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Abstract

We describe a sparse grid collocation algorithm to compute recursive
solutions of dynamic economies with a sizable number of state variables.
We show how powerful this method may be in applications by comput-
ing the nonlinear recursive solution of an international real business cycle
model with a substantial number of countries, complete insurance mar-
kets and frictions that impede frictionless international capital flows. In
this economy the aggregate state vector includes the distribution of world
capital across different countries as well as the exogenous country-specific
technology shocks. We use the algorithm to efficiently solve models with
2, 4, and 6 countries (i.e., up to 12 continuous state variables).

1 Introduction

The stochastic neoclassical growth model has arguably been the most important
workhorse in modern macroeconomic analysis. Its open economy counterpart,
the international real business cycle model, has been fruitfully applied to study

∗This paper was prepared for the JEDC project on solving models with heterogeneous
agents. We thank Ken Judd for clarifying discussions about the scope and focus of this
paper and gratefully acknowledge financial support under NSF grant SES-0004376. The views
expressed in this paper are solely our own and should not be interpreted as reflecting those of
the Board of Governors or the staff of the Federal Reserve System.
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the co-movement of output, investment, and consumption across countries and
international capital flows between countries. See Backus et al. (1992) as an
important example of this literature and Backus et al. (1995) for an overview.

Apart from highly stylistic examples, international real business cycles can-
not be solved analytically, and one has to resort to numerical techniques to
compute the equilibrium of these models. Even the simplest version of the
model with two countries and country-specific, serially correlated technology
shocks requires at least three state variables in its recursive formulation. This
explains why most of the literature resorts to (log-)linearization of the equi-
librium or optimality conditions of a world social planner problem to solve for
equilibrium allocations. Since the true equilibrium is unknown, it is hard to
assess how accurate numerical approximations of the equilibrium are that rely
on these (log-)linear approximations.

In this paper we propose a projection method based on Smolyak’s (1963)
algorithm to compute globally accurate solutions to models characterized by a
sizeable number of continuous state variables, such as international real business
cycle models with a substantial number of countries. While collocation methods
using full grids become infeasible for three or more dimensions, the use of a
sparse grid constructed with Smolyak’s algorithm allows us to handle ten or
more state variables.

Our objectives are threefold: first, we provide an easily accessible general
description of our algorithm; second, we show how powerful this method is
by numerically solving an international real business cycle model with many
countries and international capital market frictions; and third, we assess the
quality of our approximations.

We find that our projection method performs quite well for a wide variety of
model specifications including models with up to 6 countries (i.e., 12 continuous
state variables), specifications that introduce a great deal of curvature into util-
ity and production functions, and models with asymmetries between countries.
Our method is also substantially more accurate than a linear approximation of
the solution, especially when the exogenous shocks to the economy are large.
The greatest challenge to using this method is finding bounds for the state vari-
ables which are not violated by the solution of the model. For international real
business cycle models, this is most difficult for asymmetric specifications with
a large number of countries.

The rest of the paper is organized as follows. Section 2 describes the in-
ternational real business cycle model that we solve in this paper, while section
3 provides a general description of our projection method. Section 4 presents
results, accuracy tests, and running times. Section 5 concludes.

2 An International Real Business Cycle Model

In this section, we introduce a simple dynamic model with a significant number
of continuous state variables, an international real business cycle model with N
countries. We will confine ourselves to economies in which equilibria are Pareto
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optimal, so they can be characterized by solving an appropriately defined social
planner’s problem. In addition, we allow for frictions to international capital
flows due to adjustment costs but require that these costs leave the optimal
decision rules sufficiently smooth (that is, continuously differentiable).

2.1 Description of the Model

We consider a world composed of N countries that are subject to technology
shocks which contain a country-specific and a common component. Changes in
a country’s capital stock are subject to quadratic adjustment costs, which in-
hibit frictionless flows of capital across the N countries.1 As a consequence the
entire distribution of capital stocks, and not only aggregate output, becomes a
state variable in the recursive formulation of the social planner’s problem asso-
ciated with this economy. There are complete asset markets, so that the welfare
theorems apply. Thus one can solve for competitive equilibrium allocations by
solving a social planner’s problem for appropriate welfare weights of individual
countries.

For a given set of Pareto weights (τ1, ..., τN ), the social planner solves the
problem

max
{{cit,l

i
t,k

i
t+1}Ni=1}∞t=0

E0

N∑
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τ i
∑

t

βtui(ci
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t)

s.t.

ln(ai
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t−1) + σ(εi
t + εt)

ki
t+1 = (1− δ)ki

t + iit
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i=1

ci
t +

N∑
i=1

iit −
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i=1

δki
t =
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i=1

(
ai

tf
i(ki

t, l
i
t)−

φ

2
(ki

t+1 − ki
t)

2

ki
t

)
where εt, ε

i
t are iid standard normal random variables2 and φ ≥ 0 is a scale

parameter. In particular, the parametrization nests the case of no adjustment
costs, φ = 0. Denote the initial distribution of capital across countries by
(k1

0, . . . , k
N
0 ), which determines what point on the Pareto frontier (i.e. what

vector of Pareto weights) corresponds to a competitive equilibrium. Our algo-
rithm will solve for optimal policies for arbitrary Pareto weights, and thus for
the entire equilibrium manifold.3

In general, the state variables for the recursive formulation of the social plan-
ner’s problem consist of the vector of current exogenous shocks a = (a1, . . . , aN )
and the vector of endogenous current capital stocks k = (k1, . . . , kN ). Denote

1The quadratic form of the adjustment cost is not crucial for our algorithm to work. Any
strictly convex and continuously differentiable adjustment cost function will do.

2As long as we know the joint distribution of (a1
t , . . . a

N
t ) given (a1

t−1, . . . a
N
t−1), we can

numerically solve this model.
3Indirectly, and if we do the additional step of mapping Pareto weights into initial wealth

distribution, directly.
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by s = (k, a) the current state, which is of dimension 2N. Below we discuss one
example where the number of state variables can be reduced to N + 1.

The planner’s problem in recursive formulation can be written as

V (k, a) = max
{ci,li,ki′}

N∑
i=1

τ iui(ci, li) + β

∫
V (k′, a′)ga(a′)da′

s.t.

ln(ai′) = ρ ln(ai) + σ(εi + ε)
N∑

i=1

ci +
N∑

i=1

ki′ +
N∑

i=1

φ(ki′ − ki)2

2ki
=

N∑
i=1

aif i
(
ki, li

)
+

N∑
i=1

ki

where ga(a′) denotes the probability density function over a′, given a. We will
now derive the system of functional equations used to compute this model. We
seek functions Ci(s), Li(s), and Ki′(s) for i = 1, . . . , N, mapping the current
state s = (k, a) into consumption and labor supply of each country today and
its capital stock tomorrow. For future reference we define as

C(s) =
N∑

i=1

Ci(s)

Y (s) =
N∑

i=1

aif i(ki, Li(s))

K =
N∑

i=1

ki

K ′(s) = (K1′(s), . . . ,KN ′(s)).

Attaching Lagrange multiplier µ to the resource constraint, we find as first order
conditions

τ iui
c(c

i, li) = µ ∀i
τ iui

l(c
i, li)

−aif i
l (ki, li)

= µ ∀i

β
∫

Vki(k′, a′)ga(a′)da′

1 + φ(ki′−ki)
ki

= µ ∀i

where lower case letters attached to functions denote partial derivatives of the
function with respect to the corresponding argument. The envelope condition
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reads as

Vki(k, a) = µ
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k(ki, li
)
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2
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2
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Combining the first order conditions and the envelope conditions gives (replacing
choices by policy functions and abusing notation by writing s′ = (K ′(s), a′))
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φ(Ki′(s)− ki)2

2ki
= Y (s) + K (4)

provide 3N functional equations to be jointly solved for the 3N functions {Ci(s),
Li(s), Ki′(s)}N

i=1.

2.2 Special Cases

In general, these 3N functional equations have to be solved jointly, but there
are special cases where the problem becomes easier. If labor is supplied in-
elastically, we can drop the N functional equations (3), leaving 2N functional
equations to be jointly solved for the 2N functions {Ci(s),Ki′(s)}N

i=1. There
is a sense in which production and consumption decisions are separable. The
N − 1 equations

β
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(5)
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for a given total amount of capital to be carried forward to tomorrow determine
the allocation of capital across the countries. However, the decision of how much
total consumption and how much accumulation is optimal cannot in general be
solved for independent of the allocation of consumption across countries, which
is simply another way of saying that the 2N equations have to solved jointly.
Note that so far no assumptions about the functional form of ui, f i and the
equality of preference or technology parameters have been made.

2.2.1 Exogenous Labor and CRRA Utility

There are two interesting examples for which the problem with exogenous labor
supply becomes even easier. Suppose all households have identical CRRA period
utility function with risk aversion parameter γ. Then from

τ iui
c

(
Ci(s)

)
= τ juj

c

(
Cj(s)

)
,

it follows that

Ci(s) =
(

τ i

τ1

) 1
γ

C1(s)

and thus

C(s) =
N∑

i=1

Ci(s) =
C1(s)

(τ1)
1
γ

N∑
i=1

(
τ i

) 1
γ

and thus consumption follows the linear risk sharing rule

Ci(s) =

(
τ i

) 1
γ∑N

i=1 (τ i)
1
γ

C(s). (6)

That is, each agents’ consumption is a constant fraction of aggregate consump-
tion. For this example one can first jointly solve for aggregate consumption,
aggregate investment and its allocation across countries, and then separately
solve for the distribution of consumption across countries, according to (6).
Using (6) in (5) yields the N − 1 equations

∫
(C (s′))−γ

[
1 + ai′f i

k
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Ki′(s)

)
+

φ
2
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Ki′(s)2

]
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1 + φ(Ki′(s′)−Ki′(s))
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∫
(C (s′))−γ

[
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k

(
Ki′(s)

)
+

φ
2

(Kj′(s′)−Kj′(s))(Kj′(s′)+Kj′(s))
Kj′(s)2

]
ga(a′)da′

1 + φ(Kj′(s′)−Kj′(s))
Kj′(s)

(7)

which, together with the resource constraint (4) and an equation similar to
(1) can be solved for the functions (C(s),K1′(s), . . . ,KN ′(s)). Now indeed a
complete separation between production and consumption allocations arises.
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This separation reduces the computational burden for this case by significantly
reducing the number of equations that have to be solved simultaneously. But it
does not ease the curse of dimensionality since no reduction in the number of
continuous state variables is possible in this case.

2.2.2 Exogenous Labor and No Capital Adjustment Cost

If there are no adjustment costs, that is, if φ = 0, then we can reduce the number
of state variables from the 2N variables (k, a) to the N + 1 variables s = (y, a)
where y is total output in the current period.

V (s) = max
{ci,ki′}

N∑
i=1

τ iui(ci) + β

∫
V (s′)ga(a′)da′

N∑
i=1

ci +
N∑

i=1

ki′ =
N∑

i=1

aif i
(
ki

)
+

N∑
i=1

ki

y′ =
N∑

i=1

ai′f i(ki′).

The first order and envelope conditions imply

µ = τ iui
c(c

i) = β

∫ (
1 + ai′f i

k(ki′)
)
Vy(y′(a′), a′)ga(a′)da′ = Vy(s).

The 2N functional equations determining the functions {Ci(s),Ki′(s))}i∈I are
the same as in the general case (with φ = 0), but the policy functions are simply
functions of the N + 1 state variables s = (y, a).

In this special case models with more countries can feasibly be computed
since the addition of one country adds only one, rather than two, continuous
state variables to the problem.

3 A Sparse Grid Collocation Method

We will solve for an approximate equilibrium of the international real business
cycle model using a Smolyak collocation method. The basic idea of collocation
methods is to approximate the functions {Ci(s), Li(s),Ki′(s)}N

i=1 by weighted
sums of ‘easier functions’, e.g. by polynomials. In order to determine the un-
known coefficients of the polynomials, we require that equations (1)-(4) hold
exactly at finitely many points - the so-called collocation points. While col-
location methods are routinely used in economics to solve non-linear dynamic
models, our innovation is to use a Smolyak sparse grid method which allows
us to consider fairly high-dimensional problems. The use of sparse grids is well
established in numerical analysis (see e.g. Bungartz and Griebel (2004) for an
overview) and was first introduced, as far as we know, to economics by Krueger
and Kubler (2004).

7



From a technical point of view, collocation methods pose three challenges.
First, the state space is high-dimensional4 which means that the policy func-
tions, which have to be approximated, are high-dimensional. Second, the con-
ditional expectations in agents’ Euler equations are high-dimensional integrals5

which have to be evaluated very frequently in the solution procedure. Lastly,
one has to solve a rather large system of non-linear equations to obtain the
unknown coefficients.

While the focus of this paper is on the first problem (the high dimensionality
of the state space), we will also discuss the issues associated with the second
problem and propose a solution based on monomial rules (see Judd (1998)).
Regarding the third problem, we chose to use a simple time-iteration scheme
rather than more efficient methods - we briefly discuss this issue at the end of
this section.

3.1 Smolyak Sparse Grids

In order to motivate the choice of Smolyak points as collocation points, we con-
sider the abstract problem of how to approximate the unknown policy function
f : [−1, 1]d → R by interpolating a finite number of known function values,
i.e. we try to find a finite number of points H ⊂ [−1, 1]d and a function f̂

such that given the points (xi, yi = f(xi)) with xi ∈ H, the function f̂ satisfies
f̂(xi) = f(xi) and such that f̂ approximates f well on its entire domain [−1, 1]d.
Here d is the dimension of the problem, in our application the dimension of the
state space. The remaining questions are then how to choose the interpolation
points H and how to choose the interpolating function f̂ .

Smolyak’s (1963) method provides both sets of points as well as formulas
for the approximating functions. To describe Smolyak’s method, adopted to
the problem of high-dimensional interpolation on sparse grids by Barthelmann
et al. (2000), we start by defining a set of points in [−1, 1]d which can be
interpolated by polynomials of relatively low degree. Then we give a formula for
the interpolating polynomial. This description is meant to be a more accessible
version of the discussion in Krueger and Kubler (2004), which in turn follows
Barthelmann et al. (2000).

Since we know from the structure of the economy that the true policy func-
tion f is smooth, we use a multivariate polynomial to approximate it. In one
dimension, it is well known that one can interpolate n points by a univariate
polynomial of degree n− 1, i.e. by a polynomial with n terms of the form

pn−1(x) =
n∑

j=1

θjx
j−1. (8)

4As shown above, it consists, in general, of the capital stocks in all countries as well as all
country-specific technology shocks.

5The dimension of the integral is equal to the number of countries, if each country is hit
by one technology shock. If the shock has finite support, then the integral is replaced by a
sum.
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In order to find the unknown n coefficients (θ1, . . . , θn), one can simply use the
n equations (which are linear in the unknowns)

yi =
n∑

j=1

θj (xi)
j−1 for i = 1, . . . , n.

It is now common in economics to use the orthogonal Chebychev polynomials
to express the approximating function and write

pn−1(x) =
n∑

j=1

θjTj(x), (9)

where the Chebychev polynomials T1(.), T2(.), ... can be evaluated recursively
by T1(x) = 1, T2(x) = x and Tj+1(x) = 2xTj(x) − Tj−1(x). While (9) is just
a different way to express the same function as in (8), the advantage of using
Chebychev polynomials is, that since the Tj are all orthogonal, the coefficients
are smaller and the interpolation problem better conditioned (see Judd (1998)).
Although we use Chebychev polynomials in our method, it is important to
understand that Smolyak’s algorithm in no way depends on the use of this
particular set of polynomials.

While approximation of a function by interpolation is straightforward in one
dimension, it is much more complicated in several dimensions. In particular, it
is not true that with a polynomial of n terms one can interpolate arbitrary n
points in higher dimensions (in fact, this is the exception). Moreover, it is not
obvious how to optimally choose the collocation points in higher dimensions.
Any rule to choose these points has to satisfy, in order to be of practical use for
high-dimensional problems, that the number of interpolation points does not
grow exponentially in the dimensionality of the problem.

The simplest approach to multi-variate interpolation is to span a rectangular
grid with n values in each dimension and use a tensor product of one-dimensional
polynomials as a set of approximating functions. Thus one would approximate a
d-dimensional function f : [−1, 1]d → R by interpolating the function values at
the nd grid points by a polynomial of total degree6 (n− 1)d. The problem with
this approach is that it becomes infeasible very fast as d becomes large since
the number of unknown coefficients grows exponentially with the dimension d.
If one chooses nd points and thus univariate polynomials of degree n − 1, the

6The degree of a multi-variate polynomial is defined to be the degree of its leading mono-
mial. If the set of one-dimensional polynomials of degree n (along dimension i) is denoted by
Pn = {pn(xi)}, the tensor product for d dimensions is given by the set

P d
n = {p(x)|p(x) =

d∏
i=1

pn(xi) for pn(xi) ∈ Pn}.

For example, if d = 3 and n = 1 the set is given by

P 3
1 = {c, x1, x2, x3, x1x2, x1x3, x2x3, x1x2x3},

and the total degree of the highest order polynomial in P 3
1 is 3.
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number of unknown coefficients to be solved is nd. This is the well-known curse
of dimensionality.

The alternative we propose is to use ‘Smolyak points’ for the interpolation
and to use linear combinations of polynomials which interpolate function values
in certain directions. In order to understand the method, note that even in one
dimension, in order to approximate a smooth function on the interval [−1, 1] by
interpolating n of its function values, one needs to carefully choose the nodes
x1, ..., xn. It is known that both the extrema and the zeros of the Chebychev
polynomials are nearly optimal in the following sense. Given any continuous
function f : [−1, 1] → R, let g∗n denote the polynomial of degree n that mini-
mizes maxx∈[−1,1] |f(x)− g∗n(x)|. Then if pn interpolates f either at the (n + 1)
Chebyvhev zeros or at the (n + 1) extrema, we have

max
x∈[−1,1]

|pn(x)− f(x)| ≤ Λn max
x∈[−1,1]

|g∗n(x)− f(x)|,

with Λn ≤ C + 2
π log(n + 1), where C is independent of n and the bounds are

sharp, in the sense that they attained for some (classes of) examples. (see e.g.
Cheney and Light (2000)).

Following Barthelmann et al. (2000), we use the extrema of Chebychev
polynomials as our basis for the grid of points H. We let G1 = {0} and for
n = 2, ..., we define the sets Gn = {ζ1, ..., ζn} ⊂ [−1, 1] as the set of the extrema
of the Chebychev polynomials

ζj = −cos

(
π(j − 1)
n− 1

)
j = 1, ..., n.

Define a sequence of positive integers by m(1) = 1 and m(i) = 2i−1 + 1 for
i = 2, 3, .... It is easy to see, and this turns out to be crucial for Smolyak’s
construction, that the sets of interpolation points satisfy Gm(i) ⊂ Gm(i+1) for
all i. The construction of the integers m(i) is therefore crucial in assuring that
the sets of Chebychev extrema are nested, as long as only sets of size m(i) are
permitted.

Smolyak’s method uses this fact to build a hierarchical sparse grid out of
combinations of the grids Gm(i) for different values of i. We first present a simple,
albeit still abstract, three-dimensional example to illustrate the intuition of this
idea and then move to a general description of the method.

3.1.1 The Three-Dimensional Case

We choose three dimensions because we can represent our selection of grid points
graphically, and two dimensions are not sufficient to clarify how exactly the
method avoids the curse of dimensionality.

We want to approximate a smooth function f : [−1, 1]3 → R by a polynomial
of relatively small degree with few monomial terms, and we are looking for a
method that is flexible in the sense that it is easy to add terms of higher degree
and thereby increase the quality of the approximation.
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Define a 3-dimensional grid of approximation level λ ≥ 1 as follows:

H3,λ =
⋃

(i1,i2,i3)Z3
++: i1+i2+i3=3+λ

Gm(i1) × Gm(i2) × Gm(i3). (10)

Recall that for m(i) as defined above, the grids Gm(i) are nested for i =
1, 2, .... In order to understand how the formula constructs the interpolation
points, it is useful to go through the cases λ = 1, 2, 3 one by one. Recall that
Gm(1) = {0} and that Gm(2) consists of three points, {−1, 0, 1}. Then, according
to formula (10),

H3,1 = Gm(2) ×Gm(1) ×Gm(1) ∪Gm(1) ×Gm(2) ×Gm(1) ∪Gm(1) ×Gm(1) ×Gm(2).

So the first level grid consists of the 7 points (−1, 0, 0), (0, 0, 0), (1, 0, 0), (0,−1, 0),
(0, 1, 0), (0, 0,−1) and (0, 0, 1).

Now, let’s move to the case λ = 2. Recall that Gm(3) consists of 5 points.
The formula gives

H3,2 = Gm(3) × Gm(1) × Gm(1) ∪ Gm(1) × Gm(3) × Gm(1) ∪ Gm(1) × Gm(1) × Gm(3)

∪Gm(2) × Gm(2) × Gm(1) ∪ Gm(2) × Gm(1) × Gm(2) ∪ Gm(1) × Gm(2) × Gm(2)

Figure 1 shows where these points are located in the three-dimensional cube
[−1, 1]3. It first shows, for clarity, the point grids in two of the three dimensions,
holding the third dimension fixed at 0, that is, at Gm(1). The last panel then
shows the three dimensional grid, which is generated as the appropriate union
of the three two-dimensional sets (see formula (10)).

Note that H3,1 ⊂ H3,2 and in general, as one can verify from Equation (10),
H3,λ ⊂ H3,λ+1. Passing from level λ to the next level of approximation λ + 1
can therefore be viewed as adding new points to the existing grid.

At the risk of boring the reader, for clarification let us consider one more
level of approximation, i.e. λ = 3 which leads to m(4) = 9 points along each
dimension (holding the two others fixed at zero). We have as the third level
Smolyak grid

H3,3 = Gm(4) × Gm(1) × Gm(1) ∪ Gm(1) × Gm(4) × Gm(1) ∪ Gm(1) × Gm(1) × Gm(4)

∪Gm(3) × Gm(2) × Gm(1) ∪ Gm(2) × Gm(3) × Gm(1)

∪Gm(3) × Gm(1) × Gm(2) ∪ Gm(2) × Gm(1) × Gm(3)

∪Gm(1) × Gm(3) × Gm(2) ∪ Gm(1) × Gm(2) × Gm(3) ∪ Gm(2) × Gm(2) × Gm(2).

3.1.2 Grids in Arbitrary Dimensions

In general, for approximation in the d-dimensional hypercube, we can construct
grids Hd,λ in exactly the same fashion. In order to give the general formula, for
arbitrary dimension d and arbitrary approximation level λ, define a multi-index
to be a vector of positive integers i = (i1, ..., id) ∈ Zd

++ and let |i| = i1 + ... + id.
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Figure 1: Smolyak Points
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For integers λ ≥ 1, we can then define a sparse grid of points in [−1, 1]d as
follows:

Hd,λ =
⋃

i: |i|=d+λ

(Gm(i1) × ...× Gm(id)).

It can be easily verified that for d = 3 and λ = 1, 2, 3, this gives the sets of
points which we described in the previous example.

It turns out that for the international real business cycle model solved in
this paper, a level 2 construction is sufficient to obtain fairly high accuracy, so
for arbitrary dimension d, we always consider Hd,2 as our set of points. Note
that this is simply the union of d-dimensional sets of the form

Gm(1) × Gm(1) × ...× Gm(3) × ...× Gm(1)

Gm(1) × Gm(2) × ...× Gm(2) × ...× Gm(1).

Since a complete enumeration of these sets is straightforward, the construction
of Hd,2 is very simple for arbitrary dimension d.

3.1.3 Interpolation

Given the construction of these points, we now briefly describe an easy way to
construct an interpolating polynomial. Smolyak’s method interpolates at nodes
in H, using weighted sums of polynomials which interpolate subsets of H.

Define pi to be the tensor-product multivariate polynomial which interpo-
lates on Gm(i1)× ...×Gm(id). As pointed out above, we represent this in Cheby-

12



chev form (that is, use Chebychev polynomials), i.e.

pi
θ =

m(i1)∑
l1=1

...

m(id)∑
ld=1

θl1...ldTl1 ...Tld .

The coefficients θl1...ld can be efficiently computed as follows. Consider a full
d−dimensional grid with k1, ..., kd > 1 points along each direction. Then

θl1...ld =
2d

(k1 − 1) · · · (kd − 1)
1

cl1 · · · cld

k1∑
j1=1

· · ·
kd∑

jd=1

Tl1(ζj1) · · ·Tld(ζjd
) · f(ζj1 , ..., ζjd

)
cj1 · · · cjd

with c1 = ckd = 2 and cj = 1 for j = 2, ..., kd−1. For the Smolyak construction,
directions with only one point are then simply dropped, in the sense that if
m(id) = 1, we do not include the direction in the computation of the coefficient.

To return briefly to the three-dimensional example, p(i,1,1) is the polynomial
of degree 2i−1 which interpolates m(i) = 2i−1 + 1 points in the first direction
and is constant along the second and third dimension. p(2,2,1) is the tensor
product of two univariate polynomials of degree m(2)− 1 = 2 and interpolates
the function on the 3 by 3 grid Gm(2) × Gm(2) × Gm(1). For λ = 2, it then
might seem that the interpolating polynomial for the entire grid H3,2 should be
a weighted sum of the univariate polynomials in each direction as well as the
2-dimensional tensor product on each plane. However, it turns out that things
are not quite as simple, and that one also needs to include the polynomials that
interpolate H3,1. To see this, note that in order to interpolate the points in
Gm(2)×Gm(2)×Gm(1), one would have to weight the polynomial p2,2,1 with one
and all others with zero. But then, to interpolate points in Gm(3)×Gm(1)×Gm(1)

which are not in the previous grid (e.g. the point (cos(π/4), 0, 0)) one would
have to weight the polynomial p3,1,1 with one. Of course, in order to do both,
one would need to subtract some polynomials. The solution to this is to take
the weighted sum not only of polynomials associated with H3,2 but also those
associated with H3,1 (i.e. the polynomials p2,1,1, p1,2,1, p1,1,2) as well as the
constant p1,1,1. It turns out that by including these, it is possible to find the
correct weights to interpolate all points in H3,2.

In general, the Smolyak function which interpolates on Hd,λ is given by the
weighted sum of low dimensional tensor products. Denote by q = max(d, λ+1).
At a point x ∈ [−1, 1]d we then approximate f(x) by

f̂d,λ(x) =
∑

q≤|i|≤d+λ

(−1)d+λ−|i|
(

d− 1
d + λ− |i|

)
pi(x). (11)

The weights, (−1)d+λ−|i|
(

d− 1
d + λ− |i|

)
, are chosen to ensure that the

weighted sum of polynomials which interpolate on subsets of H interpolates
on the entire set.7

7See Barthelmann et al. (2000) for a proof that this procedure indeed works.
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3.1.4 Some Properties of Smolyak’s Method

Without getting into mathematical details, we want to briefly discuss the ad-
vantages of Smolyak’s method. The first obvious advantage is that the number
of grid points does not grow exponentially with the dimension. It can be veri-
fied that the number of points in Hd,λ is 1 + 2d for λ = 1, 1 + 4d + 4d(d−1)

2 for
λ = 2 (the level of approximation used in this paper), and 1 + 8d + 12d(d−1)

2 +
8d(d−1)(d−2)

6 for λ = 3. The nestedness of the nodes, Gm(i), implies that in
general the number of points in Hd,λ grows only polynomially in d if λ is taken
fixed. Note that it grows quickly in λ, but the examples below show that very
good approximations are achieved even for λ = 2.

Moreover, it can be shown that f̂d,λ exactly replicates any polynomial func-
tion of degree less than or equal to λ, in the sense that f̂d,λ is identically equal
to this polynomial if f̂d,λ interpolates it at the Smolyak points. At a first glance
this might seem a bit disappointing. After all, f̂d,λ is a polynomial of degree
2λ - however, since the ratio between the degree of f̂ and the degree of any
polynomial that can be replicated by f̂ is independent of the dimension d, the
algorithm is regarded as nearly optimal. In general, better schemes are not
known. Moreover, this makes clear that using a level-2 Smolyak approximation
is at least as good as (and often strictly better than) using any second degree
polynomial.

3.2 Integration

Once we approximate the unknown policy functions by Smolyak polynomials, we
require that the unknown coefficients ensure that equations (1)-(4) hold exactly
at the points in the grid. In order to solve for the coefficients, we obviously
need a way to evaluate the integral in equation (1). Since uc and fk as well as
the probability density function are not polynomials, we need to approximate
the integral numerically. It is well known that for integration in relatively low
dimensions (say around 10-15), if the integrand is sufficiently smooth, routines
based on interpolatory cubature rules turn out to deliver much more accurate
results than Monte Carlo or quasi Monte Carlo methods (see Cools (2002) or
Schürer (2003)). Since Judd’s (1998) textbook contains an excellent description
of these various rules we do not discuss them in detail here. In the computations,
we use a degree 5 rule for an integrand on an unbounded range weighted by a
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standard normal.8

Note that although the exogenous shocks (a) in our model are not normally
distributed, we can easily rewrite the integral in equation (1) as a function of
the underlying innovations (ε) which are indeed standard normal. Thus, the
integral is in the form

∫
Rd f(x)e−

∑d
i=1 x2

i dx and can be approximated by this
degree 5 rule.9

3.3 Finding the Unknown Coefficients

Using Smolyak’s polynomials to approximate the policy functions and using the
cubature rule to approximate the integrals now allows us to consider a finite
system of non-linear equations whose solutions are the unknown coefficients θ
of the approximate policy-functions. In principle, this system can be solved
easily by modern non-linear equation solvers which are variations of Newton’s
method. However, since the focus of this paper lies on Smolyak’s method to
construct sparse grids, and since we want to be able to easily increase the size of
the problem (by adding additional countries and hence additional endogenous
and exogenous states), we chose to solve for the coefficients by a “time-iteration”
algorithm.

First we guess policy functions Ki′
0 (s), Li

0(s) and Ci
0(s) for all i ∈ I. For a

given iteration n−1 and associated policy functions {Ki′
n−1(s), L

i
n−1(s), C

i
n−1(s)}i∈I

the iteration n policy functions are, for all s = (k, a), defined by the 3N equa-

8More precisely,∫
Rd
f(x)e−

∑d
i=1 x2

i dx ≈ Af(0) +B

d∑
i=1

(
f(rei) + f(−rei)

)
+

D

d−1∑
i=1

d∑
j=i+1

(
f(sei + sej) + f(sei − sej) + f(−sei + sej) + f(−sei − sej)

)
,

with

r =
√

1 + d/2, s =
√

1/2 + d/4, A =
2πd/2

d+ 2
, B =

(4− d)πd/2

2(d+ 2)2
, D =

πd/2

(d+ 2)2
.

9In order to verify the quality of approximation, we compared the results with a simple
Monte-Carlo method that uses 10000 draws. In all cases, the differences were on the order of
at most 10−5.
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tions10

τ iui
c

(
Ci

n(s), Li
n(s)

)

=

β
∫

τ iui
c

(
Ci

n−1 (s′) , Li
n−1(s

′)
) [

1 + ai′f i
k

(
Ki′

n (s), Li
n−1(s

′)
)
+

φ
2

(Ki′
n−1(s

′)−Ki′
n (s))(Ki′

n−1(s
′)+Ki′

n (s))

Ki′
n (s)2

]
ga(a′)da′

1 +
φ(Ki′

n−1(s
′)−Ki′

n (s))

Ki′
n (s)

=

β
∫

τ iui
c

(
Ci

n−1 (s′) , Li
n−1(s

′)
)  1 + aj′f j

k

(
Ki′

n (s), Lj
n−1(s

′)
)

+
φ
2

(Kj′
n−1(s

′)−Kj′
n (s))(Kj′

n−1(s
′)+Kj′

n (s))

Kj′
n (s)2

 ga(a′)da′

1 +
φ(Kj′

n−1(s
′)−Kj′

n (s))

Kj′
n (s)

= τ juj
c

(
Cj

n(s), Lj
n(s)

)

ui
l

(
Ci

n(s), Li
n(s)

)
ui

c (Ci
n(s), Li

n(s))
= −aif i

l (k
i, Li

n)

Cn(s) +
N∑

i=1

Ki′
n (s) +

N∑
i=1

φ(Ki′
n (s)− ki)2

2ki
= Y (s) + K.

In terms of running-times, this method is obviously not comparable to New-
ton’s method, however, it has the advantage that it can easily handle very large
systems. Moreover, it has a nice economic interpretation in that it can be viewed
as approximating the infinite horizon economy by an economy with a large finite
horizon.

4 Numerical Results

We present results – including policy functions plots, approximation errors,
and running times – for a number of specifications of the model described in
the previous section. Throughout, we approximate the policy functions with a
polynomial of total degree 4 (i.e., λ = 2). Higher-order approximations yield
smaller approximation errors at the cost of longer running times.

4.1 Model Specifications

The various model specifications we solve differ by the number of countries N ,
the forms of the utility and production functions, and the parameter values
chosen for the technology shock process, capital adjustment costs, and utility
and production functions. “Problem A” of the JEDC Numerical Methods Com-
parison Project (Den Haan, Judd, and Juillard (2004)) provides a complete

10Again we abuse notation and let s′ = (K′
n(s), a′).
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description of the different specifications and their calibration. Following is a
condensed version of this description.

As described above, the capital adjustment cost is assumed to be quadratic
with scale parameter φ. The period utility function is of one of the forms11

u(c, l) =



c
1− 1

γ

1− 1
γ

c
1− 1

γ

1− 1
γ

− b l
1+ 1

η

1+ 1
η

(cψ(Le−l)(1−ψ))1− 1
γ

1− 1
γ(

c
1− 1

χ+b[Le−l]
1− 1

χ

) 1
1− 1

χ

1− 1
γ

1− 1
γ

,

and the production function is of one of the forms

f(k, l) =
{

A (αkµ + (1− α)lµ)
1
µ , µ 6= 0

Akαl1−α, µ = 0.

Table 1 lists the parameters which vary across specifications and the functional
forms used in each specification.12

4.1.1 Challenges for Solving the Model

A few key issues arise in the application of Smolyak’s method, described gen-
erally in Section 3, to our specific economic model. The first issue is choosing
bounds for the state variables, a necessary step since Smolyak’s method is de-
fined over a closed hypercube, [−1, 1]2N .13 For the exogenous state variables,
we simply set [ln(ai), ln(āi)] = [−tr σ

1−ρ , tr σ
1−ρ ], where tr is some positive scalar.

For the endogenous state variable, the bounds must be chosen with great care
to ensure the capital policy functions, Kn′(k, a), stay within the chosen bounds.
All else equal, the wider the capital bounds the more likely the capital policy
function is to stay in bounds but the poorer the accuracy of the solution.

There is also an interaction between the bounds on capital and the bounds
on the technology shocks. As is known from the one-country stochastic growth
model, capital exhibits a positive, hump-shaped response to a technological
shock, and thus, for a fixed capital interval, larger technological shocks make it
more likely for the capital policy function to go out of bounds. For this reason,

11The case γ = 1 is understood to be the logarithmic case.
12The other parameter values are β = 0.99, δ = 0.025, α = 0.36, and A = (1 − β)/(αβ).

A is chosen so the steady-state capital stock is equal to unity for all countries, and (where
applicable) b and ψ are chosen so the steady-state labor supply is also equal to unity. The
value of Le = 2.5 is chosen so that steady-state labor supply equals 40% of time endowment,
Le. Finally, the Pareto weights (τ1, ..., τN ) are pinned down by assuming that each country
optimally consumes its net output in steady state.

13Although the state variable generally does not lie in [−1, 1]2N , it lies in the box B =
[k1, k̄1]× ...× [kN , k̄N ]× [ln(a1), ln(ā1)]× ...× [ln(aN ), ln(āN )]. It is straightforward to use
a change of variables to map a state x ∈ B to [−1, 1]2N .
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Table 1: Model Specifications

Mod N Volatility φ γ η χ µ
A1 2,6 L, H 0.5,10 1 – – 0
A2 2,6 L, H 0.5,10 0.25, 1 0.1, 1 – 0
A3 2,6 L, H 0.5,10 0.25, 1 – – 0
A4 2,6 L, H 0.5,10 0.25 – 0.83 -0.2
A5 2,6 L, H 0.5,10 (0.25,1) – – (0,0)
A6 2,6 L, H 0.5,10 (0.25,1) (0.1,1) – (0,0)
A7 2,4 L, H 0.5,10 (0.5,1) – – (0,0)
A8 2,4 L, H 0.5,10 (0.2,0.4) – (0.75,0.9) (-0.3,0.3)

Notes: As described in Den Haan, Judd, and Juillard (2004), A1 and A5 have
inelastic labor supply with CRRA utility over consumption; A2 and A6 have
separable utility functions with isoleastic labor supply and CRRA utility over
consumption; A3 and A7 exhibit Cobb-Douglas utility over consumption and
leisure, while A4 and A8 have CES utility. In A1-A4, the countries are symmet-
ric, while in A5-A8, the parameters of the utility and production functions differ
across countries. An entry (x, y) for a given parameter ζ indicates that country
i = 1, ..., N has parameter ζi = x + i−1

N−1 (y − x). Finally, low (L) volatility
corresponds to ρ = 0.8, σ = 0.001 and high (H) volatility to ρ = 0.95, σ = 0.01.

the high volatility case tends to be more difficult to solve than the low volatility
case, but both can be solved with the proper choice of bounds. Unless noted
otherwise, we use tr = 1.25 and [k, k̄] = [0.5kss, 1.5kss] to generate all the results
for the symmetric cases (A1-A4) reported below.

For asymmetric cases with endogenous labor supply (A6-A8), finding appro-
priate bounds for the capital interval provides an additional challenge because
the true capital policy functions are asymmetric across countries. To see this,
consider specifications A6-A8 without any capital adjustment costs (φ = 0)
or technology shocks (ln(ai

t+1) = 0). In equilibrium, the marginal utility of
consumption is equalized across countries at each date, and thus one can see
from the intertemporal Euler equations that the distribution of t + 1 capital
will be set to equate the marginal product of capital across countries in t + 1,
which requires equating countries’ capital/labor ratios. Because some countries
have more elastic labor supplies than others, the countries will supply differ-
ent levels of labor if provided with the same non-steady-state capital stock.
Figure 4 (to be described later) illustrates this for specification A6. Conse-
quently, the true equilibrium features asymmetric capital policy functions. Solv-
ing for these policy functions thus requires specifying asymmetric bounds for the
country-specific capital stocks.14 In practice, we let [k1, k̄1] = [0.42kss, 1.58kss],

14The program converges when using symmetric capital intervals (for example, symmetric
intervals were used to create Figures 2 - 4), but the accuracy is better in the case of asymmetric
capital intervals.
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[kN , k̄N ] = [0.58kss, 1.42kss], and choose intermediate values for the widths of
the other countries’ capital intervals.15

A second issue that arises in using Smolyak’s method is finding a good
initial guess for the time-iteration algorithm to compute policy functions. In
general it is not possible to establish that the operator used for the time-iteration
procedure is a contraction mapping, and thus, convergence is not guaranteed
for any initial guess. In fact, it turns out that poor guesses for labor supply
often lead to difficulties for our method. To minimize these difficulties, we have
at times found it useful to slightly alter the time-iteration algorithm described
in Section 3.3. Rather than using the previous iteration of the policy function
for labor supply Ln−1(s′) on the right-hand side of the intertemporal Euler
equation, we solve for tomorrow’s labor, denoted by L∗, using

ui
l(C

i
n−1(s

′), L∗)
ui

c(Ci
n−1(s′), L∗)

= −aif i
l (K

i′
n (s), L∗). (12)

This reduces the importance of the initial guess for labor supply, which turns
out to be especially helpful for finding a solution in cases A6-A8.

Finally, our procedure can solve specifications of the model with up to N = 6
countries (12 state variables). As currently written, our procedure does not
exploit any of the symmetries between the countries (for cases A1-A4) when
computing the solution of the model. But because the Smolyak points are
symmetric (see Figure 1), one could envision utilizing the symmetry of cases
A1-A4 by solving for the policy functions of only one country at each iteration
and then doing the proper transformation to generate the policy functions of
the other countries. Doing so may make solving for N = 10 countries less
time intensive in these cases. However, given the results reported below, in
which increasing the number of countries does not appear to lead to particularly
interesting economic insights, we choose not to pursue this direction of research
at this point.

4.1.2 Policy Functions

Figures 2 - 4 plot the country-specific capital, consumption, and labor policy
functions for specification A6 with N = 2, high volatility, and low adjustment
costs. There are four plots in each figure: the plots show the policy functions of
both countries (blue-solid = country 1, red-dashed = country 2) as a function
of the own country’s and the other country’s capital stocks (top two plots) and
own country’s and other country’s technology shock (bottom two plots), holding
the other state variables constant at their steady-state values.16

These policy functions are representative, in a qualitative sense, of the policy
functions from other specifications. In particular, the capital policy functions

15For case A8, the order of the capital grids is reversed with country N having the widest
grid, i.e., [k1, k̄1] = [0.58kss, 1.42kss], [kN , k̄N ] = [0.42kss, 1.58kss].

16In order to show all the interesting movements in the policy functions, we solved over
a capital interval of [0.1kss, 1.9kss] and set tr = 1.25 so the technological shock interval is
[-0.25, 0.25].
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are fairly linear in all state variables, while consumption is slightly concave with
respect to capital and slightly convex with respect to technology shocks. The
labor supply functions clearly display the most significant non-linearities, with
labor supply being a non-monotonic function of a country’s own capital stock.
We take these non-linearities as evidence that non-linear solution methods do,
in fact, provide better approximations of the true solution of the model than
linear methods. Kim, Kim, and Kollmann (2007) (KKK) document this same
result quantitatively by showing that a quadratic approximation of the solution
outperforms a linear approximation. Our solution method is also significantly
more accurate than a linear approximation, as can be seen by comparing our
results reported below (in Table 2) to the linear approximation results in KKK.

It is also interesting to note the effect of asymmetric parameter values on the
policy functions. The labor supply functions again display the most interesting
results. The optimality condition for labor supply of country i can be written
as

lit =

[
A1/γ1

ai
tk

i
t
α

c1
t
1/γ1

] ηi

1+ηiα

,

where we have substituted in the optimality condition equating the marginal
utility of consumption across countries.17 Thus, it is easy to see that country
2 (η2 = 1.0) will have a more elastic labor supply with respect to a movement
in productivity than country 1 (η1 = 0.1), as is confirmed by Figure 4. It is
also interesting to note that, except at very low capital levels, labor supply
falls with an increase in own-country capital because the direct income effect
(i.e., increased consumption) overwhelms the substitution effect from a higher
wage (top-left panel of Figure 4). Furthermore, consumption is also more elastic
for country 2 (γ2 = 1.0) than country 1 (γ1 = 0.25) because the equilibrium

condition for consumption-sharing implies that c2
t is proportional to

(
c1
t

)γ2/γ1

.

4.2 Approximation Errors and Running Times

We check the accuracy of the solution in three ways, the first two of which require
the computation of conditional error functions. These functions, denoted by
Rn(xt) for n = 1, .., 3N , are unit-free versions of the 3N optimality conditions
(see equations (1) - (4)) evaluated at the present state xt ≡ (kt, at). The true
solution of the model has Rn(xt) = 0, for all n and xt. These functions are

17Note that the Pareto weights are τ i = 1
uic(c

i
ss,liss)

= A1/γi .
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Figure 2: Capital Policy Functions for A6
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Notes: Capital stock tomorrow as a function of own and other capital stocks (top
two plots) and own and other technology shocks (bottom two plots), holding
other state variables at steady-state values. The blue lines are for country 1
(γ = 0.25, η = 0.1), and the red-dashed lines are for country 2 (γ = 1.0, η = 1.0).
Model specification: A6, N = 2, high volatility, φ = 0.5.
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Figure 3: Consumption Policy Functions for A6
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Notes: Consumption as a function of own and other capital stocks (top two
plots) and own and other technology shocks (bottom two plots), holding other
state variables at steady-state values. The blue lines are for country 1 (γ =
0.25, η = 0.1), and the red-dashed lines are for country 2 (γ = 1.0, η = 1.0).
Model specification: A6, N = 2, high volatility, φ = 0.5.
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Figure 4: Labor Policy Functions for A6
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Notes: Labor supply as a function of own country and other country capi-
tal stocks (top two plots) and own and other technology shocks (bottom two
plots), holding other state variables at steady-state values. The blue lines are
for country 1 (γ = 0.25, η = 0.1), and the red-dashed lines are for country 2
(γ = 1.0, η = 1.0). Model specification: A6, N = 2, high volatility, φ = 0.5.
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given by

Rn ≡ βEt

un
c,t+1

un
c,t

[
1 + an

t+1f
n
k,t+1 + φn

2,t+1

]
[
1 + φn

1,t

]
− 1, for n = 1, ..., N

Rn ≡
un−N

c,t an−N
t fn−N

l,t

un−N
l,t

+ 1, for n = N + 1, ..., 2N

R2N+1 ≡ Yt + Kt

Ct + Kt+1 + φt

− 1

Rn ≡
τn−2Nun−2N

c,t

τ1u1
c,t

− 1, for n = 2N + 2, ..., 3N

where the arguments of all functions have been suppressed, e.g., un
c,t ≡ un

c (cn(xt), ln(xt)).18

Then, letting R(xt) denote the 3N -dimensional vector of conditional errors eval-
uated at state, xt, Accuracy Tests 1 and 2 are implemented as follows:

Accuracy Test 1: R(xt) is computed for 100 independent random
vectors xt = {ki

t, a
i
t}N

i=1 at radius r from the deterministic steady-state, for
r = {0.01, 0.02, 0.05, 0.10, 0.15, 0.20, 0.30}.19 We report Tr ≡ maxn,t|Rn(xt)|.

Accuracy Test 2: The model is simulated for 1000 periods.20 Let
Sn,max ≡ maxt|Rn(xt)| and Sn,mean ≡ mean(|Rn(xt)|) for t = 1, ..., 1000. We
report Smax and Smean, which are the maximum Sn,max and Sn,mean (across
n).

The third accuracy test is the so-called Den Haan-Marcet statistic (Den Haan
and Marcet (1994)) and focuses solely on the N intertemporal equilibrium con-
ditions. This statistic tests whether the realized errors in the intertemporal
conditions are orthogonal to a constant and first- and second-order monomials
of the state variables. This holds for the true solution since the intertemporal
equilibrium conditions are conditional expectations. Accuracy Test 3 is imple-
mented as follows:

Accuracy Test 3: We run 200 simulations of the model, each last-
ing 1000 periods. For each run, the Den Haan-Marcet statistic (1994, p.5) is
constructed, and we compare the frequency distribution of this statistic (across
the 200 simulations) to the theoretical χ2

N(2N2+3N+1) distribution, where the
degrees of freedom for the χ2 distribution are determined by the number of

18We use the degree-5 monomial integration formula described in Section 3.2 to calculate
the expectations in the intertemporal conditions.

19Recall that our solution method requires us to place bounds on the state variables. The
bounds for the capital stocks are roughly 0.5 units from the steady state, while those for the
technology shocks are 0.25 units away (tr = 1.25, ρ = 0.95, σ = 0.01). Thus, it is possible that
a sampled point r = 0.30 units from the steady state could lie outside the technology shock
bound for one country. In this case, we reduce the deviation from the steady state in that
dimension and increase the deviations equally in all other dimensions. In effect, we choose a
different sample point that is still r = 0.30 units from the steady-state and also in bounds.

20The state variables are initially set at their steady state values. The actual length of the
simulation was 1200 periods, and the first 200 periods were discarded to ensure independence
from initial conditions. We use this same ‘burn-off’ period for Accuracy Test 3.
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intertemporal equilibrium conditions (N) multiplied by the number of instru-
ments (2N2 + 3N + 1). We report the percentage of the simulations with a
statistic in the lower [P.05] and upper [P.95] critical 5% of the χ2 distribution.
Fairly similar distributions are taken as evidence for an accurate solution.

Table 2 reports results of the accuracy tests for 20 of the 96 specifications
listed in Table 1. For A2 and A3, we only report results for the parameteriza-
tions with greatest and least curvature since these results bracket the others.
All reported statistics are for high volatility, ρ = 0.95 and σ = 0.01, and low ad-
justment costs φ = 0.5 because these cases usually21 have the largest conditional
error functions. Increasing the adjustment costs to φ = 10 typically reduces the
errors slightly, while lowering the volatility has a much larger effect. In fact, of
all parameters, those with the biggest impact on the solution accuracy are the
volatility parameters.

The numbers shown for Tests 1 and 2 are logs of the error measures (log10(Tr),
log10(Smax), log10(Smean)). Recall that the true solution has conditional error
functions equal to zero, and thus, a smaller reported statistic implies greater
accuracy. It is clear from the results of Test 1 that the accuracy of our approxi-
mation is highest when the economy is close to its steady state, as Tr is smallest
when r, the distance from the steady state, is small. This fact also helps explain
why the errors reported for Accuracy Test 2 lie between the errors for T.01 and
T.3; in the simulations we ran for Accuracy Test 2, the state variables [k, ln(a)]
always lie within 0.12 of their steady-state values.

One can also see from Table 2 that the number of countries N typically does
not have a large impact on the error measures Tr, Smax, and Smean, although
in cases A4 and A6, the decline in accuracy with higher N is more substantial.
The curvature parameters have some impact on accuracy as specifications with
more curvature (low η and/or low γ for A2-A3) have larger approximation errors
close to the deterministic steady-state (T.01) but smaller approximation errors
further away (T.30). Finally, functional forms A3/A7 and A4/A8 appear to have
slightly larger approximation errors than A1/A5 and A2/A6, although this may
have as much to do with differences in curvature (parameter values) as it does
with the particular functional forms.

Although we only report the largest errors across all conditional error func-
tions, it turns out that these almost always correspond to the intertemporal
Euler equations. This deserves some comment. In our solution procedure, the
static conditions that determine labor supply and the sharing of consumption
across countries hold quite exactly. This is because we solve these equations as
functions of the state variables and consumption of country 1, without imposing
any functional form on the labor supply of any country or the consumption of
countries 2−N . Thus, even though the policy functions for labor supply may be

21The high volatility case of a particular specification always has larger errors (Accuracy
Test 2) than the low volatility case, while the low adjustment cost case usually does. In the
instances when high adjustment costs produce larger errors, the difference is never greater
than 0.25 (in log10). None of our qualitative conclusions hinge importantly on reporting
results for φ = 0.5 rather than φ = 10.
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highly nonlinear (see top-left panel of Figure 4), they do not present a problem
for our solution method. Rather, any approximation errors will occur mainly in
the intertemporal Euler equations and aggregate resource constraint.

Table 2: Accuracy tests: results for selected specifications

Test 1 Test 2 Test 3
γ η T.01 T.1 T.3 Smax Smean P.05 P.95

N = 2
A1 1.0 – -6.0 -5.1 -4.2 -5.2 -5.8 .04 .06
A2 0.25 0.1 -5.4 -4.7 -4.1 -4.7 -5.3 .03 .09
A2 1.0 1.0 -6.0 -4.8 -3.7 -4.6 -5.5 .03 .08
A3 0.25 – -5.3 -4.3 -3.7 -4.2 -5.0 .03 .07
A3 1.0 – -5.8 -4.6 -3.7 -4.4 -5.3 .03 .06
A4 0.25 – -5.2 -4.3 -3.7 -4.3 -4.9 .03 .07
A5 (.25,1) – -5.8 -4.9 -4.0 -5.1 -5.6 .04 .06
A6 (.25,1) (.1,1) -5.8 -4.7 -3.9 -4.9 -5.6 .04 .06
A7 (.5,1) – -5.5 -4.5 -3.6 -4.3 -5.0 .03 .07
A8 (.2,.4) – -4.9 -4.2 -3.6 -4.1 -4.6 .03 .07

N = 6 for A1-A6 , N = 4 for A7-A8
A1 1.0 – -5.9 -5.2 -4.6 -5.1 -5.8 0 .47
A2 0.25 0.1 -5.3 -4.8 -4.5 -4.7 -5.3 0 .51
A2 1.0 1.0 -5.9 -4.9 -4.0 -4.4 -5.3 0 .58
A3 0.25 – -5.4 -4.6 -4.0 -4.1 -4.8 0 .55
A3 1.0 – -5.8 -4.8 -4.0 -4.3 -5.1 0 .62
A4 0.25 – -5.3 -4.2 -3.1 -3.4 -4.0 0 .55
A5 (.25,1) – -5.5 -5.1 -4.6 -5.0 -5.6 0 .48
A6 (.25,1) (.1,1) -4.4 -4.3 -3.9 -4.4 -4.5 0 .53
A7 (.5,1) – -5.5 -4.5 -4.0 -4.5 -5.1 0 .36
A8 (.2,.4) – -4.9 -4.1 -3.7 -4.2 -4.7 0 .39

Notes: The first three columns specify the model and some parameters
that vary across alternative specifications. All reported statistics are for
high volatility, ρ = 0.95 and σ = 0.01, and low adjustment costs φ =
0.5. The figures shown for Tests 1 and 2 are logs of the error measures
(log10(Tr), log10(Smax), log10(Smean)).

For Test 3, recall that numbers near or below .05 provide evidence of an
accurate solution. Thus, the Den Haan-Marcet accuracy measures in Table 222

are much worse when the number of countries is large (N = 4, 6) than when
22As mentioned earlier, the reported measures in Table 2 are for the high volatility and

low adjustment cost case. The Den Haan-Marcet measures suggest our solution method is
less accurate in the high adjustment cost case (φ = 10), with approximately 13% of the test
statistics lying in the upper critical 5% of the χ2 distribution for N = 2. Results available
upon request.
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N = 2: the percentage of observations of the test statistic in the upper critical
5% of the χ2 distribution is much greater than 5% for large N . At this point, it
is not clear whether these measures reflect poor accuracy of our solution method
or sensitivity of the DM statistic to a large number of instruments. In our tests,
there are 15 instruments when N = 2, 45 when N = 4, and 91 when N = 6,
whereas the largest number of instruments used by Den Haan and Marcet (1994)
was 7. Further experiments will be done to assess whether Accuracy Test 3 is,
in fact, a good accuracy measure for this class of problems.

Table 3 reports the time required to compute and run accuracy tests on the
solutions of different specifications of the model.23 In particular, the column
labelled “Sol” shows the time it takes to compute the solution. For N = 2
countries, this is on the order of seconds; for N = 4 (not reported), it takes
minutes; and for N = 6, the program can take an hour or more.

Some specifications, namely A7 and A8, take significantly longer to run than
others. For these specifications, our solution procedure, as described earlier,
solves a nonlinear equation for the labor supply on the right-hand side of the
intertemporal Euler equation rather than simply using the labor supply policy
function from the previous iteration. Because this must be done quite often,
the program takes much more time to converge, and we choose to only solve for
policy functions for up to N = 4 countries for these specifications. We also solve
a nonlinear equation for labor in specification A6, but because it is possible to
solve the equation analytically in this case, the program runs relatively quickly.

5 Conclusion

In this paper we described and used a projection method based on Smolyak’s
algorithm to compute globally accurate solutions to models featuring a sizeable
number of continuous state variables. The method was applied to solving a
wide variety of international real business cycle model specifications with high
accuracy and reasonable running times and appears to be a viable solution
method for use in a wide class of economic models.

One goal of this paper has been to make this solution method more accessible
to other economists. To this end, we provided both a general description of the
method and a discussion of some of the practical challenges to implementing
it, such as choosing appropriate bounds for the state variables. We have made
available corresponding computer code for the Smolyak method,24 which should
enable any researcher armed with a set of optimality conditions to solve for the
nonlinear solution of her model without having to undertake the fixed costs of
implementing the construction of the Smolyak grid.

23These programs were run using FORTRAN 6.6 on a Pentium 4 PC (2.8 GHz).
24The program for specification A8 of this paper is available at

http://www.econ.upenn.edu/˜dkrueger/research.php.

27



Table 3: Computing Times for selected models

Time(seconds)
γ η Sol. Test 1 Test 2 Test 3

N = 2
A1 1.0 – 1.0 0.01 0.07 1.9
A2 0.25 0.1 1.7 0.02 0.08 2.2
A2 1.0 1.0 1.5 0.02 0.08 2.2
A3 0.25 – 6.2 0.7 1.0 14.6
A3 1.0 – 4.8 0.7 1.0 14.2
A4 0.25 – 5.1 0.8 1.2 16.9
A5 (.25,1) – 1.3 0.01 0.06 1.9
A6 (.25,1) (.1,1) 2.6 0.02 0.08 2.1
A7 (.5,1) – 73 0.7 1.1 14.6
A8 (.2,.4) – 70 0.8 1.2 16.9

N = 6 for A1-A6 , N = 4 for A7-A8
A1 1.0 – 1364 1.6 2.4 974
A2 0.25 0.1 2068 1.7 2.6 990
A2 1.0 1.0 1676 1.7 2.6 977
A3 0.25 – 5430 16.7 24.8 1210
A3 1.0 – 3244 16.4 24.4 1215
A4 0.25 – 3297 19.9 28.9 1039
A5 (.25,1) – 1718 1.6 2.4 1148
A6 (.25,1) (.1,1) 2068 1.8 2.7 1201
A7 (.5,1) – 2949 4.9 7.3 64
A8 (.2,.4) – 2603 5.7 8.5 70

Notes: Column labelled “Sol.” is the computing time for the solution of the
model, while the columns labelled “Test 1”, “Test 2”, and “Test 3” record
the computing time for the various accuracy tests. All reported statistics are
for high volatility, ρ = 0.95 and σ = 0.01, and low adjustment costs φ = 0.5.
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