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SUMMARY

A simple method for solving mixed model equations of large order s
presented for single trait models. A comparison of the simple method to a
modified reduced animal model procedure for swine indicated the simple method
was less time consuming and converged faster than the reduced animal model
under the criterion of .s/ maximum change in solutions relative to the
standard deviation of solutions. However, convergence at a .IX criterion
convergence was dependent on the trait being analyzed. Extension of the
simple method to multiple trait models is presented, as well as a procedure
for estimating variance-covariance matrices by maximum likelihood wusing a
Cholesky decomposition transformation.

INTRODUCTION

The process of constructing and solving the mixed model equations of
Henderson (1973) for genetic evaluation of livestock can be both costly and
complex. Attempts to compare and improve upon various computational
strategies are found readily in the literature (Ufford et al ., 1979; Quaas and
Poliak, 1981; Blair and Poliak, 1984; Hudson, 1984; Schaeffer and Kennedy,
1985; and Can Vleck and Dwyer, 1985). Comparisons include the number of
programs and relative computing times of each, and the number of iterations

needed to reach a specified criterion of convergence. Another means of
comparing algorithms could be according to the types of models that may be
handled. Most computer programs are specific to one model or one class of

models, such as the reduced animal model.

Usually the number of equations is too large to permit an explicit
solution or the use of SAS or programs of Harvey (1975), and solutions must be
obtained by iterative procedures. In such cases, the use of REML (Restricted
Maximum Likelihood) or MIVQUE (Minimum Variance Quadratic Unbiased Estimation)
for estimating variance components is essentially impossible even for single
trait analyses. ML  (Maximum Likelihood), however, may be possible with
certain models and Smith and Graser (1985) present a REML procedure for a
particular class of models.

The objectives of this paper are to!

1. describe a simple procedure for solving mixed model equations without
constructing the equations explicitly,

2. compare the simple procedure to a reduced animal model procedure as
applied to Canadian swine data,

3. extend the simple procedure for multiple traits, and

4. indicate how variances and covariances may be estimated by ML.

THE SIMPLE PROCEDURE

To describe this computing algorithm in completely general terms for any
model would be cumbersome. Instead we will describe the algorithm for one
class of models and leave the reader to extrapolate to other classes of
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models. A small example is included. Let the model equation be
y=Wa +Xb + Zc + e cn

where

a is avector of fixed effects, of length p and p is small enough to
allow UTW to be stored in memory;

b is avector of either fixed or random effects of length t and t s
usually a very large number and X'X is diagonal;

c is avector of random effects which can be either sire or animal
effects;

e is a residual vector;

X and Z are design matrices of zeros or ones, but U may include
covariates and more than one -<fixed factor so that WW is not
necessarily diagonal.

The expectations and variance-covariance matrices for fixed b are

E fy '= fWa +Xb and V. C = Aﬁc 0
2
c 0 e 0 Itfe
e 0
where 1 is an identity matrix and A is the additive genetic numerator

relationship matrix. Let

Zc =<, 0 (c

where ¢, represents sires with progeny or animals with records in y, and
cl represents relatives of individuals in c, that are needed to compute
“ A and which are not included in y. The inverse of A will be
calculated by Henderson's <1975) rules assuming non-inbred
individuals in c.

Consider the example data in Table 1 in which age group effects belong to
a, herd-year-season effects belong to b and sires belong to c”. The pedigrees
of the sires appear in Table 2. Assuming that the ratio of residual to sire
variances is 11, the mixed model equations and solutions are given in Table 3.
We now describe how to obtain the same solutions without constructing the
equat ions.

Firstly, the data must be prepared such that the levels of each factor

<fixed or random) are numbered consecutively. This includes individuals in
c . Secondly, for this model, we need one copy of the data sorted by levels
of b and another copy sorted by levels of c. Lastly, we need tip construct a
coded pedigree file to facilitate calculation of elements of A as we need
them. The coded pedigree file is created as follows: let i=bull, j=sire, and
k=maternal grands ire, then write the following data to the coded pedigree
file:

<i, 1, j, k

<J. 2, i, k)

<k, 3, i, j>.
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Table 1. Example data

Age Group Herd-Year-Season Sire Obseruat ion
1 1 1 704
1 1 1 285
1 1 2 1495
1 1 2 1117
2 1 2 1106
2 1 3 1198
2 2 1 837
1 2 1 576
1 2 1 412
3 2 2 529
1 2 3 1441
3 3 1 624
1 3 2 781
2 3 2 846
1 3 3 1605

Table 2. Pedigrees of sires in example

Bull Sire MGS
1 5 4
2 6 4
3 1 6
4
5 -

6
0 b, = 976.5164 c. = -68.7260 g, = -13.6979
30.5239 b' = 847.8510 c' = 24.2079 e = -34.8275
342.4908 = 1034.6487 Cg = 49.6822 c6 = 34.8275
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If j is zero, omit code 2 data, and if k is zero, omit code 3 data, but all
elements of ¢ should have a code 1 record. Then sort the coded pedigree -file
according to the -first two numbers in ascending order. The sorted, coded
pedigree -file -for the example data is given in Table 4. The coded pedigree
mfile allows all male progeny and maternal grand progeny of a particular
individual to be grouped together.

Table 4. Coded pedigree -file for example data

Individual Code j(i) k(j)

1 1 5 4

1 2 3 6

2 1 6 4

3 1 1 6

4 1 0 0

4 3 1 5

4 3 2 6

5 1 0 0

5 2 1 4

6 1 0 0

6 2 2 4

6 3 3 1
The solution program consists of -four sections. The first section
involves the definition and initialization of arrays. Let W represent the

storage arra>; for W'W, Wy for W"y, AS for a, CS for ¢, and AC and CC are work
vectors for a and ¢, respectively. The scalar variables BS and BC refer to a

particular element of b. Hence, the program requires enough computer memory
to hold AS, CS, AC, CC, WVand Wy. |If the number of elements of a is 150,
then WV requires a maximum of 90,600 bytes (assuming all variables are

REAL*8), AS, AC, and WY require another 3,600 bytes or a total of 92K. If the
number of sires is 35,000, then CS and CC require another 547K. Most main
frame computers today allow the use of 8 Megabytes or more, which would enable
512,000 sires to be evaluated.

Initial solutions for a, b and c are zero. W*W and W"y are stored into
WV and WY arrays, and restrictions on solutions, a and b, should be imposed
and an inverse of the restricted W"Wcomputed and stored in WA In  the
example, the first level of a will be made zero.

The second section of the program reads the data sorted by levels of
factor b. For each record within a level of b do the following calculations:

1. Accumulate <Y-AS(IA)-CS(1O) in BC
2. Count the number of records, NB
3. Keep track of the number of timesthat each level of a occurs within a
level of b, BA(IA) = BA(IA)+1
Accumulate (Y-AS(lA)) into CC<1C), and
Keep track of the number of timesthat each level of ¢ occurs within a
level of b.
385
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IA, IB, and IC are the level identifiers for -factors a, b, and c,
respectively, and Y is the observation on the trait of interest.

For the first herd-year-season in the example, we would obtain
BC = 5905, NB = 6,

BA , and CC = 989

4
2 3718
0 1198

The new solution for the first herd-year-season becomes
BS = BC/NB = 984.16<S7.

Before proceeding to the next herd-ye the right hand sides for
factors a and c can be adjusted for this

aCc = CC - 2 BS = -979.3333
3 765.5
1 213.8333
and
) r i
AC = AC - 4 BS = -3936.6667
2 -1968.3333
0 0

At this point, BS is no longer needed and the next herd-year-season may be
processed. For the next herd-year-season in the example we find

BS2 = 3795/5 = 759

cC = -979.3333 + 1825 3 BS, = -1431.3333
765.5 529 1 535.5
213.8333 1441 1 895.8333
and
-3936.6667 3 BSR = -6213.6667
-1968.3333 1 ; -2727.3333
0 1 -759.0

and for the last herd-year-season,

BS3 = 3856/4 = 964

aCc = -1431.3333 + 624 1 BSW: -1771.3333
535.5 1627 2 234.5
895.8333 1605 1 1536.8333
and AC = -6213.6667 2 BSé = -8141 .6667
-2727.3333 1 -3691.3333
-759.0 1 -1723.0
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The third section of the program reads both the coded pedigree -file and

the data sorted by levels of -factor c (sires). For the -first sire we -find
that its sire and maternal grandsire (MGS) are 5 and 4, respectively, and that
sire 1 was the sire of sire 3, whose MGS was 4. Following Henderson (1975),

we adjust the element of CC(1) as follows

CC(1) = CC(1) + (8/11) KC (CS(5) + 1/2 CS(4))
+ (8/11) KC (CS(3) - 1/4 CS(4)),

where KC = 11 is the ratio of residual to sire variances, and we accumulate
(14/11) KC + (4/11) KC into D
where (D corresponds to the diagonal of A ' for sire 1. From the data file we
find that sire 1 has 4 progeny which we add into (D and we keep track of the
number of times each level of a occurs with this sire. For the first sire,
then
CC(1) = -1771.3333
(05] =4+14+4= 24
or

CS(1) = -1771.3333/24 = -14.1282.

Before processing the next sire, adjust the right hand sides of factor a for
the new sire solution

AC = AC - 4 CSl = -7849.1539
1 -3423.2051
1. . -1454.8718 ,

The remaining five sires are processed in a similar fashion.
The last section of the program calculates a new a by
AS = (UI'w)~(WY + AC).
Then the next iteration is begun going back to section two of the program.

The program may include a section to force 1'A 'c to be zero, and this
may help to speed convergence. This program also facilitates the partitioning
of sire proofs according to factors in the model as described by Schaeffer
(1983). Such a program will be faster than one which constructs the equations
explicitly if the number of non-zero coefficients in the equations is greater
than twice the number of records in the data (for a fixed number of
iterat ions) .

APPLICATION

A national genetic evaluation system for swine for growth rate and
backfat was introduced recently in Canada (Hudson and Kennedy, 1985; Kennedy
and Hudson, 1985). The model contains fixed herd-year-season effects and
random litter, animal (additive genetic) and residual effects, and
computations of breeding values are according to a modified reduced animal
model (RAM) as described in detail by Hudson and Kennedy (1985). The simple



method described here was also applied to the Canadian swine data and
comparisons were made with the RAM computing procedure. For this application,
a, b and c of equation tl] represent herd-year-season, litter and animal
effects respectively. Comparisons between the RAM and simple computing
methods are provided here only for the Yorkshire breed in Ontario, the largest
data set analyzed. Specifics on numbers of records, equations and solutions
are in Table 5.

Table 5. Data wused for genetic evaluation of Yorkshire pigs in Ontario and
numbers of equations, stored coefficients, records and solutions for
modified reduced animal model (RAM) and simple computing methods.

Number
Data
Animals with records 86,385
Ancestors without records 6,821
Litters 25,777
Herd-year-seasons 1,733
RAM
Equations 23,646
Stored coefficients 1,342,494
Parent solutions 14,349
Progeny solutions 27,442
Simple Method
Pedigree file 265,976
Animal solut ions 93,206

With RAM, 23,646 equations were created which resulted in 1,342,494
coefficients to be read each round of iteration. Only non-zero elements of
the coefficient matrix were (full) stored. The simple method required reading
a pedigree file of 265,976 records once and the observation file of 86,385
records twice each round of iteration, which was about one-third of the amount
of read operations as with RAM A total of 120 rounds of iteration were
performed with each method. Both methods were computationally demanding. RAM
required 84.2 minutes and the simple method required 36.3 minutes of CPU time
to set up and solve the equations for both traits, age to 90 kg and backfat,
on an IBM 3081 computer. Total computing time with the simple method was 43-.
of RAM, largely because of the need to read fewer records with each round of
iteration. The RAM and simple method required 590 and 1032K of memory,
respectively. Savings in computer time were similar for comparisons of
analyses of two other breeds tested, but not reported here.

Solutions for 14,349 sires and dams were generated with RAM and
evaluations of 27,442 recent progeny were then obtained by backsolving. The
simple method provided evaluations on 93,206 animals, parents and their
progeny, directly. Correlations between evaluations from the two methods were
greater than 0.999 for both traits.

Rates of convergence differed for the three methods. Two criteria of
convergence were compared - average absolute change and maximum change in
animal solutions between rounds. The simple method converged more rapidly
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initially than RAM, but after a number of rounds the rate of convergence of
the simple method was less than RAM As a result, the simple method and RAM
were at equal levels of convergence by round 8L for average absolute change
and round 97 for maximum change for backfat. Prior to these points, the
simple method was at a higher degree of convergence and after the relative
degree of convergence was greater for RAM For days to 90 kg, however, RAM
had not reached the same degree of convergence as the simple method by round
120, when iteration was stopped. Relative rates of convergence were trait
dependent for both methods even though design matrices were identical for both
trai ts.

Table 6 gives the number of rounds of iteration for each method to reach
specific levels of convergence of less than 1.0, 0.5 and o.1s. change from the
previous round. Change for each trait was measured relative to one standard
deviation in animal solutions (4.65 days for age to 90 kg and 1.1 mm for
backfat). RAM took 115 rounds for days to 90 kg and 79 rounds for backfat to
reach a maximum change of less than 17 compared with 56 and 49 rounds for days
to 90 kg and backfat with the simple method. To reach an average absolute
change of less than o.57/. for days to 90 kg and backfat took 96 and 63 rounds
with RAM and 20 and 21 rounds with the simple method. Both methods took about
the same number of rounds of iteration to reach a very stringent convergence
requirement of less than o.17 average absolute change <81 and 83), but for
days to 90 kg the simple method took only 58 rounds compared to 120 rounds
with RAM Computed changes in solutions were based on only 14,349 parent
solutions with RAM but involved all 93,206 animal solutions wjth the simple
method. Also, the RAM program had a restriction forcing 1A c¢ = 0 built in
to speed convergence which the program for the simple method did not have,
although it would be possible to add this restriction.

Table 6. Number of rounds of iteration required by the modified reduced
animal model (RAM) and the simple method to reach convergence as
measured by average absolute change and maximum change in animal
solutions (expressed as percentage relative to one standard
deviation of animal solutions).

Averacae absolute change Maximum chanoe
Standardi zed Days to 90 ko Backfat Days to 90 ko Backfat
percentage RAM Simple RAM Simple RAM Simple RAM  Simp 1e
change
1.0v. 85 13 56 12 115 56 79 49
0.57. 96 20 63 21 >120 76 88 72
0.17 120 58 8l 83 >120 >120 108 >120

Based on these results and similar results with the other data sets
examined, it was decided to replace the RAM method with the simple method for
genetic evaluation of swine in Canada. In addition to the savings in computer
time as a result of fewer read operations and rounds of iteration, the simple
method was simpler operationally and allowed the consolidation of more than a
dozen programs required for the RAM method into one program with the simple
method.
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EXTENSION TO MULTIPLE TRAITS

The simple procedure may be applied to multiple trait models, but the
amount of memory may limit either the number of animals to be evaluated or the
number of traits that can be included. To illustrate, consider a three-trait
model where

y=Ua +Xb + Zc + e
where
are vectors of fixed effects,
is a vector of random sire effects,
is a vector of residual effects, and
U, X and Z are design matrices.

Now we have,

V(c) = G*A and 6 = Co11 9,2

913
912 922 923

. 913 923 933

where g.. is the sire covariance between traits and j, and A is the
numerator additive genetic relationship matrix. Similarly, U<e> = R I f
traits are ordered within animals, then R would be a block diagonal matrix.
Let

11 812 813
12 822 823

13 823 833

with 6.~ Deing the covariance of residual effects between traits i1 and j
the same animal , and
E, = 0 0 0
0 822 823
0 823  e33 .
if trai] 1 were missing on an animal, and so on. With 3 traits there are
seven (2 - 1) different possible E-matrices. The matrix R is the direct sum
of the appropriate E-matrix for each animal. For the multiple trait version
of the simple program we need to save the inverse of each of the seven
possible E-matrices. If certain combinations of missing traits do not occur

in the data, then there would be fewer E-matrices to retain.

The data should be sorted by levels of b and another copy by levels of c,
and all levels of each factor coijsecutivel y*numbered. The coded pedigree file
is the same as before. WR Wand LTR y are stored in program memory.
Initial solutions for all factors are zero.
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Now read the data sorted by levels of b. For each animal the -following
calculations are performed:

1. Accumulate

Ek''<yk - fj - & int0 BC

where Eft 1 is the appropriate E 1 matrix -for the kth individual, y» is the
txI observation vector <t-traits), a. is the current solution -for the jth
a-effects associated with y*, and c” is the current solution for the Ath

sire of the kth animal .
2. Accumulate E* 1 into BD
3. Accumulate EM 1(y™ - a”> into CCQJI)

4. Keep track of levels of a and c that occur in this level of b and also
which E  was associated with each occurrence.

After processing all animals in that level of b, compute the new solution as
BS = (BD)_1(BC).

Since BD is the same each iteration one might save time by storing each (BD)
on a temporary work disk and reading them back each time they are needed.

Now adjust AC and CC for BS as in the single trait procedure, before
proceeding to the next level of b.

The next section of a program would read the data and the coded pedigree
file for levels of c (sires). Suppose a bull (i) has sire j and MGS k, then
accumulate

8/11 G—l(cJ. + 1/2 Ck’) into CC(i)

where c. and are the current solutions -for sires j and k -for t-traits, and
accumu lite

16/11 G-1 into CD(i).
From the data, accumulate the appropriate E 1 into CD(i) and keep track of tije
levels of a that occur in the ith level of c as well as the corresponding E
The new solution for the ith sire is

¢, = [CD(i)]_1CC(i).

Again, [CD(i)l 1 may be saved on a temporary file and retrieved sequentially
as needed.

The last step is to compute a new a and repeat the process until
convergence is achieved. Hence, the extension to multiple traits is not
complicated.

ESTIMATION OF VARIANCES AND COVARIANCES

If we can assume the same mode) for each trait in a multi-trait model,
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and assume that missing observations are due to sequential culling, then a
Cholesky decomposition of E may be used to transform y so that R = 1. By
sequential culling we mean that if trait j is missing then traits 1 to <j-I)
must be present and traits j to t must be missing. Examples are milk yields
in successive lactations, or body weights at various ages. The Cholesky
decomposition of E is a lower triangular matrix, T, such that

E=TT and T"ET"1" = I.

Then T V _jis wused rather than y. Parts of the multi-trait program that
involved E  now only use I, and in place of G use

<T "gT-1")-1 = T°G_,T = G"N"1.

The solutions that are obtained are for T~"a, T_1b, and T~"c, and these can be

converted back to the original scale by premultipiying by T. Let c
represent the solutions, on the transformed traits, for the kth sire. Recall
that CD(k) was the submatrix for the kth level of c. A maximum likelihood

(ML) estimator of G" (assuming A=1) would be

NC - ~
G» = Kkfl<e.Kc.k® + cCD<k)] > /NC

where NC is the number of the levels of ¢c. Then an estimate of G is
G = TGHT '.

For the residual components, calculate for each transformed trait, the total
sum of squares minus the solutions (a#, b”, and c”) times their corresponding
right hand sides and divide by the number of observations for that trait less
the rank of the fixed effects. This is a REML estimator of the residual
variance rather than an M. estimator, and hence, the procedure is a
combination of the two methods. These estimates should be close to unity if
the prior values in E were correct. Let V. be the estimate of the residual
variance for transformed trait i. Let D be a diagonal matrix with diagonals
equal toy., then

E=TDT".

Complete details of this method are given by Schaeffer (1985). Using the new
E and G, a new T can be obtained and the whole process repeated.
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