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1. INTRODUCTION

Several solvers for nonlinearly constrained optimization problems allow or even
require the provision of exact second order derivatives [Vanderbei and Shanno
1999; Wiachter and Biegler 2006; Waltz and Nocedal 2003]. Furthermore, exact
second order derivatives are needed to compute parametric sensitivities, for ex-
ample, for the real-time control of dynamical systems, see Biiskens and Maurer
[2001]. Quite often, the corresponding Hessians are sparse, for example due to
the discretization of a differential equation describing the considered problem.
To maintain the efficiency of the algorithms, it is important to take this sparsity
information into account. Therefore, some of the tools [Vanderbei and Shanno
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Fig. 1. Computing sparse Hessians.

1999; Wiachter and Biegler 2006] assume that the user provides the Hessian in
a sparse format.

As soon as a sparsity pattern for the Hessian is known, well-established col-
oring algorithms [Coleman and Moré 1984; Gebremedhin et al. 2005], in combi-
nation with Automatic Differentiation (AD) [Griewank 2000] allow the efficient
computation of the required second-order information. The overall process is
illustrated in Figure 1. Ideally, steps 1 and 2 of the process, that is, the genera-
tion of the sparsity pattern P and the calculation of the so-called seed matrix S
using graph coloring have to be performed only once. Subsequently, the entries
of the sparse Hessian can be computed in a compressed form using the second
order adjoint mode of AD. The knowledge of the sparsity pattern P is essential
for the approach sketched in Figure 1.

So far, only AMPL [Gay 1996] can compute structural information about
the Hessian automatically. For that purpose, the partial separability of the
differentiated function is exploited. In this paper, we propose and analyse a new
algorithm for computing a sparsity pattern P. As an alternative to the present
work, the calculation of sparse Hessians may also rely on elimination rules for
the computational graph of the Hessian. This approach was first considered
in Dixon [1991] and is the subject of current research. Similar techniques are
well-established for the computation of the complete Jacobian [Naumann 2002;
Naumann 2004].

We assume throughout that the function f : R® — R, x — y, to be differ-
entiated is at least twice continuously differentiable and given as a computer
program in an imperative programming language. Then, the Hessian of f at a
given point x defined by
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is a symmetric matrix. Due to the second order derivatives, an entry
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in the Hessian can only be nonzero if the computation of y = f(x) involves a
term that depends nonlinearly on both x; and x;. In this paper, we propose a
new algorithm that propagates appropriate nonlinearity information through
the function computation. Subsequently, a sparsity pattern for the Hessian can
be derived directly from the propagated index sets. For any AD-tool based on
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Table I. Formalization of Evaluation

Algorithm I: Function evaluation

fori=1,...,n
Vi—n = Xj
fori=1,...,1
vi= ¢i(vj)j<i
y=u

operator overloading, one can implement the proposed approach easily just as
a new variant of the derivative calculation. In this article, we present a new
driver function of the AD-tool ADOL-C [Walther et al. 2005] to compute the
required sparsity pattern. Then, we generate a seed matrix S to compute the
entries of the sparse Hessian by applying a graph coloring algorithm first pro-
posed in Coleman and Moré [1984]. Subsequently, we present a vector mode
for computing second-order adjoint information. This vector version avoids the
recomputation of intermediate results and reduces the cost to evaluate the
Hessian-matrix product H(x)S significantly. The proposed approach is imple-
mented as a recent driver of ADOL-C that allows for the first time the compu-
tation of Hessian-matrix products instead of only Hessian-vector products.
This article has the following structure. In Section 2, we introduce the func-
tion representation that is used to derive and analyze the proposed compu-
tation of a sparsity pattern. Subsequently, the propagation of nonlinearity is
presented, and a complexity analysis for the new algorithm is given. Section 3
sketches very briefly the graph coloring approach for generating the seed ma-
trix S. Furthermore, it describes a new driver of ADOL-C implementing this
algorithm. In Section 4, we present and analyse a vector version of the sec-
ond order adjoint mode of AD. The corresponding implementation in ADOL-C
is sketched. This includes also a new algorithm to compute the Hessian in a
sparse format. Section 5 contains runtime analyses to verify the complexity
results. Finally, we draw some conclusions and give an outlook in Section 6.

2. COMPUTING A SPARSITY PATTERN

2.1 Function Representation

Throughout, we assume that the calculation of y = f(x) can be split into a
presumably very long sequence of unary or binary operations. A formalization
of the function evaluation similar to the one introduced in Griewank [2000] is
shown in Table I. The first loop copies the current values of the independent
variables x1, ... , x, into the internal variables vi_,, ... , vo. The function evalu-
ation itself consisting of [ unary or binary operations is performed in the second
loop. Finally the value of the dependent variable y is extracted from the corre-
sponding internal variable v;. As can be seen, each intermediate value v; with
1 <1 <! is computed by applying an elemental function ¢;. The function ¢; may
have one or two arguments identified by the precedence relation j < i, where we
have ¢;(v;)j«i = ¢;i(w;) or ;(vj)j~i = ¢;(v;,v;) with j < and j, j < i, respec-
tively. Hence, the precedence relation j < i denotes that v; depends directly on
Uj.
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Since we assume that f is at least twice continuously differentiable, the set
of elemental functions may comprise simple evaluations, for example, addi-
tions, multiplications, and calls to intrinsic functions such as sin(x) or exp(x)
provided by a high-level computer language like Fortran or C such that they
are two times differentiable. The approach presented below can be extended
to piecewise-differentiable functions like max(v;,v;) or ,/v; as long as these
elemental functions are evaluated on the differentiable parts.

2.2 Propagation of Nonlinear Interaction

Based on the decomposition into elemental functions, one can now define two
different index sets to propagate nonlinearity information through the function
evaluation. First, we will need index domains

Xo={j<n:j—n<*k} for 1-n<k<l

for all intermediate variables v, as already defined in Griewank [2000,
Section 6.1]. Here, <* denotes the transitive closure of the precedence relation
<. One can compute the index domains using the forward recurrence

Xk:UXj from X;_,={j} for 1<j<n.
J<k

This approach yields the inclusion
9
{jini ﬂ¢0}§?€k
8xj

and identity will hold as long as no degeneracy occurs. One example for a proper
subset relation is given by the statement sequence

v1 = sin(vg), U9 = cos(vg), U3 =UV1%*V1, Ug=Ug*UVg, Us=U3+ Uy

as mentioned already in [Griewank 2000]. Obviously, one has dvs/dvy =
dvs/0x1 = O but X5 = Xy = X3 = Xo = A7 = {1}. For the complexity analy-
sis given in Sec. 2.3, we define 71, = | A | forall 1 —n <k <.

The index domains A} belonging to the dependent variables can be used
to exploit sparsity for the computation of Jacobian matrices as explained in
Griewank [2000, Chapter 7]. However, we want to go one step further in com-
puting a sparsity pattern for the Hessian. Therefore, we need additional index
sets \V;, 1 <i < n, called nonlinear interaction domains (NID) for all indepen-
dent variables, such that

2

{jfn: 7y ?éO}ENi. (1)
axiaxj

Once more, degeneracies may cause a proper subset relation in (1). In the
case of second-order derivatives considered here, degeneracy may, for example,
arise through statement sequences such as y = x(sin®(x) + cos?(x)) given by

v1 = sin(vg), vz =cos(vg), U3 =UV1*V1, Ugy=U3*Vy, Us=Ugs%*DVg,

Ug = Us * Vg, U7 = Ug + V4.
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Table II. Propagation of Nonlinear Interaction

Algorithm II: Computation of nonlinear interaction domains
fori=1,...,n
Xin {1}, Ni<¥
fori=1,...,1
X o< U j<i X 2)
if ¢; nonlinear then
if v; = ¢;(v;) then
Ve e X; : N < N UK (3)
if v; = ¢;(vj,v;) then
if v; linear in v; then

Vk € Xj i Np < Np UX; 4)
else

VkEXJ':Nk<—./\/}eUXi (5)
if v; linear in v; then

Vk € Xy i Np < N UX; (6)
else

Ve e Xj i Np <« N UK (7)

Then, one has 8%v7/9v2 = 82v7/9x? = 0 but N7 = {1}.

After setting N; = ¢ at the beginning of the function evaluation, the NIDs
have to be updated for each nonlinear operation that occurs during the function
evaluation such that N contains the indices 1 < j < n of all independents that
are combined in a nonlinear fashion with the independent x;. This results in the
algorithm shown by Table II. As can be seen from Algorithm II, dead ends, that
is, intermediate variables v, that were computed but not needed subsequently
to calculate v;, can be contained in the function evaluation. These dead ends
may cause that identity does not hold in (1).

Such dead ends have no consequences for the index domains A}, since they
are defined for each intermediate value v,. Hence, if a dead end is contained in
the code, the corresponding index domains would be computed but they would
have no influence on the index domain of the dependent variable y. This does
not hold for the nonlinear interaction domains N;, since the \; are defined only
for the independent variables x;. Hence, if a dead end occurs the A; would be
extended despite the fact that the computed values have no influence on the
dependent variable y. This would result in an overestimate of the sparsity
pattern.

To illustrate the algorithm, we will consider the function

fiRS - R, f(x)=sin(x;x2)+ cos(xz + x4) + 3(x5 + xp).

Table III shows the function evaluation and the development of the index sets
X; and N\; applying Algorithm II. As can be seen, the nonzero entries of the row
i or column i of the Hessian H(x) are given by the indices contained in the NIDs
N;foralll <i <6.
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Table III. Function Evaluation and Execution of Algorithm II

fori=1,...,6
Xin= i), Ni= ¢

U1 =U_5 % Uy, X =1{1,2}, N = {2}, No = {1}
Vg = sin(vl), XZ = {1, 2}, ./\/1 = {1, 2}, Nz = {1, 2}
V3 =VU_3+U_g, X3 = {3, 4}

Vg4 = COS(Ug), X4 = {3, 4}, ./\/3 = {3, 4}, N4 = {3, 4}
Us =V_1 + Vg, X5 = {5, 6}

U6:3*U5, X6={5,6}

U7 = Vg + U4, X7 =1{1,2,3,4}

vg = U7 + Ug, Xg =1{1,2,3,4,5,6}

Table IV. Algorithm Used to Merge Two Sets
Algorithm IIT: Merging of two sets

1. For each i in the first set, put i in the new set and set flag(i) to false.
2. For each i in the second set, put i in the new set if flag(i) is true.
3. For each i in the first set, set flag(i) to true.

2.3 Complexity Analysis

First, one has to note that an implementation of Algorithm II based on operator
overloading does not require the coding of the if-statements. Here, the corre-
sponding set operations can be coded together with or instead of the elemental
function evaluation. Therefore, we ignore the if-statements in the following
complexity analysis. To ensure that the proposed algorithm provides an effi-
cient method to compute a sparsity pattern for the Hessian H(x), we have to
examine the set operations (2)—(7) of Algorithm II. These merging operations
are performed as described in Table IV, where flag denotes a logical array of
length n that is set to true.

For the complexity result proved in the following theorem, we define the exe-
cution of one of the loop bodies as one operation MERGE. Hence, the operation
count of the merging procedure is twice the length of the first list plus the length
of the second list. It is possible to prove the following result:

TuaeoreM 2.1 (CoMpPLEXITY RESULT FOR ALGORITHM II). Let OPS(NID) denote
the number of operations MERGE needed by Algorithm II to generate all N;,
1 <i < n. Then, the inequality

l
OPS(NID) <6(1+7)) (10)
i=1

is valid, where l is the number of elemental functions evaluated to compute the
function value of f, ii; = |X;|, and i = maxy<;<, |N;|.

Proor. The set operation (2) is either &; < X if ¢; isunary or &; < X; UAX;
if ¢; is binary. Therefore, we obtain for the operation count of the set operation
(2) that

OPS(Xi - ij) < 3, . (11)

J=<i
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Furthermore, the number of elements in each NID \V;, 1 < i < n, can be bounded
by

V| <7 (12)

due to the definition of 7i. Furthermore, we can conclude for the set operations
(3), (5), and (7) that
Xl =n; <A (13)

if v; is the result of a nonlinear operation because of (12). Due to the same
reason, we obtain for the set operations (4) and (6)

X5 =73 <A and |Xj|=n; <h, (14)
respectively. Using (13) and (14), it follows for the set operations (3)—(7) that

OPS(Vk € X; : N <« Ny UX) < n2Aa+7;) < R204+7)= 3in
OPS(Vk € Xj : N}, < N UX;) < 7;(2h+7;) < 7;(2a+A)= 3AR;
OPS(Vk € Xj : N, <~ M UX) < n;j@2h+n;) < m;(2a+n)= 3an;
OPS(Vk € X; : Ni, < Ny UX)) < #;(2a+7;) < m(2a+A)= 3Ry
OPS(Vk € Xj : Np < N UX) < m;2a+0) < ni(2a+7)= 3AA,; .

The set operation (2) has to be executed exactly once for the calculation of the
intermediate v;, 1 <i < [.Furthermore, at most two of the set operations (3)—(7)
have to be executed. This yields the overall bound (10) due to the assumption
of unary and binary operations. O

2.4 Computing Sparsity Patterns
The AD-tool ADOL-C was augmented with the new driver

int hess_pat(short tag, int n, double* x, unsigned int** P, int option);

to compute a sparsity pattern for the Hessian for a given function according to
Algorithm II. The first argument, that is, tag, identifies the internal represen-
tation for which one wants to compute derivative information [Walther et al.
2005]. The next argument is used for a consistency check comparing this value
to the one that is stored in the internal representation. The third argument,
that is, x, defines the point for which a sparsity pattern for the Hessian is com-
puted. After the function call P contains a sparsity pattern for the Hessian,
where P[j][0] contains the number of nonzero elements in the jth row. The com-
ponents P[j][i], 0 < i < P[j][0], store the indices of these entries. The usage of the
routine hess_pat is described in more detail in Walther et al. [2005] including
information about allocation and deallocation schemes.

Obviously, the sparsity pattern P may vary as a function of the independent
variable vector x for one of the following three reasons:

ACM Transactions on Mathematical Software, Vol. 34, No. 1, Article 3, Publication date: January 2008.
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(A) Numerical values may be incidentally zero,

(B) fmin, fmax or other conditional assignments may flip to a different branch
and

(C) the control flow may be completely changed.

According to the algorithm presented in this section, ADOL-C propagates
generic dependencies and disregards incidental zeros that are due to cancel-
lations or special values of the independent variables (case (A)). The treatment
of case (B) is determined by the last argument option of the new driver. The
default value is option = 0 resulting in a more conservative computation of a
sparsity pattern for the Hessian. It accounts for all dependencies that might
occur for any value of the independent variables. For example, the intermedi-
ate v; = max(v;, v;) is always assumed to depend on all independent variables
that v; or v; depend on and the index domain 4] is extended correspondingly.
In contrast, the tight version option = 1 gives this result only in the unlikely
event of an exact tie v; = v;. Otherwise it sets the index domain &; either to X
or to &;, depending on whether v; = v; or v; = v; locally. Obviously, a sparsity
pattern obtained with the tight option may contain more zeros than the one
obtained with the safe option. On the other hand, it will be valid only at points
belonging to an area where the function f is locally smooth and that contains
the point at which the internal representation was generated. Case (C) results
in a negative return value of the new driver indicating that the internal repre-
sentation of the given function is not valid for the current argument x due to a
change in the control flow. Then, before computing a sparsity pattern one has
to generate a new internal representation by retaping the function evaluation
at x. Details can be found in the ADOL-C documentation [Walther et al. 2005].

3. COMPUTING THE SEED MATRIX

For computing sparse Jacobians, the application of compression techniques is
now well-established. A comprehensive introduction to this approach can be
found, for example, in Griewank [2000]. Naturally, the same idea can also be ex-
ploited for computing sparse Hessians. Hence, the entries of the sparse Hessian
are computed by evaluating the product

B =H(x)S e R™1

for a so-called seed matrix S € R"*?. Here, as simplest option the columns of S
are chosen as vectors the entries of which are either 0 or 1. After the computation
of the matrix B, one has to reconstruct the entries of H(x) from the available
derivative information; see, for example [Griewank 2000]. Depending on the
choice of the seed matrix, this may require solving a linear system whose matrix
is either a permutation of the identity or a triangular matrix. In the first case,
the entries of H(x) can be directly extracted from B. The resulting evaluation
scheme is therefore called direct. In the second case one has to solve simple
equations. Hence, the resulting evaluation scheme is called substitution-based.

A first method to generate a seed matrix S was proposed by Powell and Toint
[1979]. Later, Coleman and Moré [1984] observed that the task of finding a suit-
able S is equivalent to a graph coloring problem, where the symmetry of the
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derivative matrix can be exploited to reduce the required number ¢ of columns
in the seed matrix. The method proposed in Coleman and Moré [1984] can be
seen as a relaxed distance-2 and a restricted distance-1 coloring. Therefore, it
is referred to as distance-g coloring in Gebremedhin et al. [2005]. This color-
ing method, recently studied also by Albertson et al. [2004], is now used by
ADOL-C to generate the seed matrix S, yielding a direct evaluation scheme. As
alternative one may consider an acyclic coloring as proposed in Coleman and
Cai [1986] that gives a substitution-based evaluation scheme. This approach
will be integrated into ADOL-C in the near future.
The new driver

int generate_seed_hess(int n, unsigned int** P, double*** S, int* q);

of ADOL-C has as input variables the number of independent variables n and
a sparsity pattern P computed for example by the algorithm described in the
last section or provided by the user. First, it performs a coloring of the adja-
cency graph defined by the sparsity pattern P. The number of colors needed
for the coloring determines the number of columns g in the seed matrix. Sub-
sequently, the function allocates the memory needed by S and initializes S
according to the graph coloring. Additional information about the usage of
generate_seed_hess including details about the specific memory management
can be found in Walther et al. [2005].

4. EVALUATING HESSIAN-MATRIX PRODUCTS

For a scalar valued function y = f(x) exact Hessian-vector products can be
computed by differentiating formally the results of the reverse mode of AD
once more with respect to x and y using the scalar forward mode of AD. Using
the notation introduced in Griewank [2000], this evaluation of second order
adjoints is given by

y=f) ——=x=3f'0x) —=x=yf"wx+yf'@eR", (15

reverse forwar

forx,x,% € R" and y, y € R. Hence, the desired Hessian-vector product /" (x)x
can be computed by setting ¥ = 1 and y = 0. As shown in Griewank [2000],
Section 4.5, one obtains the following complexity estimate for the evaluation of
a Hessian-vector product

TIME(f"(2)%) < wsoad TIME(f (x)) with = @seq € [7, 10].

Evaluating the second order adjoint procedure denoted by the subscript soad
for the p columns which form the seed matrix, we obtain as complexity estimate
for evaluating H(x)S

TIME(H (x)S) < wsoad p TIME(f (x)) with wspq € [7, 10]. (16)

Again setting y = 0, that is, ignoring the second term for computing % in (15),
and applying the vector forward mode for a given matrix X € R"*?, one can
similarly derive a vector version of the second order adjoint computation given

by

y=f&) ——x=yf'(x) — X =y f"(x)X € R™*P
reverse forward
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Table V. Second-Order Adjoint Vector Evaluation

Algorithm IV: Evaluation of Hessian-matrix product

fori=1,...,n
Vien = %i, Vien= Xi,01-n=0, V;,=0
fori=1,...,1

. J . -
vi= ¢ij)j<i, Vi = ZT%(UJ‘)]@VJ', 0 =0, V;=0
o j=i OV
y=vu, Y=V, 0=}y

fori=1[,...,1

d ..
o + = 5iﬁj(ﬂi(vj)j<i for j <i

. B 92 . -9 ..
V,+= Uigavj—avk(ﬂi(vj)jd Vi +Vimfﬂi(vj)j<i for j <i
fori=1,...,n

= 0inXi= Vi

Table VI. Second-Order Adjoint Vector Complexity

Elemental function ¢
soadp const add/sub mult ¥
MOVES | 2+2p | 12+ 6p | 11+ 11p | 7T+ 7p
ADDS 0 3+ 3p 2+ 5p 1+2p
MULTS 0 0 3+ 6p 1+4p
NLOPS 0 0 0 4

for x € R", X € R™P, and y € R. Omitting the storage of intermediate values
for simplicity, the corresponding evaluation procedure is given in Table V.

To analyze the computation effort needed to evaluate H(x)S, we will use the
complexity analysis introduced in Griewank [2000, Section 2.5]. Denoting the
vector version of the second order adjoint computation with soad p, we obtain
for assigning a constant, an addition or subtraction, a multiplication, and a
general nonlinear function vy as elemental function ¢ the operation counts given
in Table VI, which can be directly derived from the complexity counts given
in Griewank [2000, Tables 3.6, 4.11]. Here, MOVES denotes the number of
memory accesses. From the stated operation counts, we can derive the runtime
estimate

TIME(X) < Wsoadp TIME(f (x)) am
according to Griewank [2000, Section 2.5] with
(12+6p)n+3+3p
Wsoadp = max{ 2+ 2p, Su+1 ’

11+ 11p)u+2+5p+@B+6p)n
3u+m
(T+Tp)u+1+2p+ 1 +4p)m +4v
2u+v

The constants u, 7, and v measure the complexity of a memory access, a
multiplication, and a nonlinear operation, respectively, where the complexity

) (18)

}e[4+3p,4+6p].
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of an addition is normalized to 1. The reduction in the runtime ratio from an
upper bound in [7p, 10p] to an upper bound in [4 + 3p, 4 + 6p] is caused by
the fact that values that are independent of the directions contained in X are
reused instead of recomputed. Hence, similar to the runtime reductions that
can be achieved by using the vector forward mode of AD instead of the scalar
forward mode for computing first derivatives, a decrease of the computing time
needed for directional second derivatives can be achieved by using a vector
version. The new ADOL-C driver

int hess_mat(short tag, int n, int p, double* x, double** S, double** B);

implements the vector version of the second-order adjoint computation. The
inputs are the identifier for the internal representation tag, the number of
independent variables n for a consistency check, the current value of the inde-
pendent variables x, and the seed matrix S. The result of the product H(x)S
is stored as output of the function call in the two-dimensional array B of size
n x p. More information about hess_mat including details about the memory
allocation can be found in Walther et al. [2005]. Using the three new ADOL-C
drivers, it is possible to compute sparse Hessians in an efficient way as we will
see in the next section. Since the Hessian entries are often required in a pre-
scribed sparse format, ADOL-C also provides a new driver that computes the
sparse Hessian and stores the entries directly in coordinate format:

int sparse_hess(short tag, int n, int repeat, double* x, int* nnz,
unsigned int** r_ind, unsigned int** c_ind, double** H_val);

Once more, the input variables are the identifier for the internal representation
tag, the number of independent variables n for a consistency check, the current
value of the independent variables x. Furthermore, the flag repeat=0 indicates
that a new seed matrix S has to be computed, whereas repeat=1 results in
the reusage of the previously computed seed matrix. The input/output variable
nnz stores the number of the nonzero entries. Therefore, nnz also denotes the
length of the arrays r_ind storing the row indices, c_ind storing the column in-
dices, and H_val storing the values of the nonzero entries. The manual [Walther
et al. 2005] contains more information about the routine sparse_hess including
details about the corresponding memory management.

5. NUMERICAL EXAMPLES

In this section, we will employ the AD-tool ADOL-C to present some runtime
results for the proposed algorithms. For that purpose, we use optimization prob-
lems from the CUTE collection [Bongartz et al. 1995].

5.1 The Computation of Sparsity Patterns

In this subsection, we report on the run-time behaviour of the driver hess_pat
described in Section 2.4 as an implementation of Algorithm II. As test cases,
we chose the Lagrange function of the CUTE problems broydnbd (72 = 1), chain-
woo (i = 4), Iminsurf (7 = 9), and morebv (72 = 5) with varying dimension n.
For all four examples there exists at least one index domain that contains the
indices of all independent variables, that is, there is at least onei € {1,...,[}
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Fig. 2. Runtime results for Algorithm II.

with 72; = n. This is possible because the bounds (13) and (14) hold only for
intermediate variables that are the result and the argument of a nonlinear
operation, respectively. Furthermore, almost all rows of the Hessians have 7
nonzero entries independent of the value of n. Throughout this subsection, the
figures report the runtime ratio

TIME (hess_pat(...))
(1+ A)TIME(f)

For n varying in the interval [1000, 10000] the runtime ratios obtained for the
considered examples are illustrated in Figure 2. As can be seen, a constant
runtime ratio is achieved for the broydnbd problem. For the problem chainwoo
a small increase of the run-time ratio can be observed. For the problems Iminsurf
and morebv, we obtain a stronger increase of the runtime ratio (19). To analyze
the linear behaviour in more detail, lines are add to the curves illustrating the
runtime results. The slopes for the added lines are well below 0.003.

To analyse the runtime behavior of Algorithm IT in more detail, we performed
another test by varying the problem size and the number of nonzeros 7i. For that
purpose, we enlarged the original objective function by the additional term

(19)

Fa) = f@)+ Y xixiy.
=1

Hence, the number of nonzero diagonals in the Hessian of the Lagrange func-
tion can be varied by choosing u appropriately. We generated test cases for the
problem chainwoo with 2 = 7,9, 11 instead of /i = 4 as in the original version.
Furthermore, we studied test cases for the morebv problem with 2 = 7,9, 11 in-
stead of 7 = 5 as in the original version. Figure 3 illustrates the runtime ratios
achieved. For both problems, the linear behavior of the runtime ratio is almost
the same if the number of nonzeros is increased. To ease the interpretation of
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Fig. 3. Runtime results for Algorithm II and varying number of nonzeros.

the results, we added a black solid line with the slope 0.0001 for chainwoo and
0.0025 for morebv. As can be seen, the constant describing the linear increase
of the runtime ratios is very small, which fits the expectations based on the
complexity result presented in Section 2.3. Only for the problem chainwoo and
7 =9 and 72 = 11 some cache effects disturbed the linear behavior in the range
n € [8000, 9000]. For the examples considered here, the linear increase with
n of the complexity of Algorithm II can be described by a very small constant.
Comparing the values observed for the runtime ratios with the complexity re-
sults given by (15) or (17), one finds that a sparsity pattern for the Hessian can
be calculated at a cost that corresponds to the cost for computing a few columns
of the Hessian itself.

5.2 The Evaluation of Hessian-Matrix Products

A second class of runtime tests was done for the newly proposed vector version
of the second order adjoint mode. Comparing the complexity bounds for scalar
second order adjoints given in (16) and for the vector version given in (17) and
(18), one obtains

TIME(H (x)S) TIME(X)

soa = 1 mMINAT, /. — Wsoa _4 )
TIME(f () = @eedP =10pand  qumerrs = adp = 4+ 6p

respectively. We computed the stated runtime ratios using the well-established
driver hess_vec of ADOL-C to compute p Hessian-vector products and the new
driver hess_mat of ADOL-C to compute one Hessian-matrix product. The prob-
lems dtoc2 and eigena2 serve as test cases. For dtoc2 the corresponding seed
matrix has 6 columns independent of the size of the problem. For the numerical
tests we set the number of variables to n = 1485 and the number of constraints
to m = 990. The number of columns that form the seed matrix varies with
the problem size for eigena2. To get an impression also for a higher number
of columns, we set the number of independent variables to n = 2550 and the
number of constraints m = 1275, resulting in a seed matrix with 52 columns.
The achieved runtime ratios are illustrated by Figure 4. First of all, the ex-
pected linear behavior in dependence on the number of vectors and columns,
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Table VII. Slopes Obtained from Runtime Results

dtoc2 eigena2
scalar soad 28.6 16.5
vector soad 13.2 7.5

respectively, is clearly visible. Furthermore, the line with the larger slope be-
longs to the scalar second-order adjoint computation evaluating p Hessian-
vector products. Hence, so far the theory is verified by the numerical examples,
since the vector version of the second-order adjoint requires significantly less
runtime.

Additionally, one can examine the slopes of the lines in more detail. For that
purpose the slopes are stated in Table VII. As can be seen, the scalar mode
is almost three times slower than the theory predicted for the dtoc2 example,
whereas the vector mode is only about two times slower than the theory.

For the eigena2 example, the function evaluation is a little bit more com-
plicated and the situation changes considerably in favor of ADOL-C. Here, the
runtime needed by the scalar mode is only about a factor 3/2 larger than ex-
pected. So the operator-overloading tool ADOL-C comes almost close to the the-
ory. The same is true for the vector version of the second order adjoint, where
the slope is close to the theoretical bound 6.

6. CONCLUSION AND OUTLOOK

This article presents the propagation of nonlinearity for determining a sparsity
pattern for a Hessian matrix. The complexity of the corresponding algorithm
is analysed in detail. Once the sparsity pattern is available, well-known graph-
coloring techniques can be applied to generate a seed matrix. Subsequently,
the seed matrix can be used as input for a vector version of the second order
adjoint mode, that is proposed and analysed in this paper for the first time.
The three ingredients—sparsity pattern, seed matrix, vector second order ad-
joint computation—allow an efficient evaluation of sparse Hessians. Run-time
results verifying the theoretical results are presented for some problems of the
CUTE collection, where the AD-tool ADOL-C is used to compute the derivatives.
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Future work can be devoted to the incorporation of more sophisticated colo-
ring techniques which are the subject of current research. This includes also
the incorporation of a substitution-based seeding.
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