
Journal of Artificial Intelligence Research 40 (2011) 701-728 Submitted 10/10; published 4/11

Computing Small Unsatisfiable Cores
in Satisfiability Modulo Theories

Alessandro Cimatti cimatti@fbk.eu
FBK-IRST,
Via Sommarive 18, 38123 Povo, Trento, Italy

Alberto Griggio griggio@fbk.eu
FBK-IRST,
Via Sommarive 18, 38123 Povo, Trento, Italy

Roberto Sebastiani rseba@disi.unitn.it

DISI, Università di Trento,

Via Sommarive 14, 38123 Povo, Trento, Italy

Abstract

The problem of finding small unsatisfiable cores for SAT formulas has recently received
a lot of interest, mostly for its applications in formal verification. However, propositional
logic is often not expressive enough for representing many interesting verification problems,
which can be more naturally addressed in the framework of Satisfiability Modulo Theories,
SMT. Surprisingly, the problem of finding unsatisfiable cores in SMT has received very
little attention in the literature.

In this paper we present a novel approach to this problem, called the Lemma-Lifting
approach. The main idea is to combine an SMT solver with an external propositional
core extractor. The SMT solver produces the theory lemmas found during the search,
dynamically lifting the suitable amount of theory information to the Boolean level. The
core extractor is then called on the Boolean abstraction of the original SMT problem and
of the theory lemmas. This results in an unsatisfiable core for the original SMT problem,
once the remaining theory lemmas are removed.

The approach is conceptually interesting, and has several advantages in practice. In
fact, it is extremely simple to implement and to update, and it can be interfaced with
every propositional core extractor in a plug-and-play manner, so as to benefit for free of
all unsat-core reduction techniques which have been or will be made available.

We have evaluated our algorithm with a very extensive empirical test on SMT-LIB
benchmarks, which confirms the validity and potential of this approach.

1. Motivations and Goals

In the last decade we have witnessed an impressive advance in the efficiency of SAT tech-
niques, which has brought large and previously-intractable problems at the reach of state-
of-the-art SAT solvers. As a consequence, SAT solvers are now a fundamental tool in many
industrial-strength applications, including most formal verification design flows for hardware
systems, for equivalence, property checking, and ATPG. In particular, one of the most rel-
evant problems in this context, thanks to its many important applications, is that of finding
small unsatisfiable cores, that is, small unsatisfiable subsets of unsatisfiable sets of clauses.

c©2011 AI Access Foundation. All rights reserved.

701

Cimatti, Griggio, & Sebastiani

Examples of such applications include use of SAT instead of BDDs for unbounded symbolic
model checking (McMillan, 2002), automatic predicate discovery in abstraction refinement
frameworks (McMillan & Amla, 2003; Wang, Kim, & Gupta, 2007), decision procedures
(Bryant, Kroening, Ouaknine, Seshia, Strichman, & Brady, 2009), under-approximation and
refinement in the context of bounded model checking of multi-threaded systems (Grumberg,
Lerda, Strichman, & Theobald, 2005), debugging of design errors in circuits (Suelflow, Fey,
Bloem, & Drechsler, 2008). For this reason, the problem of finding small unsat cores in
SAT has been addressed by many authors in the recent years (Zhang & Malik, 2003; Gold-
berg & Novikov, 2003; Lynce & Marques-Silva, 2004; Oh, Mneimneh, Andraus, Sakallah,
& Markov, 2004; Mneimneh, Lynce, Andraus, Marques-Silva, & Sakallah, 2005; Huang,
2005; Dershowitz, Hanna, & Nadel, 2006; Zhang, Li, & Shen, 2006; Biere, 2008; Gershman,
Koifman, & Strichman, 2008; van Maaren & Wieringa, 2008; Aśın, Nieuwenhuis, Oliveras,
& Rodŕıguez Carbonell, 2008; Nadel, 2010).

The formalism of plain propositional logic, however, is often not suitable or expressive
enough for representing many other real-world problems, including the verification of RTL
designs, of real-time and hybrid control systems, and the analysis of proof obligations in
software verification. Such problems are more naturally expressible as satisfiability prob-
lems in decidable first-order theories —Satisfiability Modulo Theories, SMT. Efficient SMT
solvers have been developed in the last five years, called lazy SMT solvers, which combine a
Conflict-Driven Clause Learning (CDCL) SAT solver based on the DPLL algorithm (Davis
& Putnam, 1960; Davis, Logemann, & Loveland, 1962; Marques-Silva & Sakallah, 1996;
Zhang & Malik, 2002) — hereafter simply “DPLL” — with ad-hoc decision procedures
for many theories of interest (see, e.g., Nieuwenhuis, Oliveras, & Tinelli, 2006; Barrett
& Tinelli, 2007; Bruttomesso, Cimatti, Franzén, Griggio, & Sebastiani, 2008; Dutertre &
de Moura, 2006; de Moura & Bjørner, 2008).

Surprisingly, the problem of finding unsatisfiable cores in SMT has received virtually no
attention in the literature. Although some SMT tools do compute unsat cores, this is done
either as a byproduct of the more general task of producing proofs, or by modifying the
embedded DPLL solver so that to apply basic propositional techniques to produce an unsat
core. In particular, we are not aware of any work aiming at producing small unsatisfiable
cores in SMT.

In this paper we present a novel approach addressing this problem, which we call the
Lemma-Lifting approach. The main idea is to combine an SMT solver with an external
propositional core extractor. The SMT solver stores and returns the theory lemmas it had
to prove in order to refute the input formula; the external core extractor is then called
on the Boolean abstraction of the original SMT problem and of the theory lemmas. Our
algorithm is based on the following two key observations: i) the theory lemmas discovered
by the SMT solver during search are valid clauses in the theory T under consideration,
and therefore they do not affect the satisfiability of a formula in T ; and ii) the conjunction
of the original SMT formula with all the theory lemmas is propositionally unsatisfiable.
Therefore, the external (Boolean) core extractor finds an unsatisfiable core for (the Boolean
abstraction of) the conjunction of the original formula and the theory lemmas, which can
then be refined back into a subset of the original clauses by simply removing from it (the
Boolean abstractions of) all theory lemmas. The result is an unsatisfiable core of the original
SMT problem.

702

Computing Small Unsatisfiable Cores in Satisfiability Modulo Theories

Although simple in principle, the approach is conceptually interesting: basically, the
SMT solver is used to dynamically lift the suitable amount of theory information to the
Boolean level. Furthermore, the approach has several advantages in practice: first, it is
extremely simple to implement and to update; second, it is effective in finding small cores;
third, the core extraction is not prone to complex SMT reasoning; finally, it can be interfaced
with every propositional core extractor in a plug-and-play manner, so as to benefit for free
of all unsat-core reduction techniques which have been or will be made available.

We have evaluated our approach by a very extensive empirical test on SMT-LIB bench-
marks, in terms of both effectiveness (reduction in size of the cores) and efficiency (execution
time). The results confirm the validity and versatility of this approach.

As a byproduct, we have also produced an extensive and insightful evaluation of the
main Boolean unsat-core-generation tools currently available.

Content. The paper is organized as follows. In §2 and §3 we provide some background
knowledge on techniques for SAT and SMT (§2), and for the extraction of unsatisfiable cores
in SAT and in SMT (§3). In §4 we present and discuss our new approach and algorithm.
In §5 we present and comment on the empirical tests. In §6 we conclude, suggesting some
future developments.

2. SAT and SMT

Our setting is standard first order logic. A 0-ary function symbol is called a constant. A
term is a first-order term built out of function symbols and variables. If t1, . . . , tn are terms
and p is a predicate symbol, then p(t1, . . . , tn) is an atom. A formula φ is built in the
usual way out of the universal and existential quantifiers, Boolean connectives, and atoms.
A literal is either an atom or its negation. We call a formula quantifier-free if it does not
contain quantifiers, and ground if it does not contain free variables. A clause is a disjunction
of literals. A formula is said to be in conjunctive normal form (CNF) if it is a conjunction of
clauses. For every non-CNF formula ϕ, an equisatisfiable CNF formula ψ can be generated
in polynomial time (Tseitin, 1983).

We also assume the usual first-order notions of interpretation, satisfiability, validity,
logical consequence, and theory, as given, e.g., by Enderton (1972). We write Γ |= φ to
denote that the formula φ is a logical consequence of the (possibly infinite) set Γ of formulas.
A first-order theory, T , is a set of first-order sentences. A structure A is a model of a theory
T if A satisfies every sentence in T . A formula is satisfiable in T (or T -satisfiable) if it is
satisfiable in a model of T . (We sometimes use the word “T -formula” for a ground formula
when we are interested in determining its T -satisfiability.)

In what follows, with a little abuse of notation, we might sometimes denote conjunctions
of literals l1 ∧ . . . ∧ ln as sets {l1, . . . , ln} and vice versa. If η ≡ {l1, . . . , ln}, we might write
¬η to mean ¬l1 ∨ . . . ∨ ¬ln. Moreover, following the terminology of the SAT and SMT
communities, we shall refer to predicates of arity zero as propositional variables, and to
uninterpreted constants as theory variables.

Given a first-order theory T for which the (ground) satisfiability problem is decidable,
we call a theory solver for T , T -solver, any tool able to decide the satisfiability in T of
sets/conjunctions of ground atomic formulas and their negations — theory literals or T -
literals — in the language of T . If the input set of T -literals μ is T -unsatisfiable, then a

703

Cimatti, Griggio, & Sebastiani

1. SatValue DPLL (formula ϕ, assignment μ) {
2. while (1) {
3. decide next branch(ϕ, μ);
4. while (1) {
5. status = deduce(ϕ, μ);
6. if (status == sat)
7. return sat;
8. else if (status == conflict) {
9. 〈blevel, η〉 = analyze conflict(ϕ, μ);
10. if (blevel < 0) return unsat;
11. else backtrack(blevel, ϕ, μ, η);
12. }
13. else break;

14. }}}

Figure 1: Schema of a modern DPLL engine.

typical T -solver not only returns unsat, but it also returns the subset η of T -literals in μ
which was found T -unsatisfiable. (η is hereafter called a theory conflict set, and ¬η a theory
conflict clause.) If μ is T -satisfiable, then T -solver not only returns sat, but it may also be
able to discover one (or more) deductions in the form {l1, . . . , ln} |=T l, s.t. {l1, . . . , ln} ⊆ μ
and l is an unassigned T -literal. If so, we call (

∨n
i=1 ¬li ∨ l) a theory-deduction clause.

Importantly, notice that both theory-conflict clauses and theory-deduction clauses are valid
in T . We call them theory lemmas or T -lemmas.

Satisfiability Modulo (the) Theory T — SMT (T) — is the problem of deciding the
satisfiability of Boolean combinations of propositional atoms and theory atoms. Examples
of useful theories are equality and uninterpreted functions (EUF), difference logic (DL) and
linear arithmetic (LA), either over the reals (LA(Q)) or the integers (LA(Z)), the theory
of arrays (AR), that of bit vectors (BV), and their combinations. We call an SMT (T) tool
any tool able to decide SMT (T). Notice that, unlike a T -solver, an SMT (T) tool must
handle also Boolean connectives.

Hereafter we adopt the following terminology and notation. The symbols ϕ, ψ denote
T -formulas, and μ, η denote sets of T -literals; ϕp, ψp denote propositional formulas, μp,
ηp denote sets of propositional literals, which can be interpreted as truth assignments to
variables.

2.1 Propositional Satisfiability with the DPLL Algorithm

Most state-of-the-art SAT procedures are evolutions of the Davis-Putnam-Longeman-Loveland
(DPLL) procedure (Davis & Putnam, 1960; Davis et al., 1962). A high-level schema of
a modern DPLL engine, adapted from the description given by Zhang and Malik (2002),

704

Computing Small Unsatisfiable Cores in Satisfiability Modulo Theories

1. SatValue Lazy SMT Solver (T -formula ϕ) {
2. ϕp = T 2P(ϕ);
3. while (DPLL(ϕp, μp) == sat) {
4. 〈ρ, η〉 = T -solver(P2T (μp))
5. if (ρ == sat) then return sat;
6. ϕp = ϕp ∧ T 2P(¬η);
7. };
8. return unsat;
9. };

Figure 2: A simplified schema for lazy SMT (T) procedures.

is reported in Figure 1.1 The Boolean formula ϕ is in CNF; the assignment μ is initially
empty, and it is updated in a stack-based manner.

In the main loop, decide next branch(ϕ, μ) chooses an unassigned literal l from ϕ
according to some heuristic criterion, and adds it to μ. (This operation is called decision, l
is called decision literal end the number of decision literals in μ after this operation is called
the decision level of l.) In the inner loop, deduce(ϕ, μ) iteratively deduces literals l deriving
from the current assignment and updates μ accordingly; this step is repeated until either
μ satisfies ϕ, or μ falsifies ϕ, or no more literals can be deduced, returning sat, conflict and
unknown respectively. (The iterative application of Boolean deduction steps in deduce is
also called Boolean Constraint Propagation, BCP.) In the first case, DPLL returns sat. In
the second case, analyze conflict(ϕ, μ) detects the subset η of μ which caused the conflict
(conflict set) and the decision level blevel to backtrack. If blevel < 0, then a conflict exists
even without branching, and DPLL returns unsat. Otherwise, backtrack(blevel, ϕ, μ)
adds the clause ¬η to ϕ (learning) and backtracks up to blevel (backjumping), updating μ
accordingly. (E.g., with the popular 1st-UIP schema, it backtracks to the smallest blevel
where all but one literal in η are assigned, and hence it deduces the negation of the remaining
literal applying BCP on the learned clause ¬η; see Zhang, Madigan, Moskewicz, & Malik,
2001.) In the third case, DPLL exits the inner loop, looking for the next decision.

For a much deeper description of modern DPLL-based SAT solvers, we refer the reader,
e.g., to the work of Zhang and Malik (2002).

2.2 Lazy Techniques for SMT

The idea underlying every lazy SMT (T) procedure is that (a complete set of) the truth
assignments for the propositional abstraction of ϕ are enumerated and checked for satisfia-
bility in T ; the procedure either returns sat if one T -satisfiable truth assignment is found,
or returns unsat otherwise.

We introduce the following notation. T 2P is a bijective function (“theory to proposi-
tional”), called Boolean (or propositional) abstraction, which maps propositional variables
into themselves, ground T -atoms into fresh propositional variables, and is homomorphic

1. We remark that many of the details provided here are not critical for understanding the rest of the paper,
but are mentioned only for the sake of completeness.

705

Cimatti, Griggio, & Sebastiani

w.r.t. Boolean operators and set inclusion. The function P2T (“propositional to the-
ory”), called refinement, is the inverse of T 2P. (E.g., T 2P({((x − y ≤ 3) ∨ A3), (A2 →
(x = z))}) = {(B1 ∨ A3), (A2 → B2)}, B1 and B2 being fresh propositional variables, and
P2T ({A1,¬A2,¬B1, B2}) = {A1,¬A2,¬(x − y ≤ 3), (x = z)}.) In what follows, we shall
use the “p” superscript for denoting the Boolean abstraction of a formula/truth assignment
(e.g., ϕp denotes T 2P(ϕ), μ denotes P2T (μp)). Given a T -formula ϕ, we say that ϕ is
propositionally unsatisfiable when T 2P(ϕ) |= ⊥. .

Figure 2 presents a simplified schema of a lazy SMT (T) procedure, called the off-line
schema. The propositional abstraction ϕp of the input formula ϕ is given as input to
a SAT solver based on the DPLL algorithm (Davis et al., 1962; Zhang & Malik, 2002),
which either decides that ϕp is unsatisfiable, and hence ϕ is T -unsatisfiable, or returns
a satisfying assignment μp; in the latter case, P2T (μp) is given as input to T -solver. If
P2T (μp) is found T -consistent, then ϕ is T -consistent. If not, T -solver returns the conflict
set η which caused the T -inconsistency of P2T (μp); the abstraction of the T -lemma ¬η,
T 2P(¬η), is then added as a clause to ϕp. Then the DPLL solver is restarted from scratch
on the resulting formula.

Practical implementations follow a more elaborated schema, called the on-line schema
(see Barrett, Dill, & Stump, 2002; Audemard, Bertoli, Cimatti, Korni�lowicz, & Sebastiani,
2002; Flanagan, Joshi, Ou, & Saxe, 2003). As before, ϕp is given as input to a modified
version of DPLL, and when a satisfying assignment μp is found, the refinement μ of μp is
fed to the T -solver; if μ is found T -consistent, then ϕ is T -consistent; otherwise, T -solver
returns the conflict set η which caused the T -inconsistency of P2T (μp). Then the clause
¬ηp is added in conjunction to ϕp, either temporarily or permanently (T -learning), and,
rather than starting DPLL from scratch, the algorithm backtracks up to the highest point
in the search where one of the literals in ¬ηp is unassigned (T -backjumping), and therefore
its value is (propositionally) implied by the others in ¬ηp.

An important variant of this schema (Nieuwenhuis et al., 2006) is that of building a
“mixed Boolean+theory conflict clause”, starting from ¬ηp and applying the backward-
traversal of the implication graph built by DPLL (Zhang et al., 2001), until one of the
standard conditions (e.g., 1st UIP – Zhang et al., 2001) is achieved.

Other important optimizations are early pruning and theory propagation: the T -solver
is invoked also on (the refinement of) an intermediate assignment μ: if it is found T -
unsatisfiable, then the procedure can backtrack, since no extension of μ can be T -satisfiable;
if not, and if the T -solver performs a deduction {l1, . . . , ln} |=T l s.t. {l1, . . . , ln} ⊆ μ, then
T 2P(l) can be unit-propagated, and the Boolean abstraction of the T -lemma (

∨n
i=1 ¬li ∨ l)

can be learned.

The on-line lazy SMT (T) schema is a coarse description of the procedures underlying all
the state-of-the-art lazy SMT (T) tools like, e.g., BarceLogic, CVC3, MathSAT, Yices,
Z3. The interested reader is pointed to, e.g., the work of Nieuwenhuis et al. (2006), Barrett
and Tinelli (2007), Bruttomesso et al. (2008), Dutertre and de Moura (2006), and de Moura
and Bjørner (2008), for details and further references, or to the work of Sebastiani (2007)
and Barrett, Sebastiani, Seshia, and Tinelli (2009) for a survey.

706

Computing Small Unsatisfiable Cores in Satisfiability Modulo Theories

3. Extracting Unsatisfiable Cores

Without loss of generality, in the following we consider only formulas in CNF. Given an
unsatisfiable CNF formula ϕ, we say that an unsatisfiable CNF formula ψ is an unsatisfiable
core of ϕ iff ϕ = ψ∧ψ′ for some (possibly empty) CNF formula ψ′. Intuitively, ψ is a subset
of the clauses in ϕ causing the unsatisfiability of ϕ. An unsatisfiable core ψ is minimal iff
the formula obtained by removing any of the clauses of ψ is satisfiable. A minimum unsat
core is a minimal unsat core with the smallest possible cardinality.

3.1 Techniques for Unsatisfiable-Core Extraction in SAT

In the last few years, several algorithms for computing small, minimal or minimum unsat-
isfiable cores of propositional formulas have been proposed. In the approach of Zhang and
Malik (2003) and Goldberg and Novikov (2003), they are computed as a byproduct of a
DPLL-based proof-generation procedure. The computed unsat core is simply the collection
of all the original clauses that the DPLL solver used to derive the empty clause by res-
olution. The returned core is not minimal in general, but it can be reduced by iterating
the algorithm until a fixpoint, using as input of each iteration the core computed at the
previous one. The algorithm of Gershman et al. (2008), instead, manipulates the resolution
proof so as to shrink the size of the core, using also a fixpoint iteration as Zhang and Malik
(2003) to further enhance the quality of the results. Oh et al. (2004) present an algorithm to
compute minimal unsat cores. The technique is based on modifications of a standard DPLL
engine, and works by adding some extra variables (selectors) to the original clauses, and
then performing a branch-and-bound algorithm on the modified formula. The procedure
presented by Huang (2005) extracts minimal cores using BDD manipulation techniques,
removing one clause at a time until the remaining core is minimal. The construction of a
minimal core by Dershowitz et al. (2006) also uses resolution proofs, and it works by itera-
tively removing from the proof one input clause at a time, until it is no longer possible to
prove inconsistency. When a clause is removed, the resolution proof is modified to prevent
future use of that clause.

As far as the the computation of minimum unsatisfiable cores is concerned, the algo-
rithm of Lynce and Marques-Silva (2004) searches all the unsat cores of the input problem;
this is done by introducing selector variables for the original clauses, and by increasing the
search space of the DPLL solver to include also such variables; then, (one of) the unsatis-
fiable subformulas with the smallest number of selectors assigned to true is returned. The
approach described by Mneimneh et al. (2005) instead is based on a branch-and-bound
algorithm that exploits the relation between maximal satisfiability and minimum unsatis-
fiability. The same relation is used also by the procedure of Zhang et al. (2006), which is
instead based on a genetic algorithm.

3.2 Techniques for Unsatisfiable-Core Extraction in SMT

To the best of our knowledge, there is no literature explicitly addressing the problem of
computing unsatisfiable cores in SMT 2. However, four SMT solvers (i.e. CVC3, Barrett &
Tinelli, 2007, MathSAT, Bruttomesso et al., 2008, Yices, Dutertre & de Moura, 2006 and

2. Except for a previous short version of the present paper (Cimatti, Griggio, & Sebastiani, 2007).

707

Cimatti, Griggio, & Sebastiani

((x = 0) ∨ (x = 1) ∨ A2)

((x = 0) ∨ A1 ∨ A2)

((x = 0) ∨ ¬(x = 1) ∨ A1)

((y = 2) ∨ A2) (¬(y = 2) ∨ ¬(y < 0))LA(Z)

(A2 ∨ ¬(y < 0)) (¬A2 ∨ (y = 1))

(¬(y < 0) ∨ (y = 1))

(A1 ∨ A2)(¬A1 ∨ (y = 2))

(¬(y = 1) ∨ ¬(y < 0))LA(Z)

(¬(y < 0))(y < 0)

⊥

(¬(x = 0) ∨ ¬(x = 1))LA(Z)

(¬(x = 0) ∨ A2)

(¬(x = 0) ∨ (x = 1) ∨ A2)

Figure 3: Resolution proof for the SMT formula (1) found by MathSAT. Boxed clauses
correspond to the unsatisfiable core.

Z3, de Moura & Bjørner, 2008) support unsat core generation3. In the following, we describe
the underlying approaches, that generalize techniques for propositional UC extraction. We
preliminarily remark that none of these solvers aims at producing minimal or minimum
unsat cores, nor does anything to reduce their size.

Strictly related with this work, Liffiton and Sakallah (2008) presented a general technique
for enumerating all minimal unsatisfiable subsets of a given inconsistent set of constraints,
which they implemented in the tool CAMUS. Although the description of the properties
and algorithms focuses on pure SAT, the authors remark that the approach extends easily
to SMT, and that they have implemented inside CAMUS a SMT version of the procedure.
Therefore in the following we briefly describe also their approach.

3.2.1 Proof-Based UC Extraction.

CVC3 and MathSAT can run in proof-producing mode, and compute unsatisfiable cores
as a byproduct of the generation of proofs. Similarly to the approach of Zhang and Malik
(2003), the idea is to analyze the proof of unsatisfiability backwards, and to return an
unsatisfiable core that is a collection of the assumptions (i.e. the clauses of the original
problem) that are used in the proof to derive contradiction.

3. The information reported here on the computation of unsat cores in CVC3, Yices and Z3 comes from
private communications from the authors and from the user manual of CVC3.

708

Computing Small Unsatisfiable Cores in Satisfiability Modulo Theories

Example 1 In order to show how the described approaches work, consider this small un-
satisfiable SMT (T) formula, where T is LA(Z):

((x = 0) ∨ ¬(x = 1) ∨A1) ∧ ((x = 0) ∨ (x = 1) ∨A2) ∧ (¬(x = 0) ∨ (x = 1) ∨A2)∧
(¬A2 ∨ (y = 1)) ∧ (¬A1 ∨ (x+ y > 3)) ∧ (y < 0) ∧ (A2 ∨ (x− y = 4))∧

((y = 2) ∨ ¬A1) ∧ (x ≥ 0), (1)

where x and y are real variables and A1 and A2 are Booleans.

In the proof-based approach, a resolution proof of unsatisfiability is built during the
search. E.g., Figure 3 shows the proof tree found by MathSAT. The leaves of the tree are
either original clauses (boxed in the Figure) or LA(Z)-lemmas (denoted with the LA(Z)
suffix). The unsatisfiable core is built by collecting all the original clauses appearing as
leaves in the proof. In this case, this is:

{((x = 0) ∨ ¬(x = 1) ∨A1), ((x = 0) ∨ (x = 1) ∨A2), (¬(x = 0) ∨ (x = 1) ∨A2),

(¬A2 ∨ (y = 1)), (y < 0), ((y = 2) ∨ ¬A1)}. (2)

In this case, the unsat core is minimal.

3.2.2 Assumption-Based UC Extraction

The approach used by Yices (Dutertre & de Moura, 2006) and Z3 (de Moura & Bjørner,
2008) is an adaptation of the method by Lynce and Marques-Silva (2004): for each clause
Ci in the problem, a new Boolean “selector” variable Si is created; then, each Ci is replaced
by (Si → Ci); finally, before starting the search each Si is forced to true. In this way, when
a conflict at decision level zero is found by the DPLL solver the conflict clause contains only
selector variables, and the unsat core returned is the union of the clauses whose selectors
appear in such conflict clause.

Example 2 Consider again the formula (1) of Example 1. In the assumption-based ap-
proach, each of the 9 input clauses is augmented with an extra variable Si, which is asserted
to true at the beginning of the search. The formula therefore becomes:

∧
i

Si ∧

(S1 → ((x = 0) ∨ ¬(x = 1) ∨A1)) ∧ (S2 → ((x = 0) ∨ (x = 1) ∨A2)) ∧
(S3 → (¬(x = 0) ∨ (x = 1) ∨A2)) ∧ (S4 → (¬A2 ∨ (y = 1))) ∧

(S5 → (¬A1 ∨ (x+ y > 3))) ∧ (S6 → (y < 0)) ∧
(S7 → (A2 ∨ (x− y = 4))) ∧ (S8 → ((y = 2) ∨ ¬A1)) ∧ (S9 → (x ≥ 0))

(3)

The final conflict clause generated by conflict analysis (Zhang et al., 2001) is: 4

¬S1 ∨ ¬S2 ∨ ¬S3 ∨ ¬S4 ∨ ¬S6 ∨ ¬S7 ∨ ¬S8, (4)

4. using Yices.

709

Cimatti, Griggio, & Sebastiani

corresponding to the following unsat core:

{((x = 0) ∨ ¬(x = 1) ∨A1), ((x = 0) ∨ (x = 1) ∨A2), (¬(x = 0) ∨ (x = 1) ∨A2),

(¬A2 ∨ (y = 1)), (y < 0), (A2 ∨ (x− y = 4)), ((y = 2) ∨ ¬A1)}. (5)

Notice that this is not minimal, because of the presence of the redundant clause (A2∨(x−y =
4)), corresponding to ¬S7 in the final conflict clause (4).

Remark 1 The idea behind the two techniques just illustrated is essentially the same. Both
exploit the implication graph built by DPLL during conflict analysis to detect the subset of
the input clauses that were used to decide unsatisfiability. The main difference is that in
the proof-based approach this is done by explicitly constructing the proof tree, while in the
activation-based one this can be done “implicitly” by “labeling” each of the original clauses.
For a deeper comparison between these two approaches (and some variants of them), we
refer the reader to the work of Aśın et al. (2008) and Nadel (2010).

3.2.3 The CAMUS Approach for Extracting All Minimal UC’s.

A completely different approach, aiming at generating all minimal UC’s of some given
inconsistent set of propositional clauses Φ, is presented by Liffiton and Sakallah (2008) and
implemented in the tool CAMUS. In a nutshell, the approach works in two distinct phases:

(a) enumerate the set M of all Minimal Correction Subsets (MCS’s) of Φ. 5 This is per-
formed by a specialized algorithm, using as backend engine an incremental SAT solver
able to handle also AtMost constraints;

(b) enumerate the set U of all the minimal UC’s of Φ as minimal hitting sets of the set M .
This is also performed by a specialized algorithm. Alternatively, another algorithm can
produce from M only one minimal UC with much less effort.

It is important to notice that both setsM and U returned can be exponentially big wrt. the
size of Φ. Thus, the procedure may produce an exponential amount of MCS’s during phase
(a) before producing one UC. To this extent, the authors provide also some modified and
more efficient version of the technique, which sacrifice the completeness of the approach. We
refer the reader to the work of Liffiton and Sakallah (2008) for a more detailed explanation
of this technique and of its features.

As mentioned above, although the description of the algorithms focuses on pure SAT, the
authors remark that the approach extends easily to SMT, and that they have implemented
inside CAMUS a version of the algorithm working also for SMT, using Yices as backend
SMT solver. Unfortunately, they provide no details of such an extension. 6

5. A MCS Ψ of an unsatisfiable set of constraint Φ is the complement set of a maximal consistent subset
of Φ: Φ \Ψ is consistent and, for every Ci ∈ Ψ, Φ \ (Ψ \ Ci) is inconsistent (Liffiton & Sakallah, 2008).

6. See §10 “Conclusions and Future Work.” of the article by Liffiton and Sakallah (2008).

710

Computing Small Unsatisfiable Cores in Satisfiability Modulo Theories

Example 3 Consider again the LA(Z)-formula (1) of Example 1 in form of clause set

Φ
def
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

c1 : (x = 0) ∨ ¬(x = 1) ∨A1,
c2 : (x = 0) ∨ (x = 1) ∨A2,
c3 : ¬(x = 0) ∨ (x = 1) ∨A2,
c4 : ¬A2 ∨ (y = 1),
c5 : ¬A1 ∨ (x+ y > 3),
c6 : (y < 0),
c7 : A2 ∨ (x− y = 4),
c8 : (y = 2) ∨ ¬A1,
c9 : (x ≥ 0)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (6)

When run on (6), CAMUS returns the following two minimal UC’s:

uc1
def
= uc2

def
=⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

c1 : (x = 0) ∨ ¬(x = 1) ∨A1,
c2 : (x = 0) ∨ (x = 1) ∨A2,
c3 : ¬(x = 0) ∨ (x = 1) ∨A2,
c4 : ¬A2 ∨ (y = 1),
c5 : ¬A1 ∨ (x+ y > 3),
c6 : (y < 0)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

c1 : (x = 0) ∨ ¬(x = 1) ∨A1,
c2 : (x = 0) ∨ (x = 1) ∨A2,
c3 : ¬(x = 0) ∨ (x = 1) ∨A2,
c4 : ¬A2 ∨ (y = 1),
c6 : (y < 0),
c8 : (y = 2) ∨ ¬A1

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

. (7)

(Notice that uc2 is identical to the UC found in Example 1.)
We understand from Liffiton and Sakallah (2008) that, in order to produce uc1 and uc2,
CAMUS enumerates first (not necessarily in this order) the following set of MCS’s:

{{c1}, {c2}, {c3}, {c4}, {c6}, {c5, c8}} (8)

and then computes uc1 and uc2 as minimal hitting sets of (8).
Notice that (8) is a set of MCS’s because Φ, Φ \ {c5} and Φ \ {c8} are LA(Z)-inconsistent,
and

{A1 = ⊥, A2 = ⊥, x = 1, y = −3} |=LA(Z) Φ \ {c1},
{A1 = ⊥, A2 = ⊥, x = 2, y = −6} |=LA(Z) Φ \ {c2},
{A1 = ⊥, A2 = ⊥, x = 0, y = −4} |=LA(Z) Φ \ {c3},
{A1 = ⊥, A2 = �, x = 0, y = −1} |=LA(Z) Φ \ {c4},
{A1 = ⊥, A2 = �, x = 3, y = 1} |=LA(Z) Φ \ {c6},
{A1 = �, A2 = ⊥, x = 1, y = −1} |=LA(Z) Φ \ {c5, c8}.

Moreover, it contains all MCS’s of Φ because also Φ \ {c9}, Φ \ {c5, c9} and Φ \ {c8, c9} are
LA(Z)-inconsistent.

4. A Novel Approach to Building Unsatisfiable Cores in SMT

We present a novel approach, called the Lemma-Lifting approach, in which the unsatisfiable
core is computed a posteriori w.r.t. the execution of the SMT solver, and only if the for-
mula has been found T -unsatisfiable. This is done by means of an external (and possibly
optimized) propositional unsat core extractor.

711

Cimatti, Griggio, & Sebastiani

4.1 The Main Ideas

In the following, we assume that a lazy SMT (T) procedure has been run over a T -
unsatisfiable set of SMT (T) clauses ϕ =def {C1, . . . , Cn}, and that D1, . . . , Dk denote
all the T -lemmas, both theory-conflict and theory-deduction clauses, which have been re-
turned by the T -solver during the run. (Notice that, by definition, T -lemmas are T -valid
clauses.) In case of mixed Boolean+theory-conflict clauses (Nieuwenhuis et al., 2006) (see
§ 2.2), the T -lemmas are those returned by the T -solver that have been used to compute
the mixed Boolean+theory-conflict clause, including the initial theory-conflict clause and
the theory-deduction clauses corresponding to the theory-propagation steps performed. 7

Under the above assumptions, two simple facts hold.

(i) Since the T -lemmas Di are valid in T , they do not affect the T -satisfiability of a formula:
(ψ ∧Di) |=T ⊥ ⇐⇒ ψ |=T ⊥.

(ii) The conjunction of ϕ with all the T -lemmas D1, . . . , Dk is propositionally unsatisfiable:
T 2P(ϕ ∧∧n

i=1Di) |= ⊥.

Fact (i) is self-evident. Fact (ii) is the termination condition of all lazy SMT tools when
the input formula is T -unsatisfiable. In the off-line schema of Figure 2, the procedure ends
when DPLL establishes that T 2P(ϕ∧∧n

i=1Di) is unsatisfiable, each Di being the negation
of the theory-conflict set ηi returned by the i-th call to the T -solver. Fact (ii) generalizes
to the on-line schema, noticing that T -backjumping on a theory-conflict clause Di produces
an analogous effect as re-invoking DPLL on ϕp ∧ T 2P(Di), whilst theory propagation on
a deduction {l1, . . . , lk} |=T l can be seen as a form on unit propagation on the theory-
deduction clause T 2P (

∨
i ¬li ∨ l).

Example 4 Consider again formula (1) of Example 1. In order to decide its unsatisfiabil-
ity, MathSAT generates the following set of LA(Z)-lemmas:

{(¬(x = 1) ∨ ¬(x = 0)), (¬(y = 2) ∨ ¬(y < 0)), (¬(y = 1) ∨ ¬(y < 0))}. (9)

Notice that they are all LA(Z)-valid (fact (i)). Then, the Boolean abstraction of (1) is
conjoined with the Boolean abstraction of these LA(Z)-lemmas, resulting in the following
propositional formula:

(B1 ∨ ¬B2 ∨A1) ∧ (B1 ∨B2 ∨A2) ∧ (¬B1 ∨B2 ∨A2) ∧ (¬A2 ∨B3)∧
(¬A1 ∨B4) ∧B5 ∧ (A2 ∨B6) ∧ (B7 ∨ ¬A1) ∧B8∧

(¬B2 ∨ ¬B1) ∧ (¬B7 ∨ ¬B5) ∧ (¬B3 ∨ ¬B5), (10)

where:
B1

def
= T 2P(x = 0) B5

def
= T 2P(y < 0)

B2
def
= T 2P(x = 1) B6

def
= T 2P(x− y = 4)

B3
def
= T 2P(y = 1) B7

def
= T 2P(y = 2)

B4
def
= T 2P(x+ y > 3) B8

def
= T 2P(x ≥ 0).

7. In this case, if the SMT solver did not provide the original T -lemmas when the feature of using mixed
Boolean+theory-conflict clauses is active, then the latter feature should be disabled.

712

Computing Small Unsatisfiable Cores in Satisfiability Modulo Theories

The propositional formula (10) is unsatisfiable (fact (ii)), as demonstrated by the following
resolution proof.

(B1 ∨ B2 ∨ A2)

(B1 ∨ A1 ∨ A2)

(B1 ∨ ¬B2 ∨ A1)

(B7 ∨ A2) (¬B7 ∨ ¬B5)

(A2 ∨ ¬B5) (¬A2 ∨ B3)

(¬B5 ∨ B3)

(A1 ∨ A2)(B7 ∨ ¬A1)

(¬B3 ∨ ¬B5)

¬B5B5

⊥

(¬B2 ∨ ¬B1)

(¬B1 ∨ A2)

(¬B1 ∨ B2 ∨ A2)

Fact (ii) holds also for those SMT tools which learn mixed Boolean+theory-clauses
F1, . . . , Fn (instead of T -lemmas), obtained from the T -lemmas D1, . . . , Dn by backward
traversal of the implication graph. In fact, in this case, T 2P(ϕ∧∧n

i=1 Fi) |= ⊥ holds. Since
ϕ ∧∧n

i=1Di |=
∧n

i=1 Fi, because of the way the Fi’s are built, 8 (ii) holds.
Some SMT tools implement theory-propagation in a slightly different way (e.g. Barce-

Logic, Nieuwenhuis et al., 2006). If l1, . . . , ln |=T l, instead of learning the T -lemma
¬l1∨ . . .∨¬ln∨ l and unit-propagating l on it, they simply propagate the value of l, without
learning any clause. Only if such propagation leads to a conflict later in the search, the
theory-deduction clause is learned and used for conflict-analysis. The validity of fact (ii) is
not affected by this optimization, because only the T -lemmas used during conflict analysis
are needed for it to hold (Nieuwenhuis et al., 2006).

Overall, in all variants of the on-line schema, the embedded DPLL engine builds –either
explicitly or implicitly– a resolution refutation of the Boolean abstraction of the conjunction
of the original clauses and the T -lemmas returned by the T -solver. Thus fact (ii) holds.

4.2 Extracting SMT Cores by Lifting Theory Lemmas

Facts (i) and (ii) discussed in §4.1 suggest a new approach to the generation of unsatisfiable
cores for SMT. The main idea is that if the theory lemmas used during the SMT search are
lifted into Boolean clauses, then the unsat core can be extracted by a purely propositional
core extractor. Therefore, we call this technique the Lemma-Lifting approach.

The algorithm is presented in Figure 4. The procedure T -Unsat Core receives as
input a set of clauses ϕ =def {C1, . . . , Cn} and it invokes on it a lazy SMT (T) tool
Lazy SMT Solver, which is instructed to store somewhere the T -lemmas returned by the

8. Each clause T 2P(Fi) is obtained by resolving the clause T 2P(Di) with clauses in T 2P(ϕ∧∧i−1
j=1 Fj), so

that T 2P(ϕ ∧∧i−1
j=1 Fj ∧Di) |= T 2P(Fi). Thus, by induction, T 2P(ϕ ∧∧n

i=1 Di) |= T 2P(∧n
i=1 Fi), so

that ϕ ∧∧n
i=1 Di |= ∧n

i=1 Fi.

713

Cimatti, Griggio, & Sebastiani

Boolean unsat−core:

Refinement:Boolean abstraction:

Result:Input clauses:

Boolean Unsat Core Extractor

T 2P({C1, . . . , Cn, D1, . . . , Dk})

Lazy SMT Solver

{D1, . . . , Dk}
Stored T -Lemmas:

{D′1, . . . , D′j}

T 2P({C′1, . . . , C′m, D′1, . . . , D
′
j})

T -valid clauses:

T 2P P2T

sat/unsat{C1, . . . , Cn}
T -unsat core:
{C′1, . . . , C′m}

〈SatValue,Clause set〉 T -Unsat Core(Clause set ϕ) {
// ϕ is {C1, . . . , Cn}
if (Lazy SMT Solver(ϕ) == sat)

then return 〈sat,∅〉;
// D1, . . . , Dk are the T -lemmas stored by Lazy SMT Solver

ψp=Boolean Unsat Core Extractor(T 2P({C1, . . . , Cn, D1, . . . , Dk}));
// ψp is T 2P({C ′

1, . . . , C
′
m, D

′
1, . . . , D

′
j}));

return 〈unsat,{C ′
1, . . . , C

′
m}〉;

}

Figure 4: Schema of the T -Unsat Core procedure: architecture (above) and algorithm (be-
low).

T -solver, namely D1, . . . , Dk. If Lazy SMT Solver returns sat, then the whole procedure
returns sat. Otherwise, the Boolean abstraction of {C1, . . . , Cn, D1, . . . , Dk}, which is in-
consistent because of (ii), is fed to an external tool Boolean Unsat Core, which is able to
return the Boolean unsat core ψp of the input. By construction, ψp is the Boolean ab-
straction of a clause set {C ′

1, . . . , C
′
m, D

′
1, . . . , D

′
j} s.t. {C ′

1, . . . , C
′
m} ⊆ {C1, . . . , Cn} and

{D′
1, . . . , D

′
j} ⊆ {D1, . . . , Dk}. As ψp is unsatisfiable, then {C ′

1, . . . , C
′
m, D

′
1, . . . , D

′
j} is T -

unsatisfiable. By (i), the T -valid clauses D′
1, . . . , D

′
j have no role in the T -unsatisfiability

of {C ′
1, . . . , C

′
m, D

′
1, . . . , D

′
j}, so that they can be thrown away, and the procedure returns

unsat and the T -unsatisfiable core {C ′
1, . . . , C

′
m}.

Notice that the resulting T -unsatisfiable core is not guaranteed to be minimal, even if
Boolean Unsat Core returns minimal Boolean unsatisfiable cores. In fact, it might be the
case that {C ′

1, . . . , C
′
m}\{C ′

i} is T -unsatisfiable for some C ′
i even though T 2P({C ′

1, . . . , C
′
m}\

{C ′
i}) is satisfiable, because all truth assignments μp satisfying the latter are such that

P2T (μp) is T -unsatisfiable.

714

Computing Small Unsatisfiable Cores in Satisfiability Modulo Theories

Example 5 Consider the unsatisfiable SMT formula ϕ on LA(Z):

ϕ ≡ ((x = 0) ∨ (x = 1)) ∧ (¬(x = 0) ∨ (x = 1)) ∧ ((x = 0) ∨ ¬(x = 1))∧
(¬(x = 0) ∨ ¬(x = 1))

and its propositional abstraction T 2P(ϕ):

T 2P(ϕ) ≡ (B1 ∨B2) ∧ (¬B1 ∨B2) ∧ (B1 ∨ ¬B2) ∧ (¬B1 ∨ ¬B2).

Then, T 2P(ϕ) is a minimal Boolean unsatisfiable core of itself, but ϕ is not a minimal core
in LA(Z), since the last clause is valid in this theory, and hence it can be safely dropped.

The procedure can be implemented very simply by modifying the SMT solver so that
to store the T -lemmas and by interfacing it with some state-of-the-art Boolean unsat core
extractor used as an external black-box device. Moreover, if the SMT solver can provide
the set of all T -lemmas as output, then the whole procedure may reduce to a control device
interfacing with both the SMT solver and the Boolean core extractor as black-box external
devices.

Remark 2 Notice that here storing the T -lemmas does not mean learning them, that is,
the SMT solver is not required to add the T -lemmas to the formula during the search. In-
stead, it is for instance sufficient to store them in some ad-hoc data structure, or even
to dump them to a file. This causes no overhead to the Boolean search in the SMT
solver, and imposes no constraint on the lazy strategy adopted (e.g., offline/online, per-
manent/temporary learning, usage of mixed Boolean+theory conflict clauses, etc.).

Example 6 Once again, consider formula (1) of Example 1, and the corresponding formula
(10) of Example 4, which is the Boolean abstraction of (1) and the LA(Z)-lemmas (9) found
by MathSAT during search. In the Lemma-Lifting approach, (10) is given as input to an
external Boolean unsat core device. The resulting propositional unsatisfiable core is:

{(B1 ∨ ¬B2 ∨A1), (B1 ∨B2 ∨A2), (¬B1 ∨B2 ∨A2), (¬A2 ∨B3), B5,

(B7 ∨ ¬A1), (¬B2 ∨ ¬B1), (¬B7 ∨ ¬B5), (¬B3 ∨ ¬B5)},

which corresponds (via P2T) to:

{((x = 0) ∨ ¬(x = 1) ∨A1), ((x = 0) ∨ (x = 1) ∨A2), (¬(x = 0) ∨ (x = 1) ∨A2),

(¬A2 ∨ (y = 1)), B5, ((y = 2) ∨ ¬A1),

(¬(x = 1) ∨ ¬(x = 0)), (¬(y = 2) ∨ ¬(y < 0)), (¬(y = 1) ∨ ¬(y < 0))}.

Since the last three clauses are included in the LA(Z)-lemmas, and thus are LA(Z)-valid,
they are eliminated. The resulting core consists of only the first 6 clauses. In this case,
the core turns out to be minimal, and is identical modulo reordering to that computed by
MathSAT with proof-tracing (see Example 1).

As observed at the end of the previous section, our technique works also if the SMT tool
learns mixed Boolean+theory clauses (provided that the original T -lemmas are stored), or

715

Cimatti, Griggio, & Sebastiani

uses the lazy theory deduction of Nieuwenhuis et al. (2006). Moreover, it works also if
T -lemmas contain new atoms (i.e. atoms that do not appear in ϕ), as in the approaches of
Flanagan et al. (2003), and Barrett, Nieuwenhuis, Oliveras, and Tinelli (2006), since both
Facts (ii) and (i) hold also in that case.

As a side observation, we remark that the technique works also for the per-constraint-
encoding eager SMT approach of Goel, Sajid, Zhou, Aziz, and Singhal (1998), and Strich-
man, Seshia, and Bryant (2002). In the eager SMT approach, the input T -formula ϕ
is translated into an equi-satisfiable Boolean formula, and a SAT solver is used to check
its satisfiability. With per-constraint-encoding of Goel et al. (1998) and Strichman et al.
(2002), the resulting Boolean formula is the conjunction of the propositional abstraction ϕp

of ϕ and a formula ϕT which is the propositional abstraction of the conjunction of some
T -valid clauses. Therefore, ϕT plays the role of the T -lemmas of the lazy approach, and
our approach still works. This idea falls out of the scope of this work, and is not expanded
further.

4.3 Discussion

Despite its simplicity, the proposed approach is appealing for several reasons.

First, it is extremely simple to implement. The building of unsat cores is delegated
to an external device, which is fully decoupled from the internal DPLL-based enumerator.
Therefore, there is no need of implementing any internal unsat core constructor nor to
modify the embedded Boolean device. Every possible external device can be interfaced in
a plug-and-play manner by simply exchanging a couple of DIMACS files9.

Second, the approach is fully compatible with optimizations carried out by the core
extractor at the Boolean level: every original clause which the Boolean unsat core device
is able to drop, is also dropped in the final formula. Notably, this involves also Boolean
unsat-core techniques which could be very difficult to adapt to the SMT setting (and to
implement within an SMT solver), such as the ones based on genetic algorithms (Zhang
et al., 2006).

Third, it benefits for free from the research on propositional unsat-core extraction, since
it is trivial to update: once some novel, more efficient or more effective Boolean unsat core
device is available, it can be used in a plug-and-play way. This does not require modifying
the DPLL engine embedded in the SMT solver.

One may remark that, in principle, if the number of T -lemmas generated by the T -
solver were huge, the storing of all T -lemmas might cause memory-exhaustion problems or
the generation of Boolean formulas which are too big to be handled by the Boolean unsat-
core extractor. In practice, however, this is not a real problem. In fact, even the hardest
SMT formulas at the reach of current lazy SMT solvers rarely need generating more than
105 T -lemmas, whereas current Boolean unsat core extractors can handle formulas in the
order of 106 − 107 clauses. In fact, notice that the default choice in MathSAT is to learn
all T -lemmas permanently anyway, and we have never encountered problems due to this
fact. Intuitively, unlike with plain SAT, in lazy SMT the computational effort is typically
dominated by the search in the theory T , so that the number of clauses that can be stored
with a reasonable amount of memory, or which can be fed to a SAT solver, is typically much

9. DIMACS is a standard format for representing Boolean CNF formulas.

716

Computing Small Unsatisfiable Cores in Satisfiability Modulo Theories

bigger than the number of calls to the T -solver which can overall be accomplished within a
reasonable amount of time.

Like with the other SMT unsat-core techniques adopted by current SMT solvers, also
with our novel approach the resulting T -unsatisfiable core is not guaranteed to be minimal,
even if Boolean Unsat Core returns minimal Boolean unsatisfiable cores. However, with
the Lemma-Lifting technique it is possible to perform all the reductions that can be done
by considering only the Boolean skeleton of the formula. Although this is in general not
enough to guarantee minimality, it is still a very significant gain, as we shall show in the
next section. Moreover, notice that it is also possible to obtain minimal UC’s by iteratively
calling one SMT core extractor, each time dropping one (or more) clause(s) from the current
UC and checking for the T -inconsistency. This minimization technique is orthogonal wrt.
the SMT core-extractor adopted, and as such it is not investigated here.

5. Empirical Evaluation

We carried out an extensive experimental evaluation of the the Lemma-Lifting approach.
We implemented the approach within the MathSAT (Bruttomesso et al., 2008) system.
MathSAT has been extended with an interface for external Boolean unsatisfiable core ex-
tractors (UCE) to exchange Boolean formulas and relative cores in form of files in DIMACS
format. (No modification was needed for the storage of T -lemmas, because MathSAT
already can learn permanently all of them.)

We have tried eight different external UCEs, namely Amuse (Oh et al., 2004), PicoSAT
(Biere, 2008), Eureka (Dershowitz et al., 2006), MiniUnsat (van Maaren & Wieringa,
2008), MUP (Huang, 2005), Trimmer (Gershman et al., 2008), ZChaff (Zhang & Malik,
2003), and the tool proposed by Zhang et al. (2006) (called Genetic here). All these
tools explicitly target core size reduction (or minimality), with the exception of PicoSAT,
which was conceived for speeding up core generation, with no claims of minimality. In fact,
PicoSAT turned out to be both the fastest and the least effective in reducing the size of the
cores. For these reasons, we adopted it as our baseline choice, as it is the ideal starting point
for evaluating the trade-off between efficiency (in execution time) and effectiveness (in core
size reduction). Thus, we start evaluating our approach by using PicoSAT as external
UCE (§5.1) and then we investigate the usage of more effective though more expensive
UCE’s (§ 5.2).

All the experiments have been performed on a subset of the SMT-LIB (Ranise & Tinelli,
2006) benchmarks. We used a total of 561 T -unsatisfiable problems, taken from the QF UF
(126), QF IDL (89), QF RDL (91), QF LIA (135) and QF LRA (120) divisions, selected
using the same criteria used in the annual SMT competition. In particular, the benchmarks
are selected randomly from the available instances in the SMT-LIB, but giving a higher
probability to real-world instances, as opposed to randomly generated or handcrafted ones.
(See http://www.smtcomp.org/ for additional details.)

We used a preprocessor to convert the instances into CNF (when required), and in some
cases we had to translate them from the SMT language to the native language of a particular
SMT solver. 10

10. In particular, CVC3 and Yices can compute unsatisfiable cores only if the problems are given in their
own native format.

717

Cimatti, Griggio, & Sebastiani

P
ic
o
S
A
T

ti
m
e

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

P
ic
o
S
A
T

ti
m
e

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

Total time MathSAT time

Figure 5: Overhead of PicoSAT wrt. the total execution time of MathSAT+PicoSAT
(left) and wrt. the execution time of MathSAT (right).

All the tests were performed on 2.66 GHz Intel Xeon machines with 16 GB of RAM
running Linux. For each tested instance (unless explicitly stated otherwise) the timeout
was set to 600 seconds, and the memory limit to 2 GB. For all the Boolean UCEs, we have
used the default configurations.

5.1 Costs and Effectiveness of Unsat-Core Extraction Using PicoSAT

The two scatter plots in Figure 5 give a first insight on the price that the Lemma-Lifting
approach has to pay for running the external UCE. The plot on the left compares the
execution time of PicoSAT with the total time of MathSAT+PicoSAT, whilst the plot
on the right shows the comparison of the time of PicoSAT against that of MathSAT
solving time only. From the two figures, it can be clearly seen that, except for few cases,
the time required by PicoSAT is much lower or even negligible wrt. MathSAT solving
time. Notice also that this price is payed only in the case of unsatisfiable benchmarks.

We now analyze our LL approach with respect to the size of the unsat cores returned. We
compare the baseline implementation of our LL approach, MathSAT+PicoSAT, against
MathSAT+ProofBasedUC (i.e. MathSAT with proof tracing), CVCLite (Barrett &
Tinelli, 2007), 11 andYices. 12 We have also performed a comparison with (the SMT version
of) CAMUS (Liffiton & Sakallah, 2008), running it in “SingleMUS” mode (generate only
one minimal UC, “CAMUS-one” hereafter). We also tried to run CAMUS in “AllMUS”
mode (generate all minimal UC’s), but we encountered some unexpected results (in some

11. We tried to use the newer CVC3, but we had some difficulties in the extraction of unsatisfiable cores
with it. Therefore, we reverted to the older CVCLite for the experiments.

12. CVCLite version 20061231 and Yices version 1.0.19.

718

Computing Small Unsatisfiable Cores in Satisfiability Modulo Theories

MathSAT+PicoSAT MathSAT+ProofBasedUC
C
o
re
/
P
ro
b
le
m

si
ze

ra
ti
o

1/1000

1/100

1/10

1/5

1/2

 1

 10 100 1000 10000 100000
1/1000

1/100

1/10

1/5

1/2

 1

 10 100 1000 10000 100000

Yices CVCLite

C
o
re
/
P
ro
b
le
m

si
ze

ra
ti
o

1/1000

1/100

1/10

1/5

1/2

 1

 10 100 1000 10000 100000
1/1000

1/100

1/10

1/5

1/2

 1

 10 100 1000 10000 100000

CAMUS-one

C
o
re
/
P
ro
b
le
m

si
ze

ra
ti
o

1/1000

1/100

1/10

1/5

1/2

 1

 10 100 1000 10000 100000

Size of the problem (# of clauses) Size of the problem (# of clauses)

Figure 6: Ratio between the size of the original formula and that of the unsat core computed
by the various solvers.

719

Cimatti, Griggio, & Sebastiani

CVCLite w.u.c.

MathSAT+PicoSAT

MathSAT+ProofBasedUC

MathSAT+PicoSAT

1/3

1/2

2/3

 1

3/2

2

3

 10 100 1000 10000 100000

1/3

1/2

2/3

 1

3/2

2

3

 10 100 1000 10000 100000

Yices w.u.c.

MathSAT+PicoSAT

CAMUS-one

MathSAT+PicoSAT

1/3

1/2

2/3

 1

3/2

2

3

 10 100 1000 10000 100000

1/3

1/2

2/3

 1

3/2

2

3

 10 100 1000 10000 100000

core size ratio 1st quartile median mean 3rd quartile
CVCLite w.u.c.

MathSAT+PicoSAT
1.00 1.16 1.33 1.36

MathSAT+ProofBasedUC

MathSAT+PicoSAT
1.00 1.03 1.09 1.10

Yices w.u.c.

MathSAT+PicoSAT
0.97 1.03 1.08 1.09

CAMUS-one

MathSAT+PicoSAT
0.88 1.02 1.32 1.18

Figure 7: Comparison of the size of the unsat cores computed by MathSAT+PicoSAT
against those of CVCLite, MathSAT+ProofBasedUC, Yices with unsat
cores and CAMUS-one, with statistics on unsat core ratios.
Points above the middle line and values greater than 1.00 mean better core quality
for MathSAT+PicoSAT, and vice versa.

executions all the generated MUSes were larger than the unsat cores found by the other
tools13), and so we had to exclude it from the experiments.

13. This is very surprising because, by definition, the output produced by CAMUS in “AllMUS” mode
should should always contain UC’s of minimum size, and thus smaller than those found by the other
tools. Therefore, we have no explanation for such results, apart from conjecturing the presence of some
bug in CAMUS, or some incorrect use from our side (although we followed the indications of the authors),

720

Computing Small Unsatisfiable Cores in Satisfiability Modulo Theories

In order to allow CAMUS-one terminate for a significant amount of samples, we have
run it with an increased timeout of 1800 seconds. Even so, CAMUS-one was able to pro-
duce one UC within the timeout only for 144 formulas out of 561. For the record, Math-
SAT+PicoSAT, MathSAT+ProofBasedUC, CVCLite, and Yices solved within the
timeout 474, 503, 253 and 494 problems out of 561 respectively.

Notice that we do not present any comparison in time between the different tools because
it is not significant for determining the relative cost of unsat-core computation, since (i)
for all the former four tools the time is completely dominated by the solving time, which
varies a lot from solver to solver (even within MathSAT, proof production requires setting
ad-hoc options, which may result into significantly-different solving times since a different
search space is explored); (ii) a comparison with CAMUS in terms of speed would not be
fair, since the ultimate goal of CAMUS is to enumerate all mimimal UC’s, and as such it
first runs the very-expensive step of enumerating all MCS’s (see §3.2).

Figure 6 shows the absolute reduction in size performed by the different solvers: the
x-axis displays the size (number of clauses) of the problem, whilst the y-axis displays the
ratio between the size of the unsat core and the size of the problem. For instance, a point
with y value of 1/10 means that the unsatisfiability is due to only 10% of the problem
clauses.

Figure 7(top) shows relative comparisons of the data of Figure 6. Each plot compares
MathSAT+PicoSAT with each of the other solvers. Such plots, which we shall call
“core-ratio” plots, have the following meaning: the x-axis displays the size (number of
clauses) of the problem, whilst the y-axis displays the ratio between the size of the unsat
core computed by CVCLite, MathSAT+ProofBasedUC, Yices or CAMUS-one and
that computed by MathSAT+PicoSAT. For instance, a point with y value of 1/2 means
that the unsat core computed by the current solver is half the size of that computed by
MathSAT+PicoSAT; values above 1 mean a smaller core for MathSAT+PicoSAT. In
core-ratio plots, we only consider the instances for which both solvers terminated success-
fully, since here we are only interested in the size of the cores computed, and not in the
execution times. Figure 7(bottom) reports statistics about the ratios of the unsat core sizes
computed by two different solvers.

A comment is in order. The results reported for CAMUS-one are quite surprising
wrt. our expectations, since CAMUS-one is supposed to return a minimal UC, so that
we would expect greater reductions in core sizes. This can be explained by the fact that
the minimal UC produced by CAMUS-one is not necessarily minimum. In fact, we have
manually verified for the samples with the biggest core-size ratio that the UC’s returned by
CAMUS-one are actually minimal, although significantly bigger than those returned by
MathSAT+PicoSAT.

Overall, the results presented show that, even when using as Boolean UCE PicoSAT,
which is the least effective in reducing the size of the cores, the effectiveness of the baseline
version of our LL approach is slightly better than those of the other tools.

or the activation by default of some of the incomplete heuristics CAMUS can use in order to cope with
the combinatorial explosion in the number of MCS’s UC’s generated (see §3.2.)

721

Cimatti, Griggio, & Sebastiani

core size
further reduction

wrt. baseline
execution time

A
m
u
se

1/1000

1/100

1/10

1/5

1/2

 1

 10 100 1000 10000 100000

1/3

1/2

2/3

 1

3/2

2

3

 10 100 1000 10000 100000
 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

G
e
n
e
t
ic

1/1000

1/100

1/10

1/5

1/2

 1

 10 100 1000 10000 100000

1/3

1/2

2/3

 1

3/2

2

3

 10 100 1000 10000 100000
 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

E
u
r
e
k
a

1/1000

1/100

1/10

1/5

1/2

 1

 10 100 1000 10000 100000

1/3

1/2

2/3

 1

3/2

2

3

 10 100 1000 10000 100000
 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

Figure 8: Comparison of the core sizes (left), core ratios (middle) and run times (right)
using different propositional unsat core extractors. In the core-ratio plots (2nd

column), the X-axis represents the size of the problem, and the Y-axis represents
the ratio between the size of the cores computed by the two systems: a point
above the middle line means better quality for the baseline system. In the scatter
plots (3rd column), the baseline system (MathSAT+PicoSAT) is always on the
X-axis.

5.2 Impact on Costs and Effectiveness Using Different Boolean Unsat Core
Extractors

In this second part of our experimental evaluation we compare the results obtained using
different UCE’s in terms of costs and effectiveness in reducing the size of the core. We show
that, depending on the UCE used, it is possible to reduce significantly the size of cores,
and to trade core quality for speed of execution (and vice versa), with no implementation

722

Computing Small Unsatisfiable Cores in Satisfiability Modulo Theories

core size
further reduction

wrt. baseline
execution time

M
in
iU

n
sa

t

1/1000

1/100

1/10

1/5

1/2

 1

 10 100 1000 10000 100000

1/3

1/2

2/3

 1

3/2

2

3

 10 100 1000 10000 100000
 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

T
r
im

m
e
r

1/1000

1/100

1/10

1/5

1/2

 1

 10 100 1000 10000 100000

1/3

1/2

2/3

 1

3/2

2

3

 10 100 1000 10000 100000
 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

Z
C
h
a
f
f

1/1000

1/100

1/10

1/5

1/2

 1

 10 100 1000 10000 100000

1/3

1/2

2/3

 1

3/2

2

3

 10 100 1000 10000 100000
 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

Figure 9: Comparison of the core sizes (left), core ratios (middle) and run times (right)
using different propositional unsat core extractors (continued).

effort. We compare our baseline configuration MathSAT+PicoSAT, against six other
configurations, each calling a different propositional UCE.

The results are collected in Figures 8-9. The first column shows the absolute reduction
in size performed by each tool (as in Figure 6). The second column shows core-ratio plots
comparing each configuration against the baseline one using PicoSAT (as in Figure 7, with
points below 1.00 meaning a better performance of the current configuration). Finally, the
scatter plots in the third column compare the execution times (with PicoSAT always on
the X-axis). We evaluated the six configurations which use, respectively, Amuse (Oh et al.,
2004), Genetic (Zhang et al., 2006), Eureka (Dershowitz et al., 2006), MiniUnsat (van
Maaren & Wieringa, 2008), Trimmer (Gershman et al., 2008), and ZChaff (Zhang &
Malik, 2003), against the baseline configuration, using PicoSAT. We also compared with
MUP (Huang, 2005), but we had to stop the experiments because of memory exhaustion

723

Cimatti, Griggio, & Sebastiani

CVCLite w.u.c.

MathSAT+Eureka

MathSAT+ProofBasedUC

MathSAT+Eureka

1/3

1/2

2/3

 1

3/2

2

3

 10 100 1000 10000 100000

1/3

1/2

2/3

 1

3/2

2

3

 10 100 1000 10000 100000

Yices w.u.c.

MathSAT+Eureka

CAMUS-one

MathSAT+Eureka

1/3

1/2

2/3

 1

3/2

2

3

 10 100 1000 10000 100000

1/3

1/2

2/3

 1

3/2

2

3

 10 100 1000 10000 100000

core size ratio 1st quartile median mean 3rd quartile
CVCLite w.u.c.

MathSAT+Eureka
1.03 1.32 1.55 1.73

MathSAT+ProofBasedUC

MathSAT+Eureka
1.03 1.17 1.27 1.35

Yices w.u.c.

MathSAT+Eureka
1.00 1.16 1.28 1.34

CAMUS-one

MathSAT+Eureka
0.98 1.05 1.41 1.26

Figure 10: Ratios of the unsat-core sizes computed by MathSAT+Eureka against those
of CVCLite, MathSAT+ProofBasedUC, Yices and CAMUS-one.
Points above the middle line and values greater than 1.00 mean better core
quality for MathSAT+Eureka, and vice versa.

problems. Looking at the second column, we notice that Eureka, followed by MiniUnsat
and ZChaff, seems to be the most effective in reducing the size of the final unsat cores,
up to 1/3 the size of those obtained with plain PicoSAT. Looking at the third column, we
notice that with Genetic, Amuse, MiniUnsat and ZChaff, and in part with Eureka,
efficiency degrades drastically, and many problems cannot be solved within the timeout.
WithTrimmer the performance gap is not that dramatic, but still up to an order magnitude
slower than the baseline version.

724

Computing Small Unsatisfiable Cores in Satisfiability Modulo Theories

Finally, in Figure 10 we compare the effectiveness of MathSAT+Eureka, the most
effective extractor in Figures 8-9, directly with that of the other three solvers, CVCLite,
MathSAT+ProofBasedUC and Yices, and with that of CAMUS. (Also compare the
results with those in Figure 7.) The gain in core reduction wrt. previous state-of-the-art
SMT core-reduction techniques is evident.

It is important to notice that, due to our limited know-how, we used the Boolean UCE’s
in their default configurations. Therefore, we believe that even better results, in terms of
both effectiveness and efficiency, could be obtained by means of a more accurate tuning of
the parameters of the core extractors.

As a side remark, we notice that the results in Figures 8-9 have produced as a byproduct
an insightful evaluation of the main Boolean unsat-core-generation tools currently available.
To this extent, we notice that the performances of MUP (Huang, 2005) andGenetic (Zhang
et al., 2006) seem rather poor; PicoSAT (Biere, 2008) is definitely the fastest tool, though
the least effective in reducing the size of the final core; on the opposite side, Eureka
(Dershowitz et al., 2006) is the most effective in this task, but pays a fee in terms of CPU
time; Trimmer (Gershman et al., 2008) represents a good compromise between effectiveness
and efficiency.

6. Conclusions

We have presented a novel approach to generating small unsatisfiable cores in SMT, that
computes them a posteriori, relying on an external propositional unsat core extractor. The
technique is very simple in concept, and straightforward to implement and update. More-
over, it benefits for free of all the advancements in propositional unsat core computation.
Our experimental results have shown that, by using different core extractors, it is possible
to reduce significantly the size of cores and to trade core quality for speed of execution (and
vice versa), with no implementation effort.

As a byproduct, we have also produced an insightful evaluation of the main Boolean
unsat-core-generation tools currently available.

Acknowledgments

We wish to thank Mark Liffiton for his help with the CAMUS tool. We also thank the
anonymous referees for their helpful suggestions.

A. Griggio is supported in part by the European Community’s FP7/2007-2013 under grant
agreement Marie Curie FP7 - PCOFUND-GA-2008-226070 “progetto Trentino”, project
Adaptation.

R. Sebastiani is supported in part by SRC under GRC Custom Research Project 2009-TJ-
1880 WOLFLING.

References

Aśın, R., Nieuwenhuis, R., Oliveras, A., & Rodŕıguez Carbonell, E. (2008). Efficient Gen-
eration of Unsatisfiability Proofs and Cores in SAT. In Cervesato, I., Veith, H., &
Voronkov, A. (Eds.), Proceedings of LPAR’08, Vol. 5330 of LNCS, pp. 16–30. Springer.

725

Cimatti, Griggio, & Sebastiani

Audemard, G., Bertoli, P., Cimatti, A., Korni�lowicz, A., & Sebastiani, R. (2002). A SAT
Based Approach for Solving Formulas over Boolean and Linear Mathematical Propo-
sitions. In Proc. CADE’2002., Vol. 2392 of LNAI. Springer.

Barrett, C., Nieuwenhuis, R., Oliveras, A., & Tinelli, C. (2006). Splitting on Demand in
SAT Modulo Theories.. In Hermann, M., & Voronkov, A. (Eds.), LPAR, Vol. 4246 of
LNCS, pp. 512–526. Springer.

Barrett, C., & Tinelli, C. (2007). CVC3. In Damm, W., & Hermanns, H. (Eds.), CAV, Vol.
4590 of LNCS, pp. 298–302. Springer.

Barrett, C. W., Dill, D. L., & Stump, A. (2002). Checking Satisfiability of First-Order
Formulas by Incremental Translation to SAT. In Brinksma, E., & Larsen, K. G. (Eds.),
Computer Aided Verification, 14th International Conference, CAV 2002, Copenhagen,
Denmark, July 27-31, 2002, Proceedings, Vol. 2404 of LNCS, pp. 236–249. Springer.

Barrett, C. W., Sebastiani, R., Seshia, S. A., & Tinelli, C. (2009). Satisfiability modulo
theories. In Biere, A., Heule, M., & van Maaren, H. (Eds.), Handbook of Satisfiability.
IOS Press.

Biere, A. (2008). Picosat essentials. Journal on Satisfiability, Boolean Modeling and Com-
putation (JSAT), 4, 75–97.

Bruttomesso, R., Cimatti, A., Franzén, A., Griggio, A., & Sebastiani, R. (2008). The
MathSAT 4 SMT Solver. In Gupta, A., & Malik, S. (Eds.), CAV, Vol. 5123 of LNCS,
pp. 299–303. Springer.

Bryant, R. E., Kroening, D., Ouaknine, J., Seshia, S. A., Strichman, O., & Brady, B. (2009).
An abstraction-based decision procedure for bit-vector arithmetic. Int. J. Softw. Tools
Technol. Transf., 11 (2), 95–104.

Cimatti, A., Griggio, A., & Sebastiani, R. (2007). A Simple and Flexible Way of Computing
Small Unsatisfiable Cores in SAT Modulo Theories.. In Marques-Silva, J., & Sakallah,
K. A. (Eds.), SAT, Vol. 4501 of LNCS, pp. 334–339. Springer.

Davis, M., & Putnam, H. (1960). A computing procedure for quantification theory. Journal
of the ACM, 7, 201–215.

Davis, M., Logemann, G., & Loveland, D. W. (1962). A machine program for theorem-
proving.. Commun. ACM, 5 (7), 394–397.

de Moura, L., & Bjørner, N. (2008). Z3: An Efficient SMT Solver. In Ramakrishnan, C. R.,
& Rehof, J. (Eds.), TACAS, Vol. 4963 of LNCS, pp. 337–340. Springer.

Dershowitz, N., Hanna, Z., & Nadel, A. (2006). A Scalable Algorithm for Minimal Unsat-
isfiable Core Extraction.. In Proceedings of SAT’06, Vol. 4121 of LNCS. Springer.

Dutertre, B., & de Moura, L. (2006). A Fast Linear-Arithmetic Solver for DPLL(T). In
Proc. CAV’06, Vol. 4144 of LNCS. Springer.

Enderton, H. (1972). A Mathematical Introduction to Logic. Academic Pr.

Flanagan, C., Joshi, R., Ou, X., & Saxe, J. B. (2003). Theorem Proving Using Lazy Proof
Explication.. In Jr., W. A. H., & Somenzi, F. (Eds.), CAV, Vol. 2725 of LNCS, pp.
355–367. Springer.

726

Computing Small Unsatisfiable Cores in Satisfiability Modulo Theories

Gershman, R., Koifman, M., & Strichman, O. (2008). An approach for extracting a small
unsatisfiable core. Formal Methods in System Design, 33 (1-3), 1–27.

Goel, A., Sajid, K., Zhou, H., Aziz, A., & Singhal, V. (1998). BDD Based Procedures for
a Theory of Equality with Uninterpreted Functions.. In Hu, A. J., & Vardi, M. Y.
(Eds.), CAV, Vol. 1427 of LNCS, pp. 244–255. Springer.

Goldberg, E. I., & Novikov, Y. (2003). Verification of Proofs of Unsatisfiability for CNF
Formulas. In Proceedings of 2003 Design, Automation and Test in Europe Conference
and Exposition (DATE 2003), pp. 886–891. IEEE Computer Society.

Grumberg, O., Lerda, F., Strichman, O., & Theobald, M. (2005). Proof-guided
underapproximation-widening for multi-process systems. SIGPLAN Not., 40 (1), 122–
131.

Huang, J. (2005). MUP: a minimal unsatisfiability prover. In Proceedings of ASP-DAC ’05.
ACM Press.

Liffiton, M., & Sakallah, K. (2008). Algortithms for Computing Minimal Unsatisfiable
Subsets of Constraints. Journal of Automated Reasoning, 40 (1).

Lynce, I., & Marques-Silva, J. P. (2004). On Computing Minimum Unsatisfiable Cores.
In SAT 2004 - The Seventh International Conference on Theory and Applications of
Satisfiability Testing, 10-13 May 2004, Vancouver, BC, Canada, Online Proceedings.

Marques-Silva, J. P., & Sakallah, K. A. (1996). GRASP - A new Search Algorithm for
Satisfiability. In Proc. ICCAD’96.

McMillan, K. L. (2002). Applying SAT Methods in Unbounded Symbolic Model Checking.
In Brinksma, E., & Larsen, K. G. (Eds.), Proceedings of CAV’02, Vol. 2404 of LNCS,
pp. 250–264. Springer.

McMillan, K. L., & Amla, N. (2003). Automatic abstraction without counterexamples. In
Garavel, H., & Hatcliff, J. (Eds.), Proceedings of TACAS’03, Vol. 2619 of LNCS, pp.
2–17. Springer.

Mneimneh, M. N., Lynce, I., Andraus, Z. S., Marques-Silva, J. P., & Sakallah, K. A. (2005).
A Branch-and-Bound Algorithm for Extracting Smallest Minimal Unsatisfiable For-
mulas.. In Proc. SAT’05, Vol. 3569 of LNCS. Springer.

Nadel, A. (2010). Boosting Minimal Unsatisfiable Core Extraction. In Bloem, R., & Shary-
gina, N. (Eds.), Proceedings of the 10th International Conference on Formal Methods
in Computer-Aided Design (FMCAD2010), pp. 221–229.

Nieuwenhuis, R., Oliveras, A., & Tinelli, C. (2006). Solving SAT and SAT Modulo Theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T). J.
ACM, 53 (6), 937–977.

Oh, Y., Mneimneh, M. N., Andraus, Z. S., Sakallah, K. A., & Markov, I. L. (2004).
Amuse: A Minimally-Unsatisfiable Subformula Extractor. In Proceedings of DAC’04.
ACM/IEEE.

Ranise, S., & Tinelli, C. (2006). The Satisfiability Modulo Theories Library (SMT-LIB).
www.SMT-LIB.org.

727

Cimatti, Griggio, & Sebastiani

Sebastiani, R. (2007). Lazy Satisfiability Modulo Theories. Journal on Satisfiability, Boolean
Modeling and Computation, JSAT, Volume 3.

Strichman, O., Seshia, S. A., & Bryant, R. E. (2002). Deciding Separation Formulas with
SAT. In Brinksma, E., & Larsen, K. G. (Eds.), CAV, Vol. 2404 of LNCS, pp. 209–222.
Springer.

Suelflow, A., Fey, G., Bloem, R., & Drechsler, R. (2008). Using unsatisfiable cores to debug
multiple design errors. In Proceedings of GLSVLSI’08, pp. 77–82, New York, NY,
USA. ACM.

Tseitin, G. S. (1983). On the complexity of derivation in propositional calculus. Automation
of Reasoning: Classical Papers in Computational Logic 1967-1970Studies in Construc-
tive Mathematics and Mathematical Logic, Part 2, 2. Originally published 1970.

van Maaren, H., & Wieringa, S. (2008). Finding Guaranteed MUSes Fast. In SAT, Vol.
4996 of LNCS, pp. 291–304. Springer.

Wang, C., Kim, H., & Gupta, A. (2007). Hybrid CEGAR: combining variable hiding and
predicate abstraction. In Proceedings of ICCAD’07, pp. 310–317, Piscataway, NJ,
USA. IEEE Press.

Zhang, J., Li, S., & Shen, S. (2006). Extracting Minimum Unsatisfiable Cores with a Greedy
Genetic Algorithm.. In Proceedings of ACAI, Vol. 4304 of LNCS. Springer.

Zhang, L., Madigan, C. F., Moskewicz, M. H., & Malik, S. (2001). Efficient conflict driven
learning in a boolean satisfiability solver. In Proceedings of ICCAD ’01. IEEE Press.

Zhang, L., & Malik, S. (2002). The quest for efficient boolean satisfiability solvers.. In
Voronkov, A. (Ed.), CADE, Vol. 2392 of LNCS, pp. 295–313. Springer.

Zhang, L., & Malik, S. (2003). Extracting Small Unsatisfiable Cores from Unsatisfiable
Boolean Formulas. In Proceedings of 6th International Conference on Theory and
Applications of Satisfiability Testing (SAT2003).

728

