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We present a method for computing stationary distributions for activated processes in equilibrium
and nonequilibrium systems using forward flux sampling. In this method, the stationary distributions
are obtained directly from the rate constant calculations for the forward and backward reactions;
there is no need to perform separate calculations for the stationary distribution and the rate constant.
We apply the method to the nonequilibrium rare event problem proposed by Maier and Stein, to
nucleation in a 2-dimensional Ising system, and to the flipping of a genetic switch. © 2007
American Institute of Physics. [DOI: 10.1063/1.2767625]

I. INTRODUCTION

Rare events are ubiquitous in physics, chemistry, and
biology; examples include crystal nucleation, chemical reac-
tions, and protein folding. Rare events are activated pro-
cesses, for which the average waiting time between events
can be orders of magnitude longer than the duration of the
event itself. This makes these events intrinsically difficult to
investigate experimentally. Computer simulations are there-
fore a natural tool to use—yet conventional numerical tech-
niques are impractical for rare events, because most of the
CPU time is wasted on the uneventful waiting time between
events. A number of “rare event” simulation schemes have
recently been developed in the field of soft-condensed matter
physics, which makes it possible to zoom in on the rare
events themselves. Techniques such as umbrella sampling
allow the calculation of free-energy barriers separating the
stable states,l_4 while schemes such the Bennet-Chandler
method™® also allow the computation of rate constants. Tran-
sition path sampling%10 allows both rate constants and tran-
sition paths to be obtained. These techniques have been used
for a wide range of applications including ion permeation
through membranes, protein folding, and nucleation. How-
ever, these schemes require prior knowledge of the phase-
space density. For systems that are in thermodynamic
equilibrium—with  detailed balance and microscopic
reversibility—the phase-space density is known: it is given
by the Boltzmann distribution. In contrast, for systems that
are out of equilibrium, the phase-space density is usually not
known. This means that most numerical techniques for simu-
lating rare events are limited to equilibrium systems, and
thus exclude a host of important rare-event problems in non-
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equilibrium systems, such as polymer collapse under flow,
crystal nucleation under shear, and rare events in biology,
such as protein translocation and switching events in bio-
chemical networks. We have recently developed a numerical
technique, called forward flux sampling (FFS),"'™" that
makes it possible to compute rate constants in both equilib-
rium and nonequilibrium systems with stochastic dynamics.
In this paper, we show how stationary distributions can also
be obtained directly from a FFS calculation, for both equi-
librium and nonequilibrium systems. For equilibrium sys-
tems the advantage is that from a FFS simulation one can
obtain not only the rate constant, but also information about
the free-energy landscape. For nonequilibrium systems the
concept of free energy does not apply, but one can obtain the
steady-state probability distribution as a function of a chosen
order parameter (or order parameters). To our knowledge,
this is the first method to be proposed for computing station-
ary distributions for multidimensional nonequilibrium sys-
tems that are in steady state.

In soft-condensed matter physics, the rate k of an acti-
vated process in an equilibrium system is often written as the
product of two factors,

k=R(q)p(q"). (1)

Here, g is an order parameter that connects the initial and
final states, assuming that the system evolves between two
states. It is defined such that for ¢ <g", the system is in the
initial state, while for ¢ > ¢" it is in the final state. The quan-
tity p(q") is the probability that the system is at the dividing
surface g=¢" and R(g") is the rate at which this dividing
surface is crossed. For equilibrium systems, p(g") is propor-
tional to exp(-BAG(g")), where S is the inverse temperature
and AG(q) is the (Landau) free-energy of the system as a
function of the order parameter ¢. It is natural to locate the
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dividing surface ¢" at the top of the free-energy barrier
AG(q) separating the two states. The rate constant is thus
given by the probability of being at the top of the free-energy
barrier, multiplied by a kinetic prefactor.

The Bennett-Chandler method for computing rate con-
stants for activated processes uses a two-step procedure:s’6
one first computes the free-energy barrier, using, for ex-
ample, the umbrella sampling scheme,'™ and then the kinetic
prefactor, using a molecular dynamics simulation in which
trajectories are fired from the top of the free-energy barrier.
However, this method is computationally demanding, and its
success depends strongly on the choice of the reaction coor-
dinate g. If ¢ is poorly chosen, the system will sample the
wrong part of the phase space, which will not only conceal
the mechanism of the transition, but also impede the compu-
tation of the rate constant; while the choice of g coordinate
does not affect the value of the rate constant k, it can strongly
affect the efficiency with which k is computed. For high-
dimensional complex systems it can be difficult to make a
good choice for g, since this requires a priori insight into the
reaction mechanism.

Transition-path sampling (TPS) has been developed to
alleviate these problems.7’8’14’15 This scheme generates an en-
semble of trajectories between the initial and final states us-
ing Monte Carlo sampling in trajectory space. TPS only re-
quires an order parameter to distinguish the initial and final
states; this order parameter does not need to be the true re-
action coordinate. TPS thus makes it possible to compute the
rate constant without prior knowledge of the reaction mecha-
nism. However, this method does require knowledge of the
steady-state phase-space distribution, which is needed for the
acceptance/rejection step in the Monte Carlo scheme, and it
does not allow direct computation of the free-energy barrier
separating the two states. Moroni et al. have developed a
related method, transition interface sampling (TIS), which
relies on the computation of crossing probabilities of a series
of interfaces between the initial and final states.”'®'®!” A
variant of this method, partial path TIS (PPTIS), assumes
loss of time correlations in the transition paths over a dis-
tance of two interfaces. Moroni et al. have recently shown
how the free-energy barrier as well as the rate constant can
be obtained from a single TIS/PPTIS calculation.'® As for
TPS, both TIS and PPTIS require the system to be in ther-
modynamic equilibrium. The “mile-stoning” method of
Faradjian and Elber also employs a series of interfaces to
compute rate constants and also assumes that the interface-
crossing probability does not depend upon the full history of
the path.19 In an alternative approach, Vanden-Eijnden et al.
have developed a set of “string” methods, which can be used
to compute minimum free-energy paths and the probability
current of reactive trajectories for equilibrium systems.zo’21

The algorithms discussed above—TPS, (PP)TIS, mile
stoning, and the string methods—are limited to systems that
are in thermodynamic equilibrium. The FFS method and its
variants were developed to calculate rate constants and tran-
sition paths for rare events in equilibrium and nonequilib-
rium systems with stochastic dynamics.”f13 Like TIS, PP-
TIS, and mile stoning, FFS uses a series of interfaces to
compute the rate constant. However (unlike PPTIS and

J. Chem. Phys. 127, 114109 (2007)

milestoning), FFS does not make the Markovian assumption
that the distribution of paths at the interfaces is independent
of the path histories. The order parameter that is used to
define the location of the interfaces need not be the reaction
coordinate, and the choice of order parameter, in principle,
does not bias the dynamics of the transition paths.

We have recently shown that the rate constant for acti-
vated processes in nonequilibrium systems that are in steady
state can also be written in the form of Eq. (1).* The quan-
tity p(q) is then the stationary probability distribution func-
tion for the order parameter g. In this paper we show that the
stationary distribution p(g), as well as the forward and back-
ward rate constants and transition paths, can be obtained by
performing two FFS calculations: one for the transition from
the initial to the final state, and the other for the reverse
transition. The method can be applied to both nonequilibrium
and equilibrium systems; in the latter case, p(g) corresponds
to the Boltzmann distribution. The method is conceptually
similar to that used in TIS and PPTIS to compute free-energy
barriers, in the sense that the stationary distribution p(q) is
obtained by matching the forward and backward
traje,ctories.g’lo’w’17

In the next section, we explain the FFS algorithm.11 In
Secs. IIT and TV, we discuss the theory and method for ob-
taining stationary distributions. We then illustrate the method
using symmetric and asymmetric double-well potentials
(Sec. VI), and the two-dimensional nonequilibrium rare
event problem proposed by Maier and Stein (Sec. VII). In
Sec. VIII, we use the method to calculate the free-energy
barrier for nucleation in a two dimensional Ising system.
Finally, in Sec. IX, we compute nonequilibrium stationary
probability distributions for a bistable model genetic switch.

Il. FORWARD FLUX SAMPLING

We consider rare, spontaneous transitions between two
regions of state space A and B. The phase-space coordinates
are denoted by x and the regions A and B are defined in terms
of an order parameter \(x) such that the system is in state A
if N(x) <\, and it is in state B if N(x) > \,,. The key principle
is to use a series of interfaces Ay, A, ..., N,_1,\, to drive the
system from state A to state B in a ratchet-like manner. The
idea of the interfaces is that they make it possible to capital-
ize on all those fluctuations that bring the system in the di-
rection of the final state B.

Supposing that with a conventional [say molecular dy-
namics (MD)] simulation, the system exhibits a rare fluctua-
tion that moves it up the barrier, and that it crosses an inter-
face between state A and the top of the barrier, if we would
continue this successful run, then most likely the system
would roll back down the hill, i.e., relax back towards state
A, and one would have to wait for “another” rare fluctuation
that moves the system in the direction of B. By storing the
configurations at the interfaces, we can thus efficiently ex-
ploit all those fluctuations that move the system up the bar-
rier.

In this paper, we make use of the original FFS scheme'
presented in more details in Ref. 12.

In FFS, one first performs a conventional, brute-force
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simulation in state A. Each time the system crosses the inter-
face A in the direction of increasing A during this simula-
tion, the coordinates of that state point are stored. One also
measures the average number per unit time of these cross-
ings. At the end of this simulation, one has a measure of the
flux @, of trajectories crossing Ny from A, as well as a col-
lection of state points corresponding to crossings of the first
interface, A, coming from A. This collection is then used to
provide starting points for a set of trajectories, each of which
is continued until the system either reaches the next inter-
face, \;, or returns to state A (i.e., reaches \,). This proce-
dure generates a new collection of state points at the next
interface, which are the end points of those trajectories that
arrived at A; from A,. One also obtains an estimate of the
probability P(\;|\,) that a trajectory which reaches \, from
A will subsequently reach A\; without returning to A this is
simply the fraction of trajectories which arrive at \;. By
repeating this procedure for all subsequent interfaces, one
has for each interface i an estimate of the probability
P(\;1|\,) that, given that a trajectory has reached interface i
coming from A, it subsequently reaches \;,; before returning
to A. The rate constant k5 can then be obtained from'®

n—1

kap =PI T POVAIN). (2)
i=0

By tracing back paths that successfully arrive at \,,, one can
also sample the transition path ensemble for the rare event.
Analysis of these paths can lead to insight into the mecha-
nism by which the event occurs.

lll. STATIONARY DISTRIBUTIONS: THEORY

We are interested in computing the stationary distribu-
tion p(g), where p(q)dq is the probability of observing the
order parameter ¢ in the range ¢ — g+dq, for a system that is
in a stationary state. We stress the fact that the order param-
eter g for the computation of the stationary distribution func-
tion need not be the same as the order parameter A that is
chosen for the FFS calculation. The stationary distribution
can be expressed as

plg) =(8(g - qx))), (3)

where x is a point in the multidimensional phase-space. For
equilibrium systems, the contributions to the average in Eq.
(3) are weighted according to the Boltzmann distribution,
while for nonequilibrium systems they are weighed accord-
ing to the steady-state phase-space density. For both equilib-
rium and nonequilibrium systems that are in steady-state and
ergodic, this ensemble average is equivalent to a time aver-
age over a long brute-force simulation, in which p(g) mea-
sures the frequency with which value ¢ of the order param-
eter is “visited” by the trajectory.

The distribution function p(g) is easy to sample close to
the stable states A and B, using conventional, brute-force
simulation. However, this method will lead to poor statistics
in the “barrier” region between A and B, which is rarely
visited. We use FFS to obtain p(g) in the barrier region, and
supplement this with conventional sampling in the two stable
states to obtain the complete distribution function.
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FIG. 1. Sketch of all the possible trajectories that contribute to the stationary
distribution p(q) [see Eq. (3)]: Trajectory 1 comes from A and goes back to
Aj; trajectory 2 comes from A and goes to B; trajectory 3 comes from B and
goes back to B; trajectory 4 comes from B and goes to A. The FFS simula-
tion from A to B harvests the trajectories corresponding to types 1 and 2,
while the FFS simulation for the reverse transition generates trajectories of
types 3 and 4. The interfaces {\y,\;,...,\,_;,\,} used in the FFS simula-
tion are also shown.

The key idea which we use to obtain stationary distribu-
tions with FFS is to divide the “visits” of an imaginary, very
long simulation trajectory to value g of the order parameter
into two categories, according to whether the trajectory was
most recently in state A or state B. We therefore write p(g) as
the sum of two contributions,

p(q) = ¥a(q) + ¥(q), (4)

where i4(g) is the contribution to the probability density
p(g) from those trajectories that come from region A, and
p(q) is the contribution due to trajectories coming from B
(see Fig. 1). In the basins of attraction A and B, the trajecto-
ries will quickly loose memory of where they came from,
i.e., we expect excursions out of a basin of attraction to be
uncorrelated. This, as we describe below, makes it possible
to obtain the distribution function ,(q) from a FFS simula-
tion for the transition from A to B, while ¢z(g) can be com-
puted using a FFS simulation for the reverse transition (see
Fig. 1). For equilibrium systems, the free energy profile can
be obtained from AG~ —kzT In[p(g)] once p(q) is known.
The function i,(q) is given by

a(q) = paPAT(q3Np). (5)

Here, p, is the probability that the system is in state A and
d, is, as in Eq. (2), the flux of trajectories leaving state A
(i.e., crossing the surface A, coming from A). The quantity
7.(q;Np) E(ﬁ(q—q(x)))xo is the average time spent at order
parameter ¢ by a trajectory that originates from interface \.
We note that 7,(g;\) includes contributions both from paths
that start in A and ultimately reach B, and from those that
start in A and ultimately return to A without reaching B (see
Fig. 1).

In FFS, we use a series of interfaces to sample the phase
space between A and B in stages. At each stage, an ensemble
of paths is generated by firing off trajectories from points on
an interface that have been obtained in the previous stage;
each of these trajectories is terminated as soon as it reaches
either the next interface or \, (see Sec. II). We denote the
average time spent at order parameter ¢, for a trial run that is
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fired from interface \; (and terminated at \;,; or \) in the
FFS procedure, by m,(g;\;). As shown in the Appendix,
7.(q;\p) is then given by

n—1 i-1

7(q3No) = 7 (q:Ng) + 2 (g N) LT PN (6)
i=1 j=0

The factor Hj-;(l)P()\ i+1|\;)) reweighs the distribution
7(g;\;) to correct for the enhanced sampling at interface i
which has been achieved by the FFS procedure. This factor
is a direct output from the FFS simulation (see Sec. II, Eq.
(2), and the Appendix). The FFS calculation for the forward
transition thus yields k,p5, @4, and 7,(q;N\).

To calculate p(g), we also need to evaluate ¢z(g) in Eq.
(4), by carrying out a FFS calculation in the reverse direc-
tion, from B to A. The entire FFS algorithm is carried out in
reverse: in the initial, brute-force simulation, we begin with
the system in state B and collect crossings of interface A,
coming from B. We fire trajectories from \; which either
reach \;_; or return to \,,. The result is a value for the reverse
rate constant kp,, the flux @5, and the distribution functions
7_(q;\;) for the order parameter ¢, sampled over the en-
semble of paths that are fired from interface \; and termi-
nated at N\;_; or A\, in the reverse FFS procedure. These are
related to the distribution function 7_(g;\,,) for all trajecto-
ries leaving A\, from B by

1 i+1

m(q:N) =7 (gD + 2 g ITPOVIN), (D)

i=n-1 j=n
where P(\;_;|\)) are the conditional probabilities of reach-
ing interface j—1 from \j, evaluated in the reverse FFS pro-
cedure. The distribution z(g) is then given by

¥p(q) = ppPp7_(q;\,). (8)

To obtain p, and pg in Egs. (5) and (8), we note that in
steady-state

Pakap=Dgkgas )

where k,p and kp, are the forward and backward rate con-
stants measured in the forward and backward FFS calcula-
tions, respectively. Since we are assuming a two-state system
(i.e., ignoring intermediate states), we also know that p,
+pp=1. This implies that

Ko lk
= —Foalkas (10)
and
1
- 1
LT (1)

Combining all this information and using Eq. (4), we can
obtain the stationary distribution function p(g) in the region
Ao <A <N\,. This can be combined with brute-force sampling
in the A and B basins to determine p(g) over the full range of
q values, if required.
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IV. STATIONARY DISTRIBUTIONS: METHOD

As discussed above, to obtain the stationary distribution
p(q) in the region \o <\ <\, we perform one FFS simula-
tion for the transition from A to B and one for the reverse
transition. For details on the implementation of the FFS
method to compute the fluxes @, and ®p, as well as the rate
constants k,p and kp,, we refer to Ref. 11. Here, we briefly
discuss how 7,.(g;\o) and 7_(q;\,) are obtained in practice.
We consider 7,.(¢q;\g); 7_(¢g;\,) is obtained similarly, but in
reverse, as described above. Our aim is to calculate the quan-
tities 7,(¢q;\;) and P(\;,;|\;) in Eq. (6) [or alternatively for
the reverse transition, 7_(g;\;) and P()\j_1|)\j) in Eq. (7)].
Considering only the forward FFS procedure: at each inter-
face \; we fire a total of M, trial runs, each of which is
terminated when the system reaches either \;,; or \q. The
probability P(\;,;|\;) is then estimated as

N;
POl = (12)
where N: is the number of trials that have successfully
reached \;,,. The function 7, (g;\;) is given by

Ny (13)

7T+(q;)\l) = AqM s

where N, is the number of times that during this set of trial
runs the order parameter of the system has a value between g
and g+Agq. This is given by N,=ArZ}/( 3" h (x; ), where
the double sum runs over all the n; steps of all the M, trial
paths starting at interface \; and /,(x) is an indicator func-
tion that is one if during a time step the system is between g
and g+Agq, and zero otherwise; again, note that n, varies
from one path to the next. The simulation time step At can,
in fact, be neglected, since is it a constant and we plan to
normalize p(g) in any case. For algorithms in which the time
step can vary, N, is given by Nq:EkMJOE?QOAtk,Shq(xk,S), where
Aty ; is the magnitude of time step s of path k. To obtain
7.(q:N\o) we reweigh 7,(g;\;) and sum over all interfaces
using Eq. (6). Once #4(q) and #35(g) have been obtained by
performing FFS simulations in both directions, p(g) can be
obtained via Eq. (3). We note that 4(q) and i;5(q) should
not be individually normalized, since they are not probability
distribution functions in their own right, but simply contri-
butions to the distribution function p(q). If the average path
length for paths originating in A and B is different, then the
integral of i,(¢) and ;5(q) over g will be different. Normal-
izing ¢4(q) and ig(g) will result in incorrect relative contri-
butions to p(g) from trajectories originating in A and in B.
We also note that, when evaluating N, it is important not to
double count the start and end points of trial runs; if the
initial point of a trial run is deemed to count towards the N,
histogram for that interface, then the final point should not
count as it will be counted as an initial point in the histogram
for the next interface.

The above procedure generates p(g) in the region A,
<N <N\,. To obtain the full distribution p(g), we sample us-
ing conventional, brute-force simulation the steady-state dis-
tribution for the order parameter g in the A and B regions.
This will result in distributions for A<<\y+A\ (A region)
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and A >\,— A\ (B region), where A\ is a small overlap. An
easy way to fit these curves together is to take their loga-
rithms: the three overlapping parts for log p(g) can then be
fitted together by a least squares fitting procedure (since a
constant may be added to each without affecting the distri-
bution). The resulting full profile p(g) is obtained by expo-
nentiation log p(g), and the stationary probability distribu-
tion can finally be normalized.

V. STATIONARY DISTRIBUTIONS OF MULTIPLE
ORDER PARAMETERS

It is important to point out that the procedure described
in Sec. IV may be adapted to allow the computation of sta-
tionary distribution functions of several order parameters
(“free energy landscapes” in the equilibrium case). In the
case where we wish to find the stationary distribution (for
No<A<M,) as a function of two order parameters ¢ and r,
Eq. (4) is replaced by

P(‘]a”)=’ﬂA(‘Za”)+¢B(q9r)a (14)

where
a(q,1) = paPa(q,75N0),
(15)
w(q,r) = ppPp7_(q,r;\,)
and

n—1 i-1

7.(q.7:0) = m,(q. 73N + X m (g, N [T POV N,

i=1 j=0
1 i+1

m(q.rsN) = 7 (qriN) + 2 7 (q.rN) T PO N
i=n—1 j=n

(16)

To evaluate the functions 7, (¢q,r;\;) and 7_(g,r;\;), we use
a two-dimensional histogram N, in the coordinates g and r,

AN, (17)

7T+(q’r;)\i) = AqAVM

and the equivalent for the reverse FFS procedure. Here, N,
is the number of time steps during the set of M; trial runs
fired from \; for which the system has a value of g between
q and g+Aq and a value of r between r and r+Ar.

VI. TESTING ON A ONE-DIMENSIONAL SYSTEM

As an initial test, we have applied the method to a single
particle moving with Brownian dynamics in a one-
dimensional double-well potential,

V(x) = — bx? + ex*, (18)

with b=2 and c=1. Distance is measured here in units of x,
while time is measured in units of #,. The stationary distri-
bution function, as a function of the x coordinate, is the
Boltzmann distribution,

J. Chem. Phys. 127, 114109 (2007)

TABLE I. Interfaces and the number of trials at each interface for the FFS
sampling of the symmetric one dimensional double-well potential.

i Ni M(\) i \; M(\)
0 -0.8 100 000 4 -0.1 25 000
1 -0.7 250 000 5 0.1 12 000
2 -05 17 000 6 0.3 10 000
3 -0.3 70 000 7 0.5 10 000
p(x) — e‘V(X)/kBT. (19)

The system is symmetric, so that p(A)=p(B). The particle
moves according to

()= () + €0, (20)
B

where f is the instantaneous force, D is the diffusion con-
stant, and £ is chosen at random from a Gaussian distribution
with zero mean and variance (§2>=2Ddt.23 We used the fol-
lowing values: D=0.01x(2)/t0, kgT=0.1, and dr=0.05¢,. We
have carried out FFS simulations with n=8 interfaces, N,
=10 000 points at interface Ay, and parameters as shown in
Table I. We obtained a forward rate constant k,p
=3.87+0.05X 107°;" (repeating twice to obtain error bar).
Because of the symmetry of the problem, it was not neces-
sary to carry out separate FFS calculations for the forward
and backward transitions in this case; the backward probabil-
ity distribution can be obtained from the forward one by a
simple coordinate inversion. The stationary distribution ob-
tained from the FFS calculation is compared to the expected
Boltzmann distribution in Fig. 2.

We have also considered the asymmetric case, in which
a term linear in x is included in Eq. (18),

V(x) = ax + — bx> + cx*, (21)

with a=0.25, b=2, c=1, D:O.le(z)/to, kgT=0.1, and dt
=0.051,. In this case, p(A) # p(B) and it is necessary to carry
out FFS sampling in both directions. We carry out FFS simu-
lations, again with n=8 interfaces and N;=10000. For the
forward transition, we used A=x, and for the backward tran-
sition, A=—x. For both the forward and backward transitions,
the parameters for the FFS runs were as shown in Table II.
The forward and backward rate constants were calculated to

100

P(x)

L,
0.0001 L

FIG. 2. Stationary distribution (solid line) obtained using the procedure
described above, compared to the normalized Boltzmann distribution
(circles) for a symmetric double well potential. The dotted and dashed lines
show ¢4(x) and p(x), respectively.
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TABLE II. Interfaces and the number of trials at each interface for the FFS
sampling of the asymmetric one dimensional double-well potential.

J. Chem. Phys. 127, 114109 (2007)

TABLE III. Interfaces and the number of trials per interface for the Maier-
Stein system.

i N M(\) i N M\ i N M(\) i A M(\)

0 -0.8 100 000 4 -0.1 50 000 0 -0.8 1 000 000 4 0.2 200 000

1 -0.7 560 000 5 0.1 20 000 1 -0.6 500 000 5 0.4 120 000

2 -0.5 430 000 6 0.3 12 000 2 -04 300 000 6 0.6 100 000

3 -0.3 170 000 7 0.5 10 000 3 -0.2 250 000 7 0.8 100 000
be kyp=3.03x0.06 X 1077;" and kpy=3.96+0.03 X 1077, ", fo=x—x — ax?,
and the fluxes across the A boundary were @y
_ -1 _ -1
—.0.1526.10.0007t0 and ®;=0.3648+0.0001¢,", respec- fy=- (1 +12) (23)
tively. Figure 3(a) shows 7,(x;\y) and 7_(x;\,), while Fig.
3(b) shows p(x), calculated from Eq. (3) and normalized. and the stochastic force ¢=(&,,§) results from
Excellent agreement was obtained with the expected Boltz- o-function-correlated white noise with variance €, such that
mann distribution.

VIl. TESTING ON THE TWO-DIMENSIONAL
MAIER-STEIN SYSTEM

We now move on to demonstrate the calculation of two-
dimensional stationary distributions using a rare event prob-
lem in two dimensions that may be in or out of
equilibrium—overdamped Brownian motion in the force
field proposed by Maier and Stein,** ¢

x=fx,0) + &),
(22)
y=£x0+ &),

where x=(x,y). The force field f=(f,,f,) (which is time in-
dependent) is given by

10000
/"
7’
E : td
oo "
100 ™., <
. ,’
Ol o
N F -
e 1F e
—————————— i,
K4
0.01 ; --------------------------
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FIG. 3. Asymmetric double well potential (a): 7,(x;\,)/At (dotted line) and
7_(x;\,)/ At (dashed line). (b) Final result for p(x) obtained from Eq. (3)
(solid line) compared to the expected Boltzmann distribution (circles).

where i=x,y. This system is bistable, with stable points at
(x1,0) and a saddle point at (0,0). When a=u, the force
field can be expressed as the gradient of a potential energy
function and the system can be considered to be “at equilib-
rium,” while when a# u, the force field f cannot be ex-
pressed as the gradient of a potential and the system is thus
intrinsically nonequilibrium. In these simulations, we use €
=0.1. Taking A=x, we follow the procedure described in Sec.
V to calculate the stationary distribution for —0.8 <x<<0.8 as
a function of the two order parameters x and y. For the FFS
calculations, we use eight interfaces, A\o=—0.8 and A;=0.8,
and N;=100 000 initial configurations at \,. The parameters
used are listed in Table III.

p (xy)

p xy)

FIG. 4. (a) Computed stationary distribution p(x,y) as a function of x for
y=-0.39 (solid line), y=—0.19 (dashed line), and y=0.01 (dot-dashed line),
compared to the expected Boltzmann distribution (indicated by circles) for
the Maier-Stein system with e=0.1 and a=u=1. (b) p(x,y) as a function of
y for x=—0.312 (solid line), x=—0.152 (dashed line), and x=0.008 (dot-
dashed line).
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FIG. 5. p(x,y) for the Maier-Stein system with @=6.67, u=2, and €=0.1.
(a) p(x,y) as a function of x for y=—0.39 (solid line), y=-0.19 (dashed
line), and y=0.01 (dot-dashed line). (b) p(x,y) as a function of y for
x=-0.312 (solid line), x=—0.152 (dashed line), and x=0.008 (dot-dashed
line). The results of long brute-force simulations are indicated by circles.

We initially consider an equilibrium case, with a=u=1.
In this case, the particle moves in the potential field ¢(x,y)
=[y*(14+x?)/2]-(x*/2)+(x*/4). Figures 4(a) and 4(b) show
the stationary distribution p(x,y), as a function of x for
y=-0.39, y=-0.19, and y=0.01, and as a function of y for
x=-0.312, x=-0.152, and x=0.008. In both panels, the re-
sults are in excellent agreement with the expected Boltzmann
distribution (shown by circles).

We next discuss the nonequilibrium case (a# w), taking
a=6.67, ©=2.0, and €=0.1. Figure 5 shows equivalent re-
sults to Fig. 4, but this time the FFS results are compared to
stationary distributions computed from long brute-force
simulations. The brute-force simulation results are normal-
ized over all space; the FFS results are multiplied by a con-
stant scaling factor to bring them into agreement since they
are a priori normalized over the region —0.8 <x<<0.8 only.
Very good agreement is observed.

Vill. HOMOGENEOUS NUCLEATION
IN A TWO-DIMENSIONAL ISING MODEL

We now address a rare event problem in a more complex
system: homogeneous nucleation in a two-dimensional Ising
model. For now, we confine ourselves to an equilibrium sys-
tem without any external shear; nonequilibrium nucleation in
an Ising model with an external shearing field will be con-
sidered in future work.”” The two-dimensional Ising model
consists of an LXL square lattice of spins with nearest
neighbor interactions and periodic boundary conditions. Its
Hamiltonian®®

J. Chem. Phys. 127, 114109 (2007)

H=—J20',-0'j—h2 a;, (25)
ij i

where J is the coupling constant between neighboring spins
(0;==%1) and & the external magnetic field. The prime indi-
cates a sum over first nearest neighbor interactions only. We
simulate a system with N=45X45=2025 spins, a positive
magnetic field Sh=0.05, and a positive coupling constant
BJ=0.65, above the critical coupling J,.. The thermodynami-
cally stable state is therefore a ferromagnetic one with net
positive magnetization, meaning that the system tends to
have the majority of its spins in the “up state.” However, the
state with an overall negative magnetization (i.e., spins pre-
dominantly in the down state) is metastable and the system
will remain in that state for a significant time if initialized
with predominantly down spins. We aim to compute the free-
energy barrier, as well as the rate constant, for transitions
from the metastable “down state” to the thermodynamically
stable “up state.” We begin our simulations in the down state
and consider the formation of a cluster of up spins, under
conditions of moderate supersaturation (these conditions are
identical to those used by Sear”®). All of our simulations are
performed using a Metropolis Monte Carlo algorithm, in
which we attempt to flip each spin once, on average, during
each Monte Carlo cycle.

According to classical nucleation the:ory,30 the free en-
ergy cost of forming a square nucleus of edge length L is
given by the sum of a line energy and a surface energy,

AG =4vyL -2hlL?, (26)

where vy is the interfacial free energy, /s is the driving force
for nucleation (magnetic field), and —2AhL? is the energy cost
of flipping the whole square nucleus with area L?. Using
Eq. (26), the nucleation free energy barrier height is given by

AG =—. (27)

Plugging in numbers, if we take the interfacial free energy to
be ,8)/:0.74,29’31 the barrier height as predicted by classical
nucleation theory is SAG" ~22.

We have computed the nucleation free energy barrier
using two simulation techniques: umbrella samplingl"4 and
FES. In both cases, we characterize the extent of the transi-
tion using a global order parameter, g=S, the total number
of up spins in the system. The free-energy barrier is then
defined as BAG(S)=-In[p(S)/N], where p(S) is the prob-
ability of observing S up spins in the stationary state.

For our umbrella sampling calculations, we use a series
of “windows,” defined by a harmonic potential in S, to bias
the sampling of phase space.k4 We use 25 windows to cover
the range 0= S=<300, with an overlap of 11 between neigh-
boring windows. We sample each window for 500 000
Monte Carlo (MC) cycles, and fit the resulting histograms
together using a least-squares fitting procedure to obtain the
free-energy profile in the range 0=<S=<300. We do not at-
tempt to calculate the barrier for values of § greater than 300,
since once the top of the barrier is crossed, the system is
expected to evolve rapidly and we cannot reply on the as-
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FIG. 6. Schematic view of the free energy landscape. A is the metastable
“down state,” B is the “real” thermodynamically stable state, and B’ is the
“artificial” stable state, constructed by introducing a reflecting wall at S
=85 =1050.

sumption of local thermodynamic equilibrium. Moreover,
when S is large, the growing nucleus is likely to interact with
its periodic images in neighboring cells, making the results
highly system-size dependent.

The interfaces \; for the FFS calculations are also de-
fined in terms of the order parameter S. To calculate the
free-energy barrier using FFS, we need to be able to sample
the reverse transition, from the thermodynamically stable up
state to the metastable down state. In general, this is very
difficult for a nucleation problem, since the thermodynamic
state is much more stable than the metastable state and there
is a very high free-energy barrier for the system to return to
the down state, making the reverse transition difficult to
sample, even with FFS. We have overcome this problem in
this case by constructing a reflecting wall beyond the top of
the nucleation barrier. This wall is incorporated via a con-
straint on the system dynamics: each trial move that leads to
S§>Spr is simply rejected. Since we are only interested in the
free-energy profile in the region between A and the top of the
barrier, we may perturb the free-energy landscape outside
this region as we choose. This fact, which is also exploited in
umbrella sampling, depends on the system being in equilib-
rium; for a driven system, we would not be able to use this
approach. The reflecting wall, located at =Sz =1050, re-
places the B state by an artificial stable state B’ (see Fig. 6).
The free-energy barrier for the B’ —A transition is much
lower than that for the B— A transition, but the shape of the
free-energy barrier on the A side remains unchanged. The use
of the reflecting wall greatly facilitates the FFS calculation
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for the reverse transition; it is possible to carry out the re-
verse FFS calculations without the wall, but this is rather
laborious as it requires a large number of interfaces. We have
verified that the location of the reflecting wall is indeed well
beyond the top of the free-energy barrier, which is estimated
to be at 200 <S5 < 280.

State A is defined by the first interface No=30, i.e., when
0<S5<30 the system is in the A state. State B’ is defined by
\,=1000, i.e., when 1000<<S <1050 the system is in the B’
state. For our FFS calculations, we consider N;=50 configu-
rations at the first interface. The interfaces are located, both
for the forward and backward sampling, at the values of S
given in Table IV, where we also list the number of trials
performed at each interface.

The FFS calculation for the forward transition from A to
B' is straightforward. The flux ®, through A\, from A is
®,=1.5X107 MC step~! spin~! and the forward rate con-
stant k5 =2.840.3 X 10713 MC step™! spin~': this is in good
agreement with the value of 3.3 X 1073 MC step™! spin~!
computed for the same system by Sear et al.”® The computed
forward rate constant does not depend on the reflecting wall
position Sg.. This calculation also results in the function
7.(S;N\), as described in Sec. IV. In the reverse direction, we
use the same interfaces and sample from A\, to A\, as de-
scribed in  Sec. IV. We obtain the flux ®p=14
X 107% MC step™! spin™! and the backward rate constant
kpa=2.0£0.2X 1071 MC step~! spin™!. In this procedure,
we also compute the function 7_(S;\,,), as described in Sec.
IV. Combining the rate constants as in Egs. (10) and (11), we
obtain p,=7X 107" and pg=0.999. By means of Egs. (4)
and (5) we finally obtain p(S) for 30 <S<1000. Fitting this
together with the distribution obtained by conventional sam-
pling in state A (as described in Sec. IV), we obtain the
free-energy barrier.

Figure 7 shows the results for the nucleation barrier,
BAG(S), in the range 0 < S <300, computed as —In[p(S)]/N.
The free-energy minimum at S=~20 indicates that for this
supersaturation, the system has a small number of up spins
even in the down state. The free-energy barriers, as obtained
by umbrella sampling and FFS, are AG"™"'=24.5k,T and
AG"FS=23k,T, respectively. These coincide within the error
bars, which for both schemes are on the order of kz7T. The
computed barrier heights also agree remarkably well with the
classical nucleation theory (CNT) prediction of 22kgT.

TABLE IV. Interfaces and the number of trials per interface for the FFS sampling for the two-dimensional Ising

nucleation problem.

i N; M; i \; M; i \; M;

0 30 1000 9 250 1000 18 500 1000
1 50 1000 10 280 1000 19 550 1000
2 70 1000 11 300 1000 20 600 1000
3 100 1000 12 330 1000 21 650 1000
4 130 1000 13 350 1000 22 700 1000
5 150 1000 14 380 1000 23 750 1000
6 180 1000 15 400 1000 24 800 1000
7 200 1000 16 430 1000 25 850 1000
8 230 1000 17 450 1000 26 950 1000
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FIG. 7. Free energy barrier for 8/=0.65 and Sh=0.05 calculated using FFS
(dashed line; gray) and umbrella sampling (continuous line; black). Error
bars are shown for both calculations.

IX. GENETIC SWITCH

Our final test system is a biologically inspired nonequi-
librium rare event problem: a model bistable genetic switch.
This is a set of chemical reactions, representing protein-
protein and protein-DNA interactions, as well as protein pro-
duction and degradation, in a biological cell. The set of re-
actions shows two stable states, between which the system
flips when simulated with stochastic dynamics. This is a par-
ticular case of the “exclusive” bistable genetic switch studied
by Warren et al.** The system does not obey detailed bal-
ance, and is therefore out of equilibrium. The set of chemical
reactions which we simulate is given in the following with
their corresponding rates in parenthesis:

A+A=A, (kpk), B+B=B, (k.ky), (28a)
O+ A2 = OA2 (kon’koff)v O+ B2 = OB2 (kon’koff)7
(28b)
0—0+A (kyot)s O—O0+B (kyoa), (28¢)
OA2 — OAZ +A (kprod)’ OB2 — OB2 +B (kprod) s
(284)
A—=D (u, B—O (n), (28e)

Our model switch is shown schematically in Fig. 8. It
consists of two genes, which encode proteins A and B. Pro-
teins A and B can form homodimers A, and B,, as in Eq.
(28a). The production rates for A and B depend on the state
of the DNA sequence O, which is a regulatory site to which
either A, or B, can bind. When O is free (not bound by

FIG. 8. Schematic representation of our model switch, corresponding to Eq.
(28). Two divergently transcribed genes are under the control of a shared
regulatory binding site on the DNA (the operator). Each protein can bind, in
homodimer form, to the operator and block the production of the other
species.
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either dimer), both genes can randomly be activated and pro-
duce either protein A or B with the same production rate
Kproa» as in Eq. (28¢). When an A, dimer is bound to O [Eq.
(28b)], the production of B is blocked. Conversely, when a
B, dimer is bound to O [Eq. (28b)], the production of A is
blocked. Both proteins can decay in the monomer form (ac-
counting for active degradation processes and dilution in a
growing cell), as in Eq. (28e). We assume that transcription,
translation, and protein folding can be modeled as a single
Poisson process, representing protein production. Clearly,
when one species is abundant over the other one, many
dimers of the majority species will be created, and the prob-
ability of finding one of them bound to O will be high. This
effect will in turn lower the production rate of the minority
species, leading to a stabilization of the state. If a rare fluc-
tuation, however, is able to build up a substantial number of
the minority species, these will in turn dimerize and bind to
O, leading to a stochastic flip of the switch.

A mean field analysis carried out in** confirms this in-
tuitive fact analytically: for suitable choices of the reaction
rates, the system exhibits three fixed points: two symmetrical
stable states, one rich in A and another rich in B, separated
by one unstable state where the total number of A equals the
total number of B. The system can then be considered as a
true bistable switch.

We have chosen parameters such that the system is
bistable and symmetric. Using the production rate k;rlod as a
time unit, and indicating by V the dimensionless volume of
the system, we use k;=5K,qV, kp=>5ky0q (so that the equi-
librium dissociation constant for dimerization is Kf)zkd/kf
=1/V), kon=5kprods Kofi=kproa [s0 that the equilibrium disso-
ciation constant for operator binding is KZ:koff/ kon
=1/(5V)], u=0.3k. For simplicity, we will assume V=1. The
system is simulated with an event-driven kinetic Monte
Carlo :allgorithm32 which propagates the system according to
the chemical master equation, thus accounting for the sto-
chasticity arising from molecular discreteness and from the
intrinsic randomness of reaction events. The simulation vari-
ables are the numbers of molecules n (copy numbers) of each
chemical species. Briefly, in this algorithm, one selects at
each simulation step a waiting time until the next reaction,
and an identity for the next reaction, from the correct prob-
ability distributions. One then advances the simulation time
by the chosen waiting time, executes the chosen reaction,
and updates the copy numbers of the species involved in the
reaction.

A natural “order parameter” for the system is the differ-
ence between the total numbers of A and B proteins: g=\
=np+2ny,+2noa,— (ng+2ng,+2n0p,). Since the system is
symmetric, we know that ®,=®p, k,p=kp,, and therefore
pa=pp=0.5. As this system is out of equilibrium, we do not
sample a free-energy profile, but rather the nonequilibrium
stationary probability distribution p(q)=p(\).

To measure the switching rate and p(\), we run a FFS
simulation with 12 interfaces, setting \o=—27, \,=27, and
using N;=10 000 points at the first interface. The interfaces
are positioned as shown in Table V. We repeat the FFS sam-
pling ten times to obtain error bars. The result is kyp=kpy
=(8.66+0.07) X 10‘6k;r10d. From the FFS calculations, we
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TABLE V. Interfaces and the number of trials per interface for the FFS
simulations for the model genetic switch.

i N\ M, i N\ M,

0 -27 50 000 6 -8 250 000
1 -25 50 000 7 -5 500 000
2 -22 50 000 8 -2 500 000
3 -18 50 000 9 0 250 000
4 -14 100 000 10 10 50 000
5 -12 100 000 11 20 50 000

also obtain the function ¢,(N)=w,(q) as described in Sec.
VII, and since the system is symmetric, we can obtain iz(\)
from ¢4(\) by a simple inversion transformation. Combining
¥a(N) and ¢g(N\), we arrive at p(\)=p(q) for —27<q<27,
which is plotted in Fig. 9 (a scaling factor is applied to ac-
count for the different normalization to the brute-force re-
sults). The distribution is clearly bimodal and shows sym-
metric peaks whose positions correspond to the stable
solutions of the mean field equations (Ref. 22). As expected,
a minimum in p(\) is observed for A=0 (unstable solution of
the mean field equations).

This system has a switching rate which is not exceed-
ingly low, and we are also able to compute p(g) using a brute
force simulation of length 2 X 109k;r10d. The resulting station-
ary probability distribution is also shown in Fig. 9. Excellent
agreement is obtained between the results of the FFS and
brute-force calculations. Because the system spends little
time in the region between the two basins, this part of p(\) is
hard to calculate accurately with the brute-force run. The
inset in Fig. 9 magnifies this region, showing the smooth
profile produced by the FFS sampling.

X. DISCUSSION

The key concept used here to obtain the stationary dis-
tribution in the unstable region between two stable states A
and B is to add the contributions from the trajectories that
start in A and go to B or return to A, and those that start in B
and go to A or return to B (see Fig. 1). These contributions

0025F _gg | % ¢
0 FFS () Q
0-02 L 0] ()]
<.0.015- b 5
O- () 1))
001_ Q )
0.0051 B

FIG. 9. Probability distribution as a function of the order parameter . The
results are obtained both via long, steady state simulations (continuous line)
and forward flux sampling (circles). The region around |\|=0 can be accu-
rately sampled only with FFS: the inset shows, on a logarithmic scale, a
much smoother profile of the region close to the unstable steady state when
FFS is used over brute force (BF). A scaling factor has been applied to the
FFS results since they were originally normalized over =27 <X\ <27 while
the BF results are normalized over —o0 <<\ <oo.
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can be obtained by performing one FFS calculation starting
in state A and another starting in state B. For many rare event
problems this is entirely possible; however, for systems
where one state is very much more stable than the other,
sampling the reverse transition (B— A) may be computation-
ally difficult, even with FFS. We have encountered this prob-
lem in the Ising nucleation example discussed here in Sec.
VIII. For equilibrium systems, this problem can be overcome
by imposing an artificial stable state, as demonstrated here
for the case of nucleation. However, this trick is not appli-
cable for nonequilibrium systems. In general, in equilibrium
systems the flux between any two state points is zero in
steady state, while for nonequilibrium systems this need not
be the case. In these nonequilibrium systems, the stationary
distribution depends upon the full history of the trajectories.
This, in general, prohibits the introduction of artificial
boundaries. In particular, while for equilibrium systems de-
tailed balance and microscopic reversibility dictate that the
forward and backward transition paths have to occupy the
same region in state-space, for systems that are out of equi-
librium the backward and forward trajectories do not have to
coincide; indeed, in these systems cycles in state space can
occur. We have recently demonstrated that the switching
pathways of genetic switches can follow such a scenario.'' If
the forward and backward transition paths form a cycle in
state space, then it is conceivable that the artificial stable
state “short cuts” the cycle and generates a wrong ensemble
of points from which trajectories are initiated in the reverse
direction. It may be possible to devise alternative techniques
for sampling the reverse transition in nonequilibrium sys-
tems, and this will be the subject of future work.

For the computation of free-energy barriers in equilib-
rium systems a wide range of numerical techniques is
available.™ The advantage of the scheme proposed here is
that the free energy can be directly obtained from a FFS
simulation, obtaining simultaneously the rate constant, tran-
sition paths, and free energy landscape. This is important
because both the calculation of rate constants and the evalu-
ation of free-energy barriers are computationally demanding,
especially for large and complex systems.

It has long been appreciated that free-energy barriers are
critical quantities for understanding rare events in equilib-
rium systems, such as nucleation and protein folding. How-
ever, the “barriers,” or minima in the stationary probabilities,
that separate steady-states in nonequilibrium systems are
equally important, because the rate of switching from one
steady-state to the next is proportional to the probability of
being at the top of the barrier.”> Some such barriers have
recently been determined experimentally, including bimodal
distributions of protein concentrations for genetic switches
such as the one discussed in the previous section.*** To our
knowledge, this technique is the first to be proposed for ef-
ficient computation of stationary distributions for rare events
in multidimensional nonequilibrium systems. This should
prove useful for enhancing our understanding of a range of
important nonequilibrium rare event processes, as well as
improving the efficiency of computation of free energy land-
scapes in equilibrium systems.
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APPENDIX: COMPUTATION OF 7,(q, \o)

In this appendix, we justify Eq. (6). Let us first imagine
a very long brute-force simulation trajectory which meanders
around the basin of attraction of A, making occasional excur-
sions towards B. We can divide each of these excursion into
portions separated by successive crossings of interfaces
NAg-..N,. Consider the portion of an excursion between its
leaving A and either reaching A; or returning to A. We denote
the distribution function (averaged over many excursions)
for points visited during this portion vy(g). Likewise, the
distribution function (averaged over many excursions) for
points visited after crossing A\ and before reaching either A,
or A, is denoted v;(g), and we can also obtain distribution
functions v;(¢g) for all interfaces 0=<i<<n. It is important to
note that the v;(g) are not normalized. In fact, the integral
Jdgv,(q) contains information on the probability of an excur-
sion reaching \;. Since our entire ensemble of excursions can
be divided up in this way, we can write the entire distribution
function 7,(g;\y) as the sum of contributions from all the
portions of trajectories,

n—1

7.(q:No) = 2 vi(q). (A1)
i=0

Now let us consider the FFS procedure. Let us imagine
we have generated a collection of points at interface \;. We
fire M; trial runs from this collection of points and continue
each one until either Ay or A;,; is reached. We plot a histo-
gram 7.(q;\;) of g values for the points in this ensemble of
trial runs. We have proved before'? that the distribution of
these trial paths is identical to the distribution of correspond-
ing portions of the “excursions” from A in a brute-force
simulation, except that it is reweighed by a factor that de-
pends on the probability of reaching \; from A, so that

vi(q)
N)=——— A2
LAURY) PNy (A2)
We have also proved before'? that
i-1
PO\ = TT PO ) (A3)

J=0

for i>0 [for i=0, P(\g|Ng)=1].
Combining (A2) and (A3) we arrive at
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viq)
NZOPON [N
for i>0 and m,.(q;\g)=vo(gq). Rearranging Eq. (A4) and
summing over interfaces, we arrive at
n—1

7.(q:N) = 2, v(q)
=0

m(q:\) = (Ad)

n—1 i-1

= m(q:No) + 2 m (@ N [T POV N
i=1 j=0

(AS)

which corresponds to Eq. (6).
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