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The multi-modal logic S4u, known in the field of qualitative
spatial reasoning to be a decidable formalism for expressing topological
and mereological properties, can also be exploited to define a distance
measure among patterns. Here, we recall the notion of topological dis-
tance defined in terms of games over S4u models, and show how it is
effectively computed for a specific class of models: the class of polygons
of the real plane, a class of topological models widely used in computer
science and AI applications. Finally, we briefly overview an implemented
system based on the presented framework. This paper is the practical
counterpart of, and continuation to [1].
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1 Introduction

The core of the question we address is How can I compute how similar two spatial
patterns are? The fundamental issues to solve in order to answer this question
involve finding an agreement on spatial representation, finding an agreement on a
language to describe spatial patterns, and finding an agreement on a measure of
similarity. Our choice here falls onto modal logics, topologically interpreted, and
equipped with adequate model comparison games. The language, called S4u,
is a multi-modal S4*S5 logic interpreted on topological spaces equipped with
valuation functions.

Spatial representation is not only interesting in itself, but also when consid-
ering its applications. It is essential in vision, in spatial reasoning for robotics, in
geographical information systems, and many more related fields. Of paramount
importance in applications is the comparison of spatial patterns, which must be
represented in the same way. We consider similarity measures and look at their
application to image retrieval. Image retrieval is concerned with the indexing
and retrieval of images from a database, according to some desired set of image
features. These features can be as diverse as textual annotations, color, texture,
object shape, and spatial relationships among objects. The way the features from
different images are compared, in order to have a measure of similarity among
images, is what really distinguishes an image retrieval architecture from another



one. We refer to [11] for an overview of image retrieval and more specifically
to [18] for image similarity measures. Here we concentrate on image retrieval
based on spatial relationships at the qualitative level of mereotopology, that is,
part-whole relations, topological relations and topological properties of individ-
ual regions (see for instance [3,19,8]). Other image retrieval systems are based
on spatial relationships as the main retrieval feature [20,15,9].

The paper is organized as follows. First, we recall the basic facts of the spatial
framework and in particular of the similarity measure. The work overviewed
in Section 2 is based on [2] and [1], to which we refer the reader for details
and examples. In Section 3, we present an algorithm to compute the similarity
measure in the case of polygons of the real plane. The techniques described in
the paper have been used to implement an image retrieval prototype named
IRIS (Image RetrIeval based on Spatial relationships) which is overviewed in
Section 4.

2 A general framework for Mereotopology

The framework we adopt to express spatial properties at the mereotopological
level is the multi-modal logic S4*S5, usually referred to as S4u. The language
is known in modal logics [13], and has been introduced into spatial reasoning
by Bennett [5] to encode decidable fragments of the RCC calculus [17]. For
the syntax, axiomatization, truth definition and topological expressive power we
refer to [2], while for an analysis of the mereotopological expressive power and
a comparison with RCC we refer to [1].

Let us only say that the modal logic is interpreted on topological spaces (à
la Tarski [21]) instead of the usual Kripke semantics. Every formula ϕ of S4u
represents a region. 2ϕ is interpreted as “interior of the region ϕ” and Uϕ as
“it is the case everywhere that ϕ.”

For S4u it is possible to define a notion of equivalence resorting to an adequate
notion of bisimulation ([6,14]), after all we are dealing with a modal logic... For
a definition and proof of adequacy see [2]. This notion lets us answer questions
like When are two spatial patterns the same? or When is a pattern a sub-pattern
of another one? If topological bisimulation is satisfactory from the formal point
of view, one needs more to address qualitative spatial reasoning problems and
computer vision issues. If two models are not bisimilar, or one does not simulate
the other, one must be able to quantify the difference between the two models.
Furthermore, this difference should behave in a coherent manner across the class
of all models. Informally, one needs to answer questions like: How different are
two spatial patterns?

To this end, we defined an adequate notion of model comparison game in
the Ehrenfeucht-Fräıssé style. The idea is that two players challenge each other
on two models. One player (Spoiler) is attempting to prove the difference of the
models, while the other one (Duplicator) wants to prove their equivalence. The
moves available to the players are those of deciding on which model to play,
which type of round to engage, and that of picking points and opens on the two



models. A game is played to a fixed number of rounds n. We denote a game by
TG(X,X ′, n), where X and X ′ are two topological models, i.e., a topological
space 〈X,O〉 equipped with a valuation function ν, and n is the number of
rounds. For the precise definition we refer, again, to [2]. The multi-modal rank
of a S4u formula is the maximum number of nested modal operators appearing
in it (i.e. 2, 3, U and E modalities). The following adequacy of the games with
respect to the mereotopological language holds.

Theorem 1 (Adequacy). Duplicator has a winning strategy (w.s.) in n rounds
in TG(X,X ′, n) iff X and X ′ satisfy the same formulas of multi-modal rank at
most n.

Various examples of plays and a discussion of winning strategies can be found
in [2]. The interesting result is that of having a game theoretic tool to compare
topological models. Given any two models, they can be played upon. If Spoiler
has a winning strategy in a certain number of rounds, then the two models are
different up to a certain degree. The degree is exactly the minimal number of
rounds needed by Spoiler to win. On the other hand, one knows (see [2]) that if
Spoiler has no w.s. in any number of rounds, and therefore Duplicator has in all
games, including the infinite round game, then the two models are bisimilar.

A way of comparing any two given models is not of great use by itself. It
is essential instead to have some kind of measure. It turns out that topo-games
can be used to define a distance measure.

Definition 1 (isosceles topo-distance). Consider the space of all topological
models T . Spoiler’s shortest possible win is the function spw : T×T → IN∪{∞},
defined as:

spw(X1, X2) =


n if Spoiler has a winning strategy in TG(X1, X2, n),

but not in TG(X1, X2, n− 1)
∞ if Spoiler does not have a winning strategy in

TG(X1, X2,∞)

The isosceles topo-model distance (topo-distance, for short) between X1 and X2

is the function tmd : T × T → [0, 1] defined as:

tmd(X1, X2) =
1

spw(X1, X2)

In [1], it is shown that indeed the above definition is a distance measure on the
class of all models for the language:

Theorem 2 (isosceles topo-model distance). tmd is a distance measure on
the space of all topological models.

3 Computing similarities

The fundamental step to move from theory to practice has been taken when
shifting from model comparison games to a distance. To complete the journey



towards practice one needs to identify ways of effectively computing the distance
in cases actually occurring in real life domains. We do not have an answer to
the general question of whether the topo-distance is computable for any two
topological models or not. Though, by restricting to a specific class of topological
models widely used in real life applications, we can show the topo-distance to
be computable when one makes an ontological commitment. The commitment
consists of considering topological spaces made of polygons. This is common
practice in various application domains such as geographical information systems
(GIS), in many branches of image retrieval and of computer vision, in robot
planning, just to mention the most common.

Consider the real plane IR2, any line in IR2 cuts it into two open half-planes.
We call a half-plane closed if it includes the cutting line, open otherwise.

Definition 2 (region). A polygon is the intersection of finitely many open or
closed half-planes. An atomic region of IR2 is the union of finitely many polygons.

An atomic region is denoted by one propositional letter. More in general, any set
of atomic regions, simply called region, is denoted by a S4u formula. The polygons
of the plane equipped with a valuation function, denoted by MIR2 , are in full
rights a topological model as defined in Section 2, a basic topological fact. A
similar definition of region can be found in [16]. In that article Pratt and Lemon
also provide a collection of fundamental results regarding the plane, polygonal
ontology just defined (actually one in which the regions are open regular).

From the model theoretic point of view, the advantage of working withMIR2 is
that we can prove a logical finiteness result and thus give a terminating algorithm
to compute the topo-distance. The preliminary step is thus that of proving a
finiteness lemma for S4u over MIR2 models.1

Lemma 1 (finiteness). There are only finitely many modally definable subsets
of a finite set of regions {ri|ri is an atomic region}.

Here is a proof sketch. We work by enumerating cases, i.e., considering boolean
combinations of planes, adding to an ‘empty’ space one half-plane at the time,
first to build one region r, and then to build a finite set of regions. The goal is to
show that only finitely many possibilities exist. We begin by placing a half plane
denoted by r on an empty bidimensional space, Figure 1.a. Let us follow what
happens to points in the space from left to right. On the left, points satisfy the
formula E(r ∧2r) and its subformulas Er and E2r. This is true until we reach
the frontier point of the half-plane. Either E(¬r ∧ 32r) or E(r ∧ 32¬r) are
true depending on whether the half-plane is open or closed, respectively. Once
the frontier has been passed to the right, the points satisfy E(¬r∧2¬r) and its
subformulas E¬r and E2¬r, better seen in Figure 1.¬a. In fact, if we consider
negation in the formulas the role of r and ¬r switch. Consider now a second
plane in the picture:

1 Of course, in general this is not true. There are infinitely many non equivalent S4u
formulas and one can identify appropriate Kripke models to show this, [7].
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Fig. 1. Basic formulas defined by one region.

– Intersection: the intersection may be empty (no new formula), may be a
polygon with two sides and vertices (no new formula, the same situation as
with one polygon), or it may be a line, the case of two closed polygons that
share the side (in this last case depicted in Figure 1.b—spike—we have a
new formula, namely, E(r ∧23¬r)).

– Union: the union may be a polygon with either one or two sides (no new
formula), two separated polygons (no new formula), or two open polygons
sharing the open side (this last case depicted in Figure 1.¬b—crack—is like
the spike, one inverts the roles r and ¬r in the formula: E(¬r ∧23r)).

Finally, consider combining cases (a) and (b). By union, we get Figure 1.a, 1.c,
1.d. The only situation bringing new formulas is the latter. In particular, the
point where the line intersects the plane satisfies the formula: E(32r ∧ 3(r ∧
23¬r)). By intersection, we get a segment, or the empty space, thus, no new
formula.

The four basic configurations just identified yield no new configuration from
the S4u point of view. To see this, consider the boolean combinations of the
above configurations. We begin by negation (complement):
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Union straightforwardly follows (where a stands for both a and ¬a, as both
configurations always appear together):
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The table for intersection follows, with the proviso that the combination of the
two regions can always be empty (not reported in the table) and again a and ¬a
are represented simply by a:
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We call topo-vector associated with the region r, notation r, an ordered se-
quence of ten boolean values. The values represent whether the region r satisfies
or not the ten formulas {Er, E¬r, E2r, E2¬r, E(¬r ∧ 32r), E(r ∧ 32¬r),
E(r∧23¬r)), E(¬r∧23r)), E(32r∧3(r∧23¬r)), E(32¬r∧3(¬r∧23r))}.
The ten formulas are those identified in Figure 1 which we have shown to be
the only one definable by boolean combinations of planes denoting the same one
region r. For example, the topo-vector associated with a plate—a closed square
r in the plane—is {true, true, true, true, false, true, false, false, false, false}.

Adding half-planes with different denotations r2, r3, . . . increases the number
of defined formulas. The definition of topo-vector is extended to an entire MIR2

model: { E
∧
i[¬]ri, E

∧
i 2[¬]ri, E(

∧
i[¬]+ri ∧

∧
i 32[¬]∗ri), E(

∧
i[¬]+ri ∧∧

i 23[¬]∗ri), E(
∧
i 32[¬]+ri∧3(

∧
i[¬]+ri∧

∧
i 23[¬]∗ri)) }, where [ ] denotes

an option and if the option [ ]+ is used then the option [ ]∗ is not and vicev-
ersa. The topo-vector is built such that the modal rank of the formulas is not
decreasing going from the positions with lower index to those with higher. The
size of such a vector is 5 · 2i where i is the number of denoted regions of the
model. The fact that the size of the topo-vector grows exponentially with the
number of regions might seem a serious drawback. Though, as we shall show in
a moment, the topo-vector stores all the information relevant for S4u about the
model. Furthermore, the size of a topo-vector is most often considerably smaller
than that of a topological model. In fact, a topo-vector is of exponential size
in the number of regions, while a topological model is of exponetial size in the
number of points of the space because of the set of opens. As a final argument,



one should add that in practical situations the number of regions is always much
smaller than the number of points of the space.

We are now in a position to devise an algorithm to compute the topo-distance
between two topological models. The algorithm works by first computing the as-
sociated topo-vectors and then comparing them. By the comparison it is possible
to establish which formulas differentiate the two models and therefore the dis-
tance between the two models. Here is the general algorithm (in pseudo-code)
to compute the topo-distance between two topological models M1 and M2:

topo-distance(M1, M2)

v1 = topo-vector (M1)

v2 = topo-vector (M2)

align v1 and v2

loop on v1 v2 with index i

if v1(i) 6= v2(i)
return 1

modal rank(v1(i))

return 0

The idea is of retrieving the topo-vectors associated with the two input models
and then looping over their elements. The inequality check can also be thought
of as a xor, since the elements of the array are booleans. If the condition is never
satisfied, the two topo-vectors are identical, the two-models are topo-bisimilar
and thus the topo-distance is null. The align command makes the topo-vectors
of the same length and aligns the formulas of the two, i.e., such that to the same
index in the vector corresponds the same formula. If a topo-vector contains a
formula that the other one does not, the entry is added to the vector missing it
with a false value. To complete the description of the algorithm, we provide the
function to compute the topo-vector associated with an MIR2 model:

topo-vector(M)

v = intialized to all false values

loop on regions r of M with index i

loop on atomic regions a of r(i) with index j

loop on vertices v of a(j) with index k

update v with the point v(k)
if v(k) is not free

loop on intersections x of a(j) with all

regions of M with index l
update v with the point x(l)

return v

If a point v(k) of an atomic region a(j) is contained in any polygon different
from a(j) and it is not contained in any other
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Fig. 2. Computing the topo-vector on a simple model.

region, then the condition v(k) is not free is satisfied. Standard compu-
tational geometry algorithms exist for this task, [10]. When the update v with
the point p function is called, one checks in which case p is (as shown after
Lemma 1), then one considers the position of the corresponding topo-vector
and puts in a true value. An obvious optimization to the algorithm is to avoid
checking points for which all the associated formulas are already true. Consider
the simple model of Figure 2 composed of two closed regions r and q. Since
there are two regions, the topo-vector will be of size 5 · 22 = 20 elements:
{E(r ∧ q), E(r ∧ ¬q), . . . E(32¬r ∧ 32¬p ∧ 3(¬r ∧ ¬q ∧ 23r ∧ 23q)))}.
After initialization, the region r is considered and one starts looping on the ver-
tices of its polygons, first the point 1. The point is free, it is the vertex of a
full polygon (not a segment) and therefore the topo-vector is updated directly
in the positions corresponing to Er ∧ ¬q, E2r ∧ 2¬q, Er ∧ ¬q ∧ 2r ∧ 2¬q,
Er ∧ ¬q ∧ 32r ∧ 32q. The points 2 and 3 would update the values for the
same formula and are not considered. The point 4 falls inside the first polygon
of r, the topo-vector does not need update. Intersections are then computed
and the point 5 is found. The point needs to update the vector for the formula
E32r∧32¬q∧3(r∧¬q∧23¬r∧23¬q). Finally, the point 6 is considered and
the point needs to update the formula E(r∧¬q∧32¬r∧32¬q). The algorithm
proceeds by considering the second region, q and its vertices 7, 8, and 9. The
three vertices all fall inside the region r and provide for the satisfaction of the
formulas Er ∧ q, E2r ∧2q, . . .

Lemma 2 (termination). The topo-distance algorithm terminates.

The property is easily shown by noticing that a segment (a side of a polygon)
can have at most one intersection with any other segment, that the number of
polygons forming a region of MIR2 is finite, and that the number of regions of
MIR2 is finite. Putting this result together with Lemma 1 one gets the hoped
decidability result for polygonal topological models.

Theorem 3 (decidability of the topo-distance). In the case of polygonal
topological models MIR2 over the real plane, the problem of computing the topo-
distance among any two models is decidable.



Given the definition of topo-distance, the fact that two models have a null topo-
distance implies that in the topo-game Duplicator has a winning strategy in the
infinite round game. In the case of MIR2 , Theorem 3 implies that the two models
are topo-bisimilar. Note that, in general, this is not the case: Duplicator may
have a winning strategy in an infinite Ehrenfeucht-Fräıssé game adequate for
some modal language and the models need not be bisimilar [4].

Corollary 1 (decidability of topo-bisimulations). In the case of polygonal
topological models over the real plane, the problem of identifying whether two
models are topo-bisimilar or not is decidable.

4 The IRIS prototype

The topo-distance is a building block of an image retrieval system, named IRIS
Image RetrIeval based on Spatial relationships, coded in Java and enjoying a
Swing interface (Figure 4). The actual similarity measure is built in IRIS to both
index and retrieve images on the basis of:

1. the spatial intricacy of each region,
2. the binary spatial relationships between regions, and
3. the textual description accompanying the image.

Referring to Figure 3, one can get a glimpse of the conceptual organization
of IRIS. A spatial model, as defined in Section 2, and a textual description
(central portion of the figure) are associated with each image of the collection
(on the left). Each topological model is represented by its topo-distance vector,
as built by the algorithm in Section 3 and by a matrix of binary relationships
holding between regions. Similarly, each textual description is indexed holding a
representative textual vector of the text (right portion of the figure). In Figure 4,
a screen-shot from IRIS after querying a database of about 50 images of men
and cars is shown. On the top-right is the window for sketching queries. The
top-center window serves to write textual queries and to attach information to
the sketched regions. The bottom window shows the results of the query with the
thumbnails of the retrieved images (left to right are the most similar). Finally,
the window on the top-left controls the session.

We remark again the importance of moving from games to a distance measure
and of identifying the topo-vectors for actually being able to implement the
spatial framework. In particular, in IRIS once an image is place in the data-
base the topo-vector for its related topological model is computed, thus off-line,
and it is the only data structure actually used in the retrieval process. The
representation is quite compact both if compared with the topological model
and with the image itself. In addition, the availability of topo-vectors as indexing
structures enables us to use a number of information retrieval optimizations, [12].
In IRIS, the similarity consists of three components:

sim(Iq, Ij) =
1
kn

(ktopo
u · dtopo(Iq, Ij) + kb

u · db(Iq, Ij) + ktext
u · dtext(Iq, Ij))
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Fig. 3. The conceptual organization of IRIS together with the indexing data
structures.

where Iq is the query image (equipped with its topological model and textual
description), Ij is the j-th image in the visual database, ktopo

u , kb
u, and ktext

u are
user defined factors to specify the relative importance of topological intricacy,
binary relationships and text in the querying process, kn is a normalizing factor,
dtopo(Iq, Ij) is the topo-distance between Iq and Ij , db(Iq, Ij) and dtext(Iq, Ij) are
the distances for the binary spatial relationships and for the textual descriptions,
respectively.

5 Concluding Remarks

We have recalled a general mereotopological framework. We addressed issues of
model equivalence and especially of model comparison, thus, looking at mereo-
topology from a new angle. Defining a distance that encodes the mereotopologi-
cal difference between spatial models has important theoretical and application
implications, in this paper we have focused on the latter. We have shown the
actual decidability of the devised similarity measure for a practically interesting
class of models.

Having implemented a system based on the above framework is also an im-
portant step in the presented research. Experimentation is under way, but some
preliminary considerations are possible. We have noticed that the prototype is
very sensible to the labeling of segmented areas of images, i.e., to the assignment



Fig. 4. The result of querying a database of men and cars.

of propositional letters to regions. We have also noticed that the mereotopolog-
ical expressive power appears to enhance the quality of retrieval and indexing
over pure textual searches, but the expressive power of S4u is still too limited.
Notions of qualitative orientation, shape or geometry appear to be important,
especially when the user expresses his desires in the form of an image query or
of a sketch. The generality of the framework described in the paper allows for
optimism about future developments.
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