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Abstract

Voting (or rank aggregation) is a general method for aggre-
gating the preferences of multiple agents. One important vot-
ing rule is the Slater rule. It selects a ranking of the alter-
natives (or candidates) to minimize the number of pairs of
candidates such that the ranking disagrees with the pairwise
majority vote on these two candidates. The use of the Slater
rule has been hindered by a lack of techniques to compute
Slater rankings. In this paper, we show how we can decom-
pose the Slater problem into smaller subproblems if there is a
set of similar candidates. We show that this technique suffices
to compute a Slater ranking in linear time if the pairwise ma-
jority graph is hierarchically structured. For the general case,
we also give an efficient algorithm for finding a set of similar
candidates. We provide experimental results that show that
this technique significantly (sometimes drastically) speeds up
search algorithms. Finally, we also use the technique of sim-
ilar sets to show that computing an optimal Slater ranking is
NP-hard, even in the absence of pairwise ties.

Introduction
In multiagent systems with self-interested agents, often the
agents need to arrive at a joint decision in spite of differ-
ent preferences over the available alternatives. Voting (or
rank aggregation) is a general method for doing so. In
a rank aggregation setting, each voter ranks all the differ-
ent alternatives (or candidates), and a voting rule maps the
votes to a single ranking of all the candidates. Rank ag-
gregation has applications outside the space of preference
aggregation as well: for example, we can take the rank-
ings that different search engines provide over a set of web-
pages and produce an aggregate ranking from this. Other
applications include collaborative filtering [22] and planning
among automated agents [17; 18]. Recent work in artifi-
cial intelligence and related areas has studied the complex-
ity of executing voting rules [19; 7; 14; 12; 1]; the com-
plexity of manipulating elections [9; 16; 15]; eliciting the
votes efficiently [8]; adapting voting theory to the setting
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where the candidates vote over each other by linking to
each other (as in the context of the World Wide Web) [4;
3]; and interpreting common voting rules as maximum like-
lihood estimators of a “correct” ranking [10].

The design of voting rules has been guided by the ax-
iomatic approach: decide on a set of criteria that a good
voting rule should satisfy, and determine which (if any) vot-
ing rules satisfy all of these criteria. One well-known cri-
terion is that of independence of irrelevant alternatives. In
its strongest form, this criterion states that the relative rank-
ing of two candidates by a voting rule should not be affected
by the presence or absence of other candidates. That is, if
a is ranked higher than b by a voting rule that satisfies in-
dependence of irrelevant alternatives, then the voting rule
will still rank a higher than b after the introduction of an-
other candidate c. Arrow’s impossibility result [5] precludes
the existence of any reasonable voting rule satisfying this
criterion. Intuitively, when independence of irrelevant al-
ternatives is satisfied, whether candidate a or b is preferred
should depend only on whether more votes prefer a to b than
b to a—that is, the winner of the pairwise election should be
ranked higher. Unfortunately, as noted by Condorcet [13],
there can be cycles in this relationship: for example, it can
be the case that a defeats b, b defeats c, and c defeats a in
pairwise elections. If so, no ranking of the candidates will
be consistent with the outcomes of all pairwise elections.

The Slater voting rule is arguably the most straightfor-
ward resolution to this problem: it simply chooses a ranking
of the candidates that is inconsistent with the outcomes of as
few pairwise elections as possible. Unfortunately, as we will
discuss later in this paper, computing a Slater ranking is NP-
hard. This suggests that we need a search-based algorithm
to compute Slater rankings.1

In this paper, we introduce a powerful preprocessing tech-
nique that can reduce the size of instances of the Slater prob-
lem before the search is started. We say that a subset of the
candidates consists of similar candidates if for every candi-
date outside of the subset, all candidates inside the subset
achieve the same result in the pairwise election against that
candidate. Given a set of similar candidates, we can recur-

1Another approach is to look for rankings that are approxi-
mately optimal in the Slater sense [1; 11]. Of course, this is not
entirely satisfactory as it is effectively changing the voting rule.
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sively solve the Slater problem for that subset, and for the
original set with the entire subset replaced by a single can-
didate, to obtain a solution to the original Slater problem. In
addition, we also make the following contributions:

• We show that if the results of the pairwise elections have
a particular hierarchical structure, the preprocessing tech-
nique is sufficient to solve the Slater problem in linear time.

• For the general case, we give a polynomial-time algo-
rithm for finding a set of similar candidates (if it exists). This
algorithm is based on satisfiability techniques.

• We exhibit the power of the preprocessing technique
experimentally.

• We use the concept of a set of similar candidates to give
the first straightforward reduction (that is, not a randomized
reduction or a derandomization thereof) showing that the
Slater problem is NP-hard in the absence of pairwise ties.

Definitions
We use C to denote the set of candidates. We say that can-
didate a defeats candidate b in their pairwise election, de-
noted by a → b, if the number of votes ranking a above b
is greater than the number of votes ranking b above a. The
Slater rule is defined as follows: find a ranking � on the
candidates that minimizes the number of ordered pairs (a, b)
such that a � b but b defeats a in their pairwise election.
(Equivalently, we want to maximize the number of pairs of
candidates for which � is consistent with the result of the
pairwise election—we will refer to this number as the Slater
score.) We will refer to the problem of computing a Slater
ranking as the Slater problem. An instance of the Slater
problem can be represented by a “pairwise election” graph
whose vertices are the candidates, and which has a directed
edge from a to b if and only if a defeats b in their pairwise
election. The goal, then, is to minimize the number of edges
that must be flipped in order to make the graph acyclic.

Most elections do not have any ties in pairwise elections.
For example, if the number of votes is odd, there is no pos-
sibility of a pairwise tie. (We note that in many real-world
elections, the number of voters is intentionally made odd to
prevent ties.) Hence, we will restrict our attention to elec-
tions without pairwise ties (in which case the pairwise elec-
tion graph becomes a tournament graph). For our positive
results, this is merely for simplicity—they can easily be ex-
tended to deal with ties as well. Our one negative result, the
NP-hardness of computing Slater rankings, is made stronger
by this restriction (in fact, without the restriction the hard-
ness has effectively been known for a long time).

Sets of similar candidates
We are now ready to give the formal definition of a set of
similar candidates.

Definition 1 We say that a subset S ⊆ C consists of similar
candidates if for any s1, s2 ∈ S, for any c ∈ C−S, s1 → c if
and only if s2 → c (and hence c → s1 if and only if c → s2).

We emphasize that in this definition, it is not required that
every vote prefers s1 to c if and only if that vote prefers s2 to
c. Rather, the condition only needs to hold on the aggregated

pairwise election graph, and hence it is robust to a few voters
who do not perceive the candidates as similar.

There are a few trivial sets of similar candidates: 1. the
set of all candidates, and 2. any set of at most one candidate.
We will be interested in nontrivial sets of similar candidates,
because, as will become clear shortly, the trivial sets have no
algorithmic use.

The following is the key observation of this paper:

Theorem 1 If S consists of similar candidates, then there
exists a Slater ranking � in which the candidates in S form
a (contiguous) block (that is, there do not exist s1, s2 ∈ S
and c ∈ C − S such that s1 � c � s2).

Proof: Consider any ranking �1 of the candidates in which
the candidates in S are split into k > 1 blocks; we will show
how to transform this ranking into another ranking �2 with
the properties that:

• the candidates in S are split into k − 1 blocks in �2, and

• the Slater score of �2 is at least as high as that of �1.

By applying this transformation repeatedly, we can trans-
form the original ranking into an ranking in which the can-
didates in S form a single block, and that has at least as high
a Slater score as the original ranking.

Consider a subsequence of �1 consisting of two blocks
of candidates in S, {s1

i } and {s2
i }, and a block of candidates

in C − S that divides them, {ci}: s1
1 �1 s1

2 �1 . . . �1

s1
l1
�1 c1 �1 c2 �1 . . . �1 cl �1 s2

1 �1 s2
2 �1 . . . �1 s2

l2
.

Because S consists of similar candidates, a given candidate
ci has the same relationship in the pairwise election graph to
every sj

i . Hence, one of the following two cases must apply:

1. For at least half of the candidates ci, for every sj
i , ci → sj

i

2. For at least half of the candidates ci, for every sj
i , sj

i → ci.

In case 1, we can replace the subsequence by the subse-
quence c1 �2 c2 �2 . . . �2 cl �2 s1

1 �2 s1
2 �2 . . . �2

s1
l1

�1 s2
1 �2 s2

2 �2 . . . �2 s2
l2

to join the blocks without
any loss to the Slater score of the ranking. Similarly, in
case 2, we can replace the subsequence by the subsequence
s1
1 �2 s1

2 �2 . . . �2 s1
l1

�1 s2
1 �2 s2

2 �2 . . . �2 s2
l2

�2

c1 �2 c2 �2 . . . �2 cl to join the blocks without any loss to
the Slater score of the ranking.

Hence, if we know that S consists of similar candidates,
then when we try to compute a Slater ranking, we can with-
out loss of generality restrict our attention to rankings in
which all the candidates in S form a (contiguous) block.
The optimal internal ranking of the candidates in S within
the block is independent of the rest of the ranking, and can
be computed recursively.2 Because of this, we can think of
S as a single “super-candidate” with weight |S|. Ranking S
above a candidate c such that s → c for all s ∈ S, or below

2Note that if S is a trivial set of similar candidates, there is little
use to this: if it is a set of at most one candidate, then the statement
that that candidate will form a block by itself is vacuous, and if
it is the set of all candidates, we need to recurse on the set of all
candidates.
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a candidate c such that c → s for all s ∈ S, will increase the
Slater score by |S|.

Consider the following pairwise election graph:

In this graph, {b, d} is a set of similar candidates. Thus, we
recursively solve the instance in which b and d are aggre-
gated into a single candidate:

Some of the edges now represent multiple edges in the orig-
inal graph; this is indicated by the weights on these edges.
It is easy to see that the optimal Slater ranking for this graph
is a � bd � c. In addition, we need to solve the Slater
problem internally for the set of similar candidates:

The optimal Slater ranking for this graph is (of course) b �
d. So the solution to the original problem is a � b � d � c.

It is possible to have multiple disjoint sets Si, each con-
sisting of similar candidates. In this case, we can aggregate
each one of them into a single super-candidate. The follow-
ing lemma will clarify how to compute the Slater scores for
such pairs of super-candidates:

Lemma 1 If S1 and S2 are disjoint sets of similar can-
didates, then for any s1, s

′
1 ∈ S1 and any s2, s

′
2 ∈ S2,

s1 → s2 if and only if s′1 → s′2. (That is, the same rela-
tionship holds in the pairwise election graph for any pair of
candidates in S1 × S2.) Hence, ranking super-candidate
S1 above super-candidate S2 such that s1 → s2 for all
s1 ∈ S1, s2 ∈ S2, or below a super-candidate S2 such that
s2 → s1 for all s1 ∈ S1, s2 ∈ S2, will increase the Slater
score by |S1| · |S2|.
Proof: Omitted due to space constraint.

Similar sets that overlap cannot be simultaneously turned
into super-candidates. However, the following lemma shows
that turning one of them into a super-candidate will (in a
sense) preserve the structure of the other set: after aggregat-
ing one of the sets into a super-candidate, the other set will,
in a sense, coincide with the union of the two sets, and we
now show that this union must consist of similar candidates.

Lemma 2 If S1 and S2 each consist of similar candidates,
and S1 ∩ S2 is nonempty, then S1 ∪ S2 consists of similar
candidates.

Proof: Omitted due to space constraint.

Hierarchical pairwise election graphs can be
solved in linear time

In this section, we show that if the pairwise election graph
has a certain hierarchical structure, then the Slater problem
can be solved efficiently using the techniques from the pre-
vious section.

Definition 2 A valid candidate tree is a tree with the follow-
ing properties:

• The leaves are each labeled with a candidate, with each
candidate appearing exactly once.

• For every internal vertex v, there is a tournament graph
→v over its children such that for any two distinct chil-
dren w1 	= w2 of v, for any descendants d1 of w1 and d2

of w2, d1 → d2 if and only if w1 →v w2.

Put alternatively, to find out the direction of the edge be-
tween any two candidates in the pairwise election graph, we
can simply compare the vertices directly below their least
common ancestor. There is always a trivial valid candidate
tree, which simply connects every candidate directly to the
root node R and uses the pairwise election graph → as the
graph →R. This tree does not give us any insight. Instead,
we will be interested in trees whose vertices have small de-
gree (that is, each vertex has only a few children).

Figure 1 shows an example candidate tree, and Figure 2
shows the corresponding graph of pairwise elections.

Figure 1: A valid candidate tree.

Figure 2: The pairwise election graph corresponding to the
valid candidate tree.

The following observation will allow us to use the struc-
ture of the tree to solve the Slater problem efficiently:

Lemma 3 For any vertex v in a valid candidate tree, the set
Dv of candidates that are descendants of v constitutes a set
of similar candidates.

Proof: For any d1, d2 ∈ Dv and c ∈ C − Dv , the least
common ancestor of d1 and c, or of d2 and c, must be a
(strict) ancestor of v. Hence, this least common ancestor
must be the same in both cases, and moreover, so must
the child of that ancestor from which d1 and d2 (and v)
descend. Hence d1 → c if and only if d2 → c.
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Hence, we can solve the Slater problem using the follow-
ing very simple algorithm:

1. For every child of the root R, generate a super-
candidate with weight equal to the number of candidates that
descend from it.

2. Solve the Slater problem for the graph →R over these
super-candidates (using any algorithm).

3. Solve the Slater problem recursively for each subtree
rooted at a child of the root R.

4. Order the candidates, first according to the ranking of
the super-candidates that they are in, and then according to
the recursive solutions.

Step 2 may be computationally expensive, depending on
the number of super-candidates. However, if the degree
of each vertex is small, then so is the number of super-
candidates in this step. In particular, if the degree is bounded
by a constant, then step 2 can be performed in constant time,
and the running time of the entire algorithm is linear.

The algorithm produces the Slater ranking f � e � c �
a � b � d on the example given above.

An algorithm for detecting sets of similar
candidates

In general, we do not know in advance whether there is a
nontrivial set of similar candidates in a pairwise election
graph. Rather, we need an algorithm that will take as in-
put a pairwise election graph, and discover a nontrivial set
of similar candidates if it exists. In this section, we present
such an algorithm. The algorithm relies on transforming the
problem of detecting a set of similar candidates into a Horn
satisfiability problem.

Specifically, for every candidate c we generate a variable
In(c) which indicates whether the candidate is in the set of
similar candidates. Then, for every ordered triplet of can-
didates c1, c2, c3 ∈ C, if either c1 → c3 and c3 → c2,
or c2 → c3 and c3 → c1, then we generate the clause
In(c1) ∧ In(c2) ⇒ In(c3) (or, equivalently, (¬In(c1) ∨
¬In(c2) ∨ In(c3)).

The instance described two sections earlier produces the
following clauses: In(a) ∧ In(b) ⇒ In(c), In(a) ∧
In(c) ⇒ In(b) ∧ In(d), In(a) ∧ In(d) ⇒ In(b) ∧ In(c),
In(b) ∧ In(c) ⇒ In(a) ∧ In(d), In(c) ∧ In(d) ⇒ In(a).
Theorem 2 A setting of the variables In(c) satisfies all the
clauses if and only if S = {c ∈ C : In(c) =true} consists
of similar candidates.

Proof: Omitted due to space constraint.

There are some settings of the variables In(c) that always
satisfy all the clauses: setting everything to true, and setting
at most one variable to true. These settings correspond ex-
actly to the trivial sets of similar candidates discussed earlier.
Hence, our goal is to find a satisfying setting of the variables
in which at least two, but not all, variables are set to true. In
the example above, the only such solution is to set In(b) and
In(d) to true and In(a) and In(c) to false, corresponding
to the set of similar candidates that we used earlier in the pa-
per. Finding a nontrivial solution can be done in polynomial

time with the following simple algorithm: for a given pair
of candidates c1, c2 ∈ C, set In(c1) and In(c2) to true, and
then follow the implications ⇒ in the clauses. If this process
terminates without setting all the In(c) variables to true, we
have found a nontrivial set of similar candidates. Otherwise,
restart with a different pair of candidates, until we have tried
every pair of candidates. The algorithm can be improved by
keeping track of the initial pairs of candidates for which we
have failed to find a similar set, so that when another initial
pair leads to one of these pairs being set to true, we can fail
immediately and continue to the next pair.

When we use this algorithm for finding similar sets to help
us compute a Slater ranking, after finding a similar set, we
need to compute a Slater ranking both on the instance con-
sisting of the similar set only, and on the reduced version of
the original instance where the similar set has been replaced
by a single super-candidate. Thus, we will be interested in
finding similar sets on these instances as well. It is natural
to ask whether some of the computation that we did to find
a similar set in the original instance can be reused to find
similar sets in the two new instances. It turns out that, in the
second new instance, this is indeed possible:

Lemma 4 Suppose that, in the process of detecting a simi-
lar set, we failed with the pair of initial candidates c1, c2 ∈
C, before discovering that S ⊆ C is a similar set. Then, in
the reduced instance where S is replaced by a single super-
candidate cS ,

1. we will also fail on initial pair c1, c2 if c1, c2 /∈ S;
2. we will also fail on initial pair c1, cS if c1 /∈ S, c2 ∈ S.

Proof: Omitted due to space constraint.

For the first new instance consisting of S only, such reuse
of computation is not possible, because we cannot have
failed on a pair of candidates within S (since they were in
fact in a similar set). We only know that we will fail on the
pair starting with which we found S, because this pair will
lead to all candidates in S being included in the similar set.

Experimental results
In this section, we experimentally evaluate the use of the
techniques described above as a preprocessing technique
that serves to reduce the sizes of the instances before a
search algorithm is called. We compare two algorithms:
a straightforward search technique, and the preprocessing
technique combined with the same search technique. The
straightforward search technique decides, at every search
node, whether a given edge in the graph should be consistent
or inconsistent with the final ranking, and then propagates
the effect of this decision to other edges (e.g. by transitivity,
if it has been decided that edges (a, b) and (b, c) will both be
consistent with the final ranking, then by transitivity so must
the edge (b, c)). As an admissible pruning heuristic, we use
the total number of edges for which it has been decided that
the final ranking will be inconsistent with them.

The preprocessing technique uses the algorithm described
in the previous section to search for a set of similar candi-
dates. If it finds one, it recursively solves the subproblems;
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otherwise, the search algorithm is called to solve the remain-
ing irreducible problem instance. Each data point in the ex-
periments is an average of 30 instances (the same instances
for both algorithms).

In the first set of experiments, instances are generated as
follows. Every candidate and every voter draws a random
position in [0, 1] (this can be thought of as their stance on
one issue) and voters rank candidates by proximity to their
own position. The results are in Figure 3:

0

5

10

15

20

25

30

0 5 10 15 20 25 30 35 40

tim
e 

in
 s

ec
on

ds

# candidates

search only
preprocessing+search total
search after preprocessing

Figure 3: 1 issue, 191 voters, 30 instances per data point.

On these instances, even straightforward search scales
reasonably well, but when the preprocessing technique is
added, all the instances solve immediately. This is not sur-
prising: the voters’ preferences in this domain are single-
peaked, and it is well-known that for single-peaked pref-
erences, there are no cycles in the pairwise election graph
(e.g. [21]), so that the final ranking can be read off directly
from the graph. Given this, any k candidates in contiguous
positions in the final ranking always form a set of similar
candidates, so that the preprocessing technique can solve the
instances entirely. (No time is spent in search after the pre-
processing technique.)

Of course, we do not want to examine only trivial in-
stances. In the next experiment (Figure 4), the candidates
and voters draw random positions in [0, 1] × [0, 1]; in this
two-dimensional setup the voters’ preferences are no longer
single-peaked.

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25

tim
e 

in
 s

ec
on

ds

# candidates

search only
preprocessing+search total
search after preprocessing

Figure 4: 2 issues, 191 voters, 30 instances per data point.

These instances are much harder to solve, but adding the
preprocessing technique significantly speeds up the search.
We note that essentially no time is spent in the preprocessing
stage (the “preprocessing + search total” and “search after
preprocessing” curves are essentially identical), hence the
benefits of preprocessing effectively come for free.

We also considered changing the number of votes to a
small number. Figure 5 shows the results with only 3 votes.

We experimented with introducing additional structure on
the set of candidates. In the next experiment, there are 5

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25

tim
e 

in
 s

ec
on

ds

# candidates

search only
preprocessing+search total
search after preprocessing

Figure 5: 2 issues, 3 voters, 30 instances per data point.

parties that draw random positions in [0, 1] × [0, 1]; each
candidate randomly chooses a party, and then takes a posi-
tion that is the average of the party’s position and another
random point in [0, 1] × [0, 1]. The results did not change
significantly, as shown in Figure 6.
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Figure 6: 2 issues, 5 parties, 191 voters, 30 instances per
data point.

We also experimented with having the voters and can-
didates draw positions on an even larger number of issues
(10 issues). Perhaps surprisingly, here the preprocessing
technique once again solved all instances immediately (Fig-
ure 7).
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Figure 7: 10 issues, 191 voters, 30 instances per data point.

NP-hardness of the Slater problem
In this section, we use the technique of sets of similar can-
didates in an entirely different manner: we show that it is
useful in demonstrating the hardness of the Slater problem
when there are no pairwise ties. In the case where pair-
wise ties between candidates are possible, the hardness of
the Slater problem follows from the hardness of the Mini-
mum Feedback Edge Set problem. However, as we have
already pointed out, most elections do not have pairwise ties
(for example, if the number of votes is odd, then there can-
not be any pairwise ties). So, how hard is the problem when
there are no ties? This problem is equivalent to the Mini-
mum Feedback Edge Set problem on tournament graphs,
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and was conjectured to be NP-hard as early as 1992 [6]. The
conjecture remained unproven until 2005, when a random-
ized reduction was given [1]. A later derandomization of
this proof finally proved the conjecture completely [2]. In-
terestingly, the observations about sets of similar candidates
made above allow us to give a more direct proof of this re-
sult (which does not rely on derandomizing a randomized
reduction).3

Theorem 3 The Slater problem is NP-hard (even in the ab-
sence of pairwise ties).

Proof: We reduce from the NP-complete Maximum Satis-
fiability (MAXSAT) problem. We show how to reduce an ar-
bitrary MAXSAT instance, given by a set of clauses K over
a set of variables V , and a target number t1 of clauses to sat-
isfy, to an instance of the Slater problem and a target score
t2, such that there is an ranking with Slater score at least t2
if and only if there is a solution to the MAXSAT instance
(that satisfies at least t1 clauses). Let M be a sufficiently
large number (M > 6|K||V | + |K|2). For every variable
v ∈ V , let there be the following 6 super-candidates, each
of size M (that is, representing M individual candidates):
Cv = {av,+v,−v, bv, dv, ev}.4 Let the individual candi-
dates that any given single super-candidate represents con-
stitute an acyclic pairwise election graph, so that we can or-
der them perfectly and obtain a Slater score of M(M−1)/2.
Let the super-candidates have the following relationships to
each other in the aggregated graph:

• Fix some order > over the variables (e.g. x1 > x2 >
. . . > x|V |). Then, for any two super-candidates cv ∈
Cv, cv′ ∈ Cv′ with v > v′, cv → cv′ .

• For any v ∈ V , for any cv ∈ {av,+v,−v} and c′v ∈
{bv, dv, ev}, cv → c′v .

• For any v ∈ V , av → +v,+v → −v,−v → av; bv →
dv, bv → ev, dv → ev .

Additionally, for every clause k ∈ K, let there be a sin-
gle candidate (not a super-candidate) ck, with the following
relationships to the candidates corresponding to variables.
Assume without loss of generality that opposite literals (+v
and −v) never occur in the same clause. Then,

• If +v ∈ k, then +v → ck, dv → ck, ev → ck and ck →
av, ck → −v, ck → bv .

• If −v ∈ k, then −v → ck, dv → ck, ev → ck and ck →
av, ck → +v, ck → bv .

• If {+v,−v} ∩ k = ∅, then bv → ck, dv → ck, ev → ck

and ck → av, ck → +v, ck → −v .

The relationships among the ck are irrelevant. Finally,
let the target Slater score be t2 = 6|V |M(M − 1)/2 +
36M2|V |(|V | − 1)/2 + 14M2|V | + t1M .

3Interestingly, the previous reductions [1; 2] also use what is
effectively an extremely special case of the results about similar
candidates presented in this paper. That special case is, however,
not sufficient for the reduction given here.

4The letter c is skipped only to avoid confusion with the use of
c as an arbitrary candidate.

We now make some observations about the Slater prob-
lem instance that we have constructed. First, by Theorem 1,
we can restrict our attention to rankings in which the indi-
vidual candidates in any given super-candidate form a (con-
tiguous) block. Recall that within such a block, we can
order the individual candidates to obtain a Slater score of
M(M−1)/2, which will give us a total of 6|V |M(M−1)/2
points. Now, if our ranking of two super-candidates is
consistent with the pairwise election graph, according to
Lemma 1 this will increase the Slater score by M2. By
contrast, the total number of Slater points that we can ob-
tain from all the edges in the pairwise election graph that
involve a candidate ck corresponding to a clause is at most
|K| ·6|V |M + |K|2 < 6|K||V |M + |K|2M < M2. Hence,
it is never worth it to sacrifice an agreement on an edge in-
volving two super-candidates to obtain a better result with
regard to the remaining candidates, and therefore we can
initially restrict our attention to the super-candidates only
as these are our primary concern. It is clear that for v > v′

we should rank all the candidates in Cv above all those in
Cv′ . Doing this for all variables will increase the Slater
score by 36M2|V |(|V | − 1)/2. Moreover, it is clear that for
every v we should rank all the candidates in {av,+v,−v}
above all those in {bv, dv, ev}, and bv � dv � ev . Do-
ing this for all variables will increase the Slater score by
(9M2 + 3M2)|V | = 12M2|V |. Finally, for every v, any
one of the rankings +v � −v � av , −v � av � +v ,
and av � +v � −v are equally good, leaving us a choice.
Choosing one of these for all variables increases the Slater
score by another 2M2|V |.

Now, as a secondary concern, we can analyze edges
involving the ck. Agreement on an edge between a ck

and one of the super-candidates will increase the Slater
score by M . By contrast, the total number of Slater points
that we can obtain from all the edges in the pairwise
election graph that involve only candidates ck is at most
|K|(|K| − 1)/2 < |K|2 < M . Hence, it is never worth
it to sacrifice an agreement on an edge involving a super-
candidate to obtain a better result with regard to the edges
involving only candidates ck, and hence we can restrict our
attention to edges involving a super-candidate. (In fact, the
edges involving only candidates ck will turn out to have
such a minimal effect on the total score that we need not
consider them at all.) Now, we note that whether a candidate
ck is ranked before all the candidates in Cv or after all of
them makes no difference to the total score, because three
of these candidates will have an edge into ck, and three
of them will have have an edge out of ck. Nevertheless, a
candidate ck could be ranked among the candidates Cv for
(at most) one v ∈ V . Because dv and ev always have edges
into ck and are always ranked last among the candidates in
Cv , ranking ck after at least two of the candidates in Cv

will never make a positive contribution to the Slater score.
Hence, there are only two possibilities to increase the Slater
score (by exactly M ) for a given ck: either rank ck directly
after some +v such that +v ∈ k and +v is ranked first
among the Cv , or rank ck directly after some −v such that
−v ∈ k and −v is ranked first among the Cv . Of course, for
each variable v, we can rank at most one of +v and −v first.
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(We can also rank av first, but this will never help us.) Now
we can see that this corresponds to the MAXSAT problem:
say that we set v to true if +v is ranked first, and to false
if −v is ranked first. Then, we can obtain an additional M
points for a candidate ck if and only if clause k is satisfied,
and hence we can increase the Slater score by an additional
t1M points if and only if we can set the variables in such a
way as to satisfy at least t1 clauses.

Extension to Kemeny rule
The Kemeny rule [20] is another voting rule that is similar
to the Slater rule. The Kemeny rule, instead of minimizing
the number of pairwise elections that the final ranking dis-
agrees with, tries to minimize the total weight of such pair-
wise elections—where the weight of a pairwise election is
the number of votes by which its winner defeated its loser.

The techniques presented in this paper can be extended
to apply to the Kemeny rule as well. However, to apply to
the Kemeny rule, the definition of a set of similar candidates
must be modified to state that for any fixed candidate outside
the set, all candidates inside the set must receive exactly the
same number of votes in the pairwise election against that
candidate (rather than merely obtain the same overall result).
This modified definition is much less likely to apply than the
original version.

Conclusions
Voting (or rank aggregation) is a fundamental problem in
systems of multiple self-interested agents that need to co-
ordinate their actions. One voting rule, the Slater rule, is
perhaps the most natural method to resolve Condorcet para-
doxes (in which most voters prefer a to b, most voters prefer
b to c, and most voters prefer c to a): it determines a ranking
that minimizes the number of pairs of candidates for which
the ranking is inconsistent with the outcome of the pairwise
election. But, computing a Slater ranking is NP-hard.

In this paper, we defined the concept of a set of similar
candidates, and showed that any set of similar candidates is
contiguous in some Slater ranking. This yields a powerful
preprocessing technique for computing Slater rankings: we
can solve the Slater problem on the set of similar candidates,
and subsequently replace the set of similar candidates in the
original instance by a single super-candidate. We showed
that this technique suffices to compute a Slater ranking in
linear time if the pairwise majority graph is hierarchically
structured. In general, we need to be able to discover a set
of similar candidates for this technique to be useful. We gave
a polynomial-time algorithm for doing so based on tech-
niques from satisfiability. We evaluated these techniques
experimentally. On highly structured instances, the prepro-
cessing technique solves the problem immediately. On oth-
ers, it does not solve the entire problem, but still reduces
the search time significantly. Moreover, the time spent on
the preprocessing technique (including the search for sets of
similar candidates) is insignificant relative to the time spent
in search, so that the use of the preprocessing technique es-
sentially comes for free. Finally, we gave a completely dif-
ferent use of the concept of similar candidates: we used it
to help us show the NP-hardness of the Slater problem when

there are no pairwise ties. This proof is arguably more direct
than the only other known proof (which itself was discov-
ered only recently after the problem had been open for over
a decade).
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