theorem 2.

Theorem 2. Algorithm 1 has time complexity O(|L|.|Psim|.|S|+ |Psim|.| → |) and space
complexity O(|L|.|Psim|.|S|).

A proof of Theorem 2, based on a similar reasoning as in [14], can be found in [1]. Here,
let us just mention that the result expects the input LTS and the initial partition-relation
pair be encoded in suitable data structures. This fact is important for the complexity
analyses presented later on as they build on using Algorithm 1.

In particular, the input LTS is represented as a list of records about its states—we
call this representation as the state-list representation of the LTS. The record about

100 P.A. Abdulla et al.

each state s ∈ S contains a list of nonempty prea(s) sets1, each of them encoded as a
list of its members. The partition Pinit (and later any of its refinements) is encoded as a
doubly-linked list (DLL) of blocks. Each block is represented as a DLL of (pointers to)
states of the block. The relation Relinit (and later any of its refinements) is encoded as a
Boolean matrix Pinit ×Pinit .

4 Computing Downward Simulation

In this section, we describe algorithms for computing downward simulation on tree
automata. Our approach consists of two parts: (1) we translate the maximal down-
ward simulation problem over tree automata into a corresponding maximal simulation
problem over LTSs (i.e., basically word automata), and (2) we compute the maximal
word simulation on the obtained LTS using Algorithm 1. Below, we describe how the
translation is carried out.

We translate the downward simulation problem on a TA A = (Q,Σ,Δ,F) to the sim-
ulation problem on a derived LTS A•. Each state and each left hand side of a rule in A
is represented by one state in A•, while each rule in A is simulated by a set of rules in
A•. Formally, we define A• = (Q•,Σ•,Δ•) as follows:

– The set Q• contains a state q• for each state q ∈ Q, and it also contains a state
(q1, . . . ,qn)• for each (q1, . . . ,qn) ∈ Lhs(A).

– The set Σ• contains each symbol a ∈ Σ and each index i ∈ {1,2, . . . ,n} where n is
the maximal rank of any symbol in Σ.

– For each transition rule (q1, . . . ,qn)
f−→ q of A, the set Δ• contains both the transi-

tion q•
f−→ (q1, . . . ,qn)• and transitions (q1, . . . ,qn)•

i−→ q•i for each i : 1≤ i≤ n.
– The sets Q•, Σ•, and Δ• do not contain any other elements.

The following theorem shows correctness of the translation.

Theorem 3. For all q,r ∈ Q, we have q• � r• iff q �down r.

Due to Theorem 3, we can compute the simulation relation �down on Q by constructing
the LTS A• and running Algorithm 1 on it with the initial partition-relation pair being
simply (P•,Rel•) = ({Q•},{(Q•,Q•)})2.

4.1 Complexity of Computing the Downward Simulation

The complexity naturally consists of the price of compiling a given TA A = (Q,Σ,Δ,F)
into its corresponding LTS A•, the price of building the initial partition-relation pair
(P•,Rel•), and the price of running Algorithm 1 on A• and (P•,Rel•).

We assume the automata not to have unreachable states and to have at most one
(final) state that is not used in the left-hand side of any transition rule—general automata

1 We use a list rather than an array having an entry for each a ∈ L in order to avoid a need to
iterate over alphabet symbols for which there is no transition.

2 We initially consider all states of the LTS A• equal, and hence they form a single class of P•,
which is related to itself in Rel•.

Computing Simulations over Tree Automata 101

can be easily pre-processed to satisfy this requirement. Further, we assume the input
automaton A to be encoded as a list of states q ∈ Q and a list of the left-hand sides
l = (q1, ...,qn) ∈ Lhs(A). Each left-hand side l is encoded by an array of (pointers to)
the states q1, ..., qn, plus a list containing a pointer to the so-called f -list for each f ∈ Σ
such that there is an f transition from l in Δ. Each f -list is then a list of (pointers to)

all the states q ∈ Q such that l
f−→ q. We call this representation the lhs-list automata

encoding. Then, the complexity of preparing the input for computing the downward
simulation on A via Algorithm 1 is given by the following lemma.

Lemma 1. For a TA A = (Q,Σ,Δ,F), the LTS A• and the partition-relation pair
(P•,Rel•) can be derived in time and space O(Rank(A) · |Q|+ |Δ|+(Rank(A)+ |Σ|) ·
|Lhs(A)|).

In order to instantiate the complexity of running Algorithm 1 for A• and (P•,Rel•),
we first introduce some auxiliary notions. First, we extend �down to the set Lhs(A)
such that (q1, . . . ,qn) �down (r1, . . . ,rn) iff qi �down ri for each i : 1 ≤ i ≤ n. We notice
that Psim = Q•/∼=. From an easy generalisation of Theorem 3 to apply not only for
states from Q, but also the left-hand sides of transition rules from Lhs(A), i.e., from the
fact that ∀l1, l2 ∈ Lhs(A).l1 �down l2 ⇔ l•1 � l•2 , we have that |Q•/∼=| = |Q/∼=down|+
|Lhs(A)/∼=down|.

Lemma 2. Given a tree automaton A = (Q,Σ,Δ,F), Algorithm 1 computes the simu-
lation � on the LTS A• for the initial partition-relation pair (P•,Rel•) with the time
complexity O((|Σ|+ Rank(A)) · |Lhs(A)| · |Lhs(A)/∼=down|+ |Δ| · |Lhs(A)/∼=down|) and
the space complexity O((|Σ|+ Rank(A)) · |Lhs(A)| · |Lhs(A)/∼=down|).

The complexity of computing the downward simulation for a tree automaton A via the
LTS A• can now be obtained by simply adding the complexities of computing A• and
(P•,Rel•) and of running Algorithm 1 on them.

Theorem 4. Given a tree automaton A, the downward simulation on A can be com-
puted in time O((|Σ|+Rank(A)) · |Lhs(A)| · |Lhs(A)/∼=down|+ |Δ| · |Lhs(A)/∼=down|) and
space O((|Σ|+ Rank(A)) · |Lhs(A)| · |Lhs(A)/∼=down|+ |Δ|). 3

Moreover, under the standard assumption that the maximal rank and size of the alpha-
bet are constants, we get the time complexity O(|Δ| · |Lhs(A)/∼=down|) and the space
complexity O(|Lhs(A)| · |Lhs(A)/∼=down|+ |Δ|).

5 Computing Upward Simulation

In a similar manner to the downward simulation, we translate the upward simulation
problem on a tree automaton A = (Q,Σ,Δ,F) to the simulation problem on an LTS A�.
To define the translation from the upward simulation, we first make the following defini-
tion. An environment is a tuple of the form ((q1, . . . ,qi−1,�,qi+1, . . . ,qn), f ,q) obtained

3 Note that in the special case of Rank(A) = 1 (corresponding to a word automaton viewed as
a tree automaton), we have |Lhs(A)|= |Q|, which leads to the same complexity as Algorithm 1
has when applied directly on word automata.

102 P.A. Abdulla et al.

by removing a state qi, 1 ≤ i ≤ n, from the ith position of the left hand side of a rule
((q1, . . . ,qi−1,qi,qi+1, . . . ,qn), f ,q), and by replacing it by a special symbol � �∈ Q

(called a hole below). Like for transition rules, we write (q1, . . . ,�, . . . ,qn)
f−→ q pro-

vided ((q1, . . . ,qi−1,qi,qi+1, . . . ,qn), f ,q) ∈ Δ for some qi ∈ Q. Sometimes, we also

write the environment as (q1, . . . ,�i, . . . ,qn)
f−→ q to emphasise that the hole is at po-

sition i. We denote the set of all environments of A by Env(A).
The derivation of A� differs from A• in two aspects: (1) we encode environments

(rather than left-hand sides of rules) as states in A�, and (2) we use a non-trivial ini-
tial partition on the states of A�, taking into account the downward simulation on Q.
Formally, we define A� = (Q�,Σ�,Δ�) as follows:

– The set Q� contains a state q� for each state q ∈ Q, and it also contains a state

((q1, . . . ,�i, . . . ,qn)
f−→ q)� for each environment (q1, . . . ,�i, . . . ,qn)

f−→ q.
– The set Σ� contains each symbol a ∈ Σ and also a special symbol λ �∈ Σ.

– For each transition rule (q1, . . . ,qn)
f−→ q of A, the set Δ� contains both the transi-

tions q�i
λ−→ ((q1, . . . ,�i, . . . ,qn)

f−→ q)� for each i ∈ {1, ...,n} and the transition

((q1, . . . ,�i, . . . ,qn)
f−→ q)�

f−→ q�.
– The sets Q�, Σ�, and Δ� do not contain any other elements.

We define I to be the smallest binary relation on Q� containing all pairs of states of the
automaton A, i.e., all pairs (q�1 ,q�2) for each q1,q2 ∈ Q, as well as all pairs of environ-

ments (((q1, . . . ,�i, . . . ,qn)
f−→ q)�,((r1, . . . ,�i, . . . ,rn)

f−→ r)�) such that (q j,r j)∈D
for each j : 1≤ j �= i≤ n.

The following theorem shows correctness of the translation.

Theorem 5. For all q,r ∈ Q, we have q �up r iff q� �I r�.

The relation I is clearly a pre-order and so the relation ι = I∩ I−1 is an equivalence. Due
to Theorem 5, we can compute the simulation relation �up on Q by constructing the
LTS A� and running Algorithm 1 on it with the initial partition-relation pair (P�,Rel�)
inducing I, i.e., P� = Q�/ι and Rel� = {(B,C) ∈ P�×P� | B×C⊆ I}.

5.1 Complexity of Computing the Upward Simulation

Once the downward simulation �down on a given TA A = (Q,Σ,Δ,F) is computed, the
complexity of computing the simulation �up naturally consists of the price of compiling
A into its corresponding LTS A�, the price of building the initial partition-relation pair
(P�,Rel�), and the price of running Algorithm 1 on A� and (P�,Rel�).

We assume the automaton A to be encoded in the same way as in the case of com-
puting the downward simulation. Compared to preparing the input for computing the
downward simulation, the main obstacle in the case of the upward simulation is the need
to compute the partition P�e of the set of environments Env(A) wrt. I, which is a subset
of the partition P� (formally, P�e = P� ∩ 2Env(A)). If the computation of P�e is done
naively (i.e., based on comparing each environment with every other environment), it
can introduce a factor of |Env(A)|2 into the overall complexity of the procedure. This

Computing Simulations over Tree Automata 103

would dominate the complexity of computing the simulation on A� where, as we will
see, |Env(A)| is only multiplied by |Env(A)/∼=up|.

Fortunately, this complexity blowup can be to a large degree avoided by exploit-
ing the partition Lhs(A)/∼=down computed within deriving the downward simulation as
shown in detail in [1]. Here, we give just the basic ideas.

For each 1 ≤ i ≤ Rank(A), we define an i-weakened version Di of the downward
simulation on left-hand sides of A such that ((q1, . . . ,qn),(r1, . . . ,rm)) ∈ Di ⇐⇒ n =
m ≥ i∧ (∀1 ≤ j ≤ n. j �= i =⇒ q j �down r j). Clearly, each Di is a pre-order, and we
can define the equivalence relations ≈i = Di∩D−1

i . Now, a crucial observation is that
there exists a simple correspondence between P�e and Lhs(A)/≈i. Namely, we have
that L ∈ Lhs(A)/≈i iff for each f ∈ Σ, there is a block EL, f ∈ P�e such that EL, f =

{(q1, . . . ,�i, . . . ,qn)
f−→ q | ∃qi,q∈Q. (q1, ...,qi, ...,qn)∈L ∧ (q1, ...,qi, ...,qn)

f−→ q}.
The idea of computing P�e is now to first compute blocks of Lhs(A)/≈i and then to

derive from them the P�e blocks. The key advantage here is that the computation of the
≈i-blocks can be done on blocks of Lhs(A)/∼=down instead of directly on elements of
Lhs(A). This is because, for each i, blocks of Lhs(A)/∼=down are sub-blocks of blocks of
Lhs(A)/≈i. Moreover, for any blocks K,L of Lhs(A)/∼=down, the test of K×L⊆Di can
simply be done by testing whether (k, l) ∈ Di for any two representatives k ∈ K, l ∈ L.
Therefore, all ≈i-blocks can be computed in time proportional to |Lhs(A)/∼=down|2.

From each block L ∈ Lhs(A)/≈i, one block EL, f of P�e is generated for each symbol
f ∈ Σ. The EL, f blocks are obtained in such a way that for each left-hand side l ∈ L, we
generate all the environments which arise by replacing the ith state of l by �, adding f ,

and adding a right-hand side state q ∈Q which together with l form a transition l
f−→ q

of A. This can be done efficiently using the lhs-list encoding of A. An additional factor
|Δ| · log |Env(A)| is, however, introduced due to a need of not having duplicates among
the computed environments, which could result from transitions that differ just in the
states that are replaced by � when constructing an environment. The factor log |Env(A)|
comes from testing a set membership over the computed environments to check whether
we have already computed them before or not.

Moreover, it can be shown that Rel� can be computed in time |P�|2. The complexity
of constructing A� and (P�,Rel�) is then summarised in the below lemma.

Lemma 3. Given a tree automaton A = (Q,Σ,Δ,F), the downward simulation �down

on A, and the partition Lhs(A)/∼=down, the LTS A� and the partition-relation pair
(P�,Rel�) can be derived in time O(|Σ| · |Q|+Rank(A)·(|Lhs(A)|+ |Lhs(A)/∼=down|2)+
Rank(A)2 · |Δ| · log |Env(A)|+ |P�|2) and in space O(|Σ| · |Q|+ |Env(A)|+ Rank(A) ·
|Lhs(A)|+ |Lhs(A)/∼=down|2 + |P�|2).

In order to instantiate the complexity of running Algorithm 1 for A� and (P�,Rel�), we
again first introduce some auxiliary notions. Namely, we extend �up to the set Env(A)

such that (q1, . . . ,�i, . . . ,qn)
f−→ q �up (r1, . . . ,� j, . . . ,rm)

f−→ r ⇐⇒m = n∧ i = j∧
q �up r∧(∀k ∈ {1, ...,n}. k �= i =⇒ qk �down rk). We notice that Psim = Q�/∼=I . From an
easy generalisation of Theorem 5 to apply not only for states from Q, but also environ-
ments from Env(A), i.e., from the fact that ∀e1,e2 ∈ Env(A). e1 �up e2 ⇐⇒ e�1 �I e�2 ,
we have that |Q�/∼=I |= |Q/∼=up|+ |Lhs(A)/∼=up|.

104 P.A. Abdulla et al.

Lemma 4. Given a tree automaton A = (Q,Σ,Δ,F), the upward simulation �up on A
can be computed by running Algorithm 1 on the LTS A� and the partition-relation pair
(P�,Rel�) in time O(Rank(A) · |Δ| · |Env(A)/∼=up|+ |Σ| · |Env(A)| · |Env(A)/∼=up|) and
space O(|Σ| · |Env(A)| · |Env(A)/∼=up|).

The complexity of computing upward simulation on a TA A can now be obtained by
simply adding the price of computing downward simulation, the price of computing A�

and (P�,Rel�), and the price of running Algorithm 1 on A� and (P�,Rel�).

Theorem 6. Given a tree automaton A = (Q,Σ,Δ,F), let Tdown(A) and Sdown(A) denote
the time and space complexity of computing the downward simulation �down on A. Then,
the upward simulation �up on A can be computed in time

O((|Σ| · |Env(A)|+Rank(A)·|Δ|)·‖Env(A)/∼=up|+Rank(A)2 ·|Δ| ·log |Env(A)|+Tdown(A))
and in space O(|Σ| · |Env(A)| · |Env(A)/∼=up|+ Sdown(A)).4

Finally, from the standard assumption that the maximal rank and the alphabet size are
constants and from observing that |Env(A)| ≤Rank(A)· |Δ| ≤Rank(A)· |Σ| · |Q|Rank(A)+1,
we get the time complexity O(|Δ| · (|Env(A)/∼=up|+ log |Q|)+ Tdown(A)) and the space
complexity O(|Env(A)| · |Env(A)/∼=up|+ Sdown(A)).

6 Reducing Tree Automata

In this section, we describe how to reduce tree automata while preserving the language
of the automaton. The idea is to identify suitable equivalence relations on states of
tree automata, and then collapse the sets of states which form equivalence classes. We
will consider two reduction methods: one which uses downward simulation, and one
which is defined in terms of both downward and upward simulation. The choice of
the equivalence relation is a trade-off between the amount of reduction achieved and
the cost of computing the relation. The second mentioned equivalence is heavier to
compute as it requires that both downward and upward simulation are computed and
then suitably composed. However, it is at least as coarse as—and often significantly
coarser than—the downward simulation equivalence, and hence can give much better
reductions as witnessed even in our experiments.

Consider a tree automaton A = (Q,Σ,Δ,F) and an equivalence relation ≡ on Q. The
abstract tree automaton derived from A and≡ is A〈≡〉= (Q〈≡〉,Σ,Δ〈≡〉,F〈≡〉) where:

– Q〈≡〉 is the set of blocks in ≡. In other words, we collapse all states which belong
to the same block into one abstract state.

– (B1, . . . ,Bn)
f−→ B iff (q1, . . . ,qn)

f−→ q for some q1 ∈ B1, . . . ,qn ∈ Bn,q ∈ B. This
is, there is a transition in the abstract automaton iff there is a transition between
states in the corresponding blocks.

– F〈≡〉 contains a block B iff B∩F �= /0. Intuitively, a block is accepting if it contains
at least one state which is accepting.

4 Note that in the special case of Rank(A) = 1 (corresponding to a word automaton viewed as
a tree automaton), we have |Env(A)| ≤ |Σ| · |Q|, which leads to almost the same complexity (up
to the logarithmic component) as Algorithm 1 has when applied directly on word automata.

Computing Simulations over Tree Automata 105

6.1 Downward Simulation Equivalence

Given a tree automaton A = (Q,Σ,Δ,F), we consider the abstract automaton A〈∼=down〉
constructed by collapsing states of A which are equivalent with respect to ∼=down. We
show that the two automata accept the same language, i.e., L(A) = L(A〈∼=down〉). Ob-
serve that the inclusion L(A) ⊆ L(A〈∼=down〉) is straightforward. We can prove the in-
clusion in the other direction as follows. Using a simple induction on trees, one can
show that downward simulation implies language inclusion. In other words, for states
q,r ∈Q, if q �down r, then L(q)⊆ L(r). This implies that for any B∈Q〈∼=down〉, it is the
case that L(B)⊆ L(r) for any r ∈ B. Now suppose that t ∈ L(A〈∼=down〉). It follows that
t ∈ L(B) for some B ∈ F〈∼=down〉. Since B ∈ F〈∼=down〉, there is some r ∈ B with r ∈ F .
It follows that t ∈ L(r), and hence t ∈ L(A). This gives the following Theorem.

Theorem 7. L(A) = L(A〈∼=down〉) for each tree automaton A.

In fact, A〈∼=down〉 is the minimal automaton which is equivalent to A with respect to
downward simulation and which accepts the same language as A.

6.2 Composed Equivalence

Consider a tree automaton A = (Q,Σ,Δ,F). Let IF be a partitioning of Q such that
(q,r) ∈ IF iff q ∈ F =⇒ r ∈ F . Consider a reflexive and transitive downward simula-
tion D, and a reflexive and transitive upward simulation U induced by D. Assume that
U ⊆ IF . We will reduce A with respect to relations of the form ≡R which preserve lan-
guage equivalence, but which may be much coarser than downward simulations. Here,
each ≡R is an equivalence relation R∩R−1 defined by a pre-order R satisfying certain
properties. More precisely, we use D⊕U to denote the set of relations on Q such that
for each R ∈ (D⊕U), the relation R satisfies the following two properties: (i) R is tran-
sitive and (ii) D⊆ R⊆

(
D◦U−1

)
. For a state r ∈ Q and a set B⊆ Q of states, we write

(B,r) ∈ D to denote that there is a q ∈ B with (q,r) ∈ D. We define (B,r) ∈U analo-
gously. We will now consider the abstract automaton A〈≡R〉 where the states of A are
collapsed according to ≡R. We will relate the languages of A and A〈≡R〉.

To do that, we first define the notion of a context. Intuitively, a context is a tree
with “holes” instead of leaves. Formally, we consider a special symbol © �∈ Σ with
rank 0. A context over Σ is a tree c over Σ∪ {©} such that for all leaves p ∈ c, we
have c(p) = ©. For a context c with leaves p1, . . . , pn, and trees t1, . . . ,tn, we define
c[t1, . . . ,tn] to be the tree t, where

– dom(t) = dom(c)
⋃{p1 · p′| p′ ∈ dom(ti)}

⋃ · · ·⋃{pn · p′| p′ ∈ dom(tn)},
– for each p = pi · p′, we have t(p) = ti(p′), and
– for each p ∈ dom(c)\ {p1, . . . , pn}, we have t(p) = c(p).

In other words, c[t1, . . . ,tn] is the result of appending the trees t1, . . . ,tk to the holes of c.
We extend the notion of runs to contexts. Let c be a context with leaves p1, . . . , pn. A run
π of A on c from (q1, . . . ,qn) is defined in a similar manner to a run on a tree except
that for a leaf pi, we have π(pi) = qi, 1≤ i≤ n. In other words, each leaf labelled with
© is annotated by one qi. We use c [q1, . . . ,qn]

π=⇒ q to denote that π is a run of A on
c from (q1, . . . ,qn) such that π(ε) = q. The notation c [q1, . . . ,qn] =⇒ q is explained in
a similar manner to runs on trees.

106 P.A. Abdulla et al.

Using the notion of a context, we can relate runs of A with those of the abstract
automaton A〈≡R〉. More precisely, we can show that for blocks B1, . . . ,Bn,B ∈ Q〈≡R〉
and a context c, if c[B1, . . . ,Bn] =⇒ B, then there exist states r1, . . . ,rn,r ∈ Q such that
(B1,r1) ∈ D, . . . ,(Bn,rn) ∈ D,(B,r) ∈ U , and c[r1, . . . ,rn] =⇒ r. In other words, each
run in A〈≡R〉 can be simulated by a run in A which starts from larger states (with respect
to downward simulation) and which ends up at a larger state (with respect to upward
simulation). This leads to the following lemma.

Lemma 5. If t =⇒B, then t =⇒w for some w with (B,w)∈U. Moreover, if B∈F〈≡R〉,
then also w ∈ F.

In other words, each tree t which leads to a block B in A〈≡R〉 will also lead to a state
in A which is larger than (some state in) the block B with respect to upward simulation.
Moreover, if t can be accepted at B in A〈≡R〉 (meaning that B contains a final state of
A, i.e., B∩F �= /0), then it can be accepted at w in A (i.e., w ∈ F) too.

Notice that Lemma 5 holds for any downward and upward simulations satisfying
the properties mentioned in the definition of ⊕. We now instantiate the lemma for the
maximal downward and upward simulation to obtain the main result. We take D and
U to be �down and �IF

up, respectively, and we let �comp be any relation from the set of
relations (�down ⊕�IF

up). We let ∼=comp be the corresponding equivalence.

Theorem 8. L(A〈∼=comp〉) = L(A) for each tree automaton A.

Proof. The inclusion L(A〈∼=comp〉) ⊇ L(A) is trivial. Let t ∈ L(A〈∼=comp〉), i.e., t =⇒ B
for some block B where B∩F �= /0. Lemma 5 implies that t =⇒ w such that w ∈ F . �

Note that it is clearly the case that ∼=down ⊆ ∼=comp. Moreover, note that a relation
�comp∈ (�down ⊕�IF

up) can be obtained, e.g., by a simple (random) pruning of the rela-
tion �down ◦ (�IF

up)−1 based on iteratively removing links not being in �down and at the
same time breaking transitivity of the so-far computed composed relation. Such a way
of computing �comp does not guarantee that one obtains a relation of the greatest car-
dinality possible among relations from �down ⊕�IF

up, but, on the other hand, it is cheap
(in the worst case, cubic in the number of states). Moreover, our experiments show that
even this simple way of computing the composed relation can give us a relation ∼=comp

that is much coarser (and yields significantly better reductions) than ∼=down.

Remark. Our definition of a context coincides with the one of [8] where all leaves are
holes. On the other hand, a context in [9] and [3] is a tree with a single hole. Considering
single-hole contexts, one can define the language of contexts Lc(q) of a state q to be the
set of contexts on which there is an accepting run if the hole is replaced by q. Then, for
all states q and r, it is the case that q �up r implies Lc(q)⊆ Lc(r).

7 Experiments with Reducing Tree Automata

We have implemented our algorithms in a prototype tool written in Java. We have run the
prototype on a number of tree automata that arise in the framework of tree regular model
checking. Tree regular model checking is the name of a family of techniques for analysing
infinite-state systems in which states are represented by trees, (infinite) sets of states by

Computing Simulations over Tree Automata 107

Table 1. Reduction of the number of states and rules using different reduction algorithms

Protocol original ∼=down
∼=comp

backward
bisimulation

states rules states rules states rules states rules

percolate
10 72 7 45 7 45 10 72
20 578 17 392 14 346 20 578
28 862 13 272 13 272 15 341

arbiter
15 324 10 248 7 188 11 252
41 313 28 273 19 220 33 285
109 1248 67 1048 55 950 83 1116

leader
17 153 11 115 6 47 16 152
25 384 16 235 6 59 23 382
33 876 10 100 7 67 27 754

finite tree automata, and transitions by tree transducers. Most of the algorithms in the
framework rely crucially on efficient automata reduction methods since the size of the
generated automata often explodes, making computations infeasible without reduction.
The (nondeterministic) tree automata that we have considered arose during verification
of the Percolate protocol, the Arbiter protocol, and the Leader election protocol [4].

Our experimental evaluation was carried out on an AMD Athlon 64 X2 2.19GHz
PC with 2.0 GB RAM. The time for minimising the tree automata varied from a few
seconds up to few minutes. Table 1 shows the number of states and rules of the various
considered tree automata before and after computing ∼=down, ∼=comp, and the backward
bisimulation from [11]. Backward bisimulation is the bisimulation counterpart of down-
ward simulation. The composed simulation equivalence ∼=comp was computed in the
simple way based on the random pruning of the relation �down ◦ (�IF

up)−1 as mentioned
at the end of Section 6.2. As Table 1 shows, ∼=comp achieves the best reduction (often
reducing to less than one-third of the size of the original automaton). As expected, both
∼=down and ∼=comp give better reductions than backward bisimulation in all test cases.

8 Conclusions and Future Work

We have presented methods for reducing tree automata under language equivalence. For
this purpose, we have considered two kinds of simulation relations on the states of tree
automata, namely downward and upward simulation. We give procedures for efficient
translation of both kinds of relations into simulations defined on labelled transition sys-
tems. Furthermore, we define a new, language-preserving equivalence on tree automata,
derived from compositions of downward and upward simulation, which (according to
our experiments) usually gives a much better reduction on the size of automata than
downward simulation.

There are several interesting directions for future work. First, we would like to imple-
ment the proposed algorithms in a more efficient way, perhaps over automata encoded
in a symbolic way using BDDs like in MONA [12], in order to be able to experiment
with bigger automata. Further, for instance, we can define upward and downward bisim-
ulation for tree automata in an analogous way to the case of simulation. It is straight-
forward to show that the encoding we use in this paper can also be used to translate

108 P.A. Abdulla et al.

bisimulation problems on tree automata into corresponding ones for LTSs. Although re-
ducing according to a bisimulation does not give the same reduction as for a simulation,
it is relevant since it generates more efficient algorithms. Also, we plan to investigate
coarser relations for better reductions of tree automata by refining the ideas behind the
definition of the composed relation introduced in Section 6. We believe that it is possi-
ble to define a refinement scheme allowing one to define an increasing family of such
relations between downward simulation equivalence and tree language equivalence. Fi-
nally, we plan to consider extending our reduction techniques to the class of unranked
trees which are used in applications such as reasoning about structured documents or
about configurations of dynamic concurrent processes.

Acknowledgement. The work was supported by the ANR-06-SETI-001 French project
AVERISS, the Czech Grant Agency (projects 102/07/0322 and 102/05/H050), the
Czech-French Barrande project 2-06-27, and the Czech Ministry of Education by the
project MSM 0021630528 Security-Oriented Research in Information Technology.

References

1. Abdulla, P., Bouajjani, A., Holı́k, L., Kaati, L., Vojnar, T.: Computing Simulations over Tree
Automata. Technical report, FIT-TR-2007-001, FIT, Brno University of Technology, Czech
Republic (2007)

2. Abdulla, P., Högberg, J., Kaati, L.: Bisimulation Minimization of Tree Automata. In: H.
Ibarra, O., Yen, H.-C. (eds.) CIAA 2006. LNCS, vol. 4094, Springer, Heidelberg (2006)

3. Abdulla, P., Jonsson, B., Mahata, P., d’Orso, J.: Regular Tree Model Checking. In: Brinksma,
E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, Springer, Heidelberg (2002)

4. Abdulla, P., Legay, A., d’Orso, J., Rezine, A.: Tree Regular Model Checking: A Simulation-
based Approach. The Journal of Logic and Algebraic Programming 69(1-2), 93–121 (2006)

5. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract Regular Tree Model
Checking. In: ENTCS, vol. 149(1), pp. 37–48. Elsevier, Amsterdam (2006)

6. Bouajjani, A., Habermehl, P., Rogalewicz, A., Vojnar, T.: Abstract Regular Tree Model
Checking of Complex Dynamic Data Structures. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134,
Springer, Heidelberg (2006)

7. Bouajjani, A., Touili, T.: Extrapolating Tree Transformations. In: Brinksma, E., Larsen, K.G.
(eds.) CAV 2002. LNCS, vol. 2404, Springer, Heidelberg (2002)

8. Bouajjani, A., Touili, T.: Reachability Analysis of Process Rewrite Systems. In: Pandya, P.K.,
Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, Springer, Heidelberg (2003)

9. Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S., Tommasi, M.:
Tree Automata Techniques and Applications (1997), Available on:
http://www.grappa.univ-lille3.fr/tata

10. Henzinger, M., Henzinger, T., Kopke, P.: Computing simulations on finite and infinite graphs.
In: Proc. of FOCS 1995, IEEE, Los Alamitos (1995)

11. Maletti, A., Högberg, J., May, J.: Backward and forward bisimulation minimisation of tree
automata. In: Holub, J., Žďárek, J. (eds.) CIAA 2007. LNCS, vol. 4783, pp. 109–121.
Springer, Heidelberg (2007)

12. Klarlund, N., Møller, A.: MONA Version 1.4 User Manual, BRICS, Department of Computer
Science, University of Aarhus, Denmark (2001)

13. Paige, R., Tarjan, R.: Three Partition Refinement Algorithms. SIAM Journal on Comput-
ing 16, 973–989 (1987)

14. Ranzato, F., Tapparo, F.: A New Efficient Simulation Equivalence Algorithm. In: Proc. of
LICS 2007, IEEE CS, Los Alamitos (2007)

http://www.grappa.univ-lille3.fr/tata

	Computing Simulations over Tree Automata (Efficient Techniques for Reducing Tree Automata)
	Introduction
	Preliminaries
	Computing Simulations on Labelled Transition Systems
	An Algorithm for Computing Simulations on LTS
	Correctness and Complexity of the Algorithm

	Computing Downward Simulation
	Complexity of Computing the Downward Simulation

	Computing Upward Simulation
	Complexity of Computing the Upward Simulation

	Reducing Tree Automata
	Downward Simulation Equivalence
	Composed Equivalence

	Experiments with Reducing Tree Automata
	Conclusions and Future Work

