
Noname manuscript No.
(will be inserted by the editor)

Computing strong lower and upper bounds for the integrated

multiple-depot vehicle and crew scheduling problem with

branch-and-price

Markó Horváth · Tamás Kis

Received: date / Accepted: date

Abstract In the problem of the title, vehicle and crew schedules are to be determined simulta-

neously in order to satisfy a given set of trips over time. The vehicles and the crew are assigned to

depots, and a number of rules have to be observed in the course of constructing feasible schedu-

les. The main contribution of the paper is a novel mathematical programming formulation which

combines ideas from known models, and an exact solution procedure based on branch-and-price.

The method is tested on benchmark instances from the literature and it provides suboptimal

schedules using limited computational resources.

Keywords vehicle and crew scheduling · branch-and-price · exact methods · integer program-

ming

1 Introduction

The vehicle scheduling and the crew scheduling problems are two main planning problems that

arise in the operational phase of the planning process of public transport companies, and have

several real-world applications, e.g., at the public transport company of Rotterdam, the Nether-

lands (Huisman, 2004), in Ljubljana, Republic of Slovenia (Békési et al., 2009) and in Szeged,

Hungary (Balogh and Békési, 2014). Briefly stated, the aim of these problems is to find an

Markó Horváth

Institute for Computer Science and Control, Hungarian Academy of Sciences, H1111 Budapest, Kende str. 13–17,

Hungary

Tamás Kis

Institute for Computer Science and Control, Hungarian Academy of Sciences, H1111 Budapest, Kende str. 13–17,

Hungary

Tel.: +36-1-279-6156

Fax: +36-1-466-7503

E-mail: tamas.kis@sztaki.mta.hu

2 Markó Horváth, Tamás Kis

assignment of minimum cost of a given set of trips to vehicles, and to create a minimal cost

set of crew duties that cover tasks resulted from vehicle schedules. In the traditional sequential

approach, the vehicle scheduling problem is solved first and then the crew scheduling problem

next, but Bodin et al. (1983) criticize scheduling vehicles independently of the crew, because in

the mass transit case crew costs mostly dominate vehicle operating costs. The integrated vehicle

and crew scheduling problem aims to schedule vehicles and the crew simultaneously, rather than

sequentially.

In this paper we describe a novel mathematical programming formulation for the integrated

multiple-depot vehicle and crew scheduling problem, where we combine the advantages of the

existing modeling approaches. While most of the known MIP formulations model the vehicle and

crew schedules separately, and join the two parts by linking constraints, we model crew schedu-

les along with some extra variables and constraints that ensure that from any integer feasible

solution a valid vehicle schedule can be deduced as well. Further on, any optimal solution of our

MIP formulation represents an optimal solution for the integrated vehicle and crew scheduling

problem. Our modeling approach is quite general, the set of columns represents the valid crew

schedules, and a subset of it is generated in the course of the solution procedure guided by the

rules to be observed by valid driver schedules. We also present our exact branch-and-price proce-

dure for this formulation, where we develop an efficient variable pricing method, some branching

rules, and we apply several acceleration strategies. We test our approach on well-known problem

instances.

To our best knowledge, the only paper proposing an exact method for the integrated multiple-

depot vehicle and crew scheduling problem is that of Mesquita et al. (2009), where a variant of

the problem is studied in which some of the common assumptions we and other authors make

on feasible crew schedules are neglected. Their MIP formulation, unlike ours, models vehicle and

crew schedules separately and contains additional linking constraints to join the two parts.

This paper is organized as follows. In Section 2 we give a formal problem statement along

with the assumptions on the input and admissible solutions. We review the related literature

in Section 3, where we also highlight the novelty of our approach. In Section 4 we present our

problem formulation, and we describe our solution method in Section 5. We summarize our

computational results in Section 6, and conclude the paper in Section 7.

2 Problem definition

A trip is a project for vehicles to carry passengers between two given stations, and we assume

that each trip is timetabled, that is, it has fixed departure and arrival time. A fleet of vehicles

may consist of different vehicle types, and some trips may not be operated by all vehicle types.

Thus, although a depot basically is a storage facility, where vehicles can be parked when not in

use, we treat a depot as a facility with homogeneous fleet of vehicles (that is, if such a facility

Integrated multiple-depot vehicle and crew scheduling 3

consists of several vehicle types, we partition its inhomogeneous fleet into homogeneous ones).

The vehicle scheduling problem (VSP) can be stated as follows: we are given a set of trips, a

fleet of vehicles divided into depots and the goal is to find an assignment of trips to vehicles

such that each trip is assigned exactly once; each vehicle performs a feasible sequence of trips;

each sequence starts and ends at the same depot; and asset and operational costs are minimized.

Based on the number of depots, we have the single-depot vehicle scheduling problem (SDVSP),

or the multiple-depot vehicle scheduling problem (MDVSP).

A vehicle itinerary describes the route of a vehicle, i.e., the movements made by the vehicle,

e.g., performing a trip, waiting at a station or in a depot, pulling out from/pulling in a depot,

performing a deadhead (that is, traveling between stations without passengers). Each vehicle

itinerary starts with a pull-out and ends with a pull-in, but vehicles can return to the depot at

any time. A vehicle block is the part of the vehicle itinerary between a pair of consecutive pull-out

and pull-in (both included). In Figure 1 we depict a vehicle itinerary consisting of two vehicle

blocks. Some vehicle movements require driver attendance (e.g., performing a trip/deadhead or

pulling out from/pulling in a depot), while typically no driver is required to be present if the

vehicle is waiting in a depot. Drivers can board/leave the vehicle only at relief points, these are

the depots and certain designated stations. Moreover, each trip has at most two relief points: one

at the beginning and one at the end of the trip, i.e., drivers cannot board/leave the vehicle while

it is performing a trip. According to these restrictions, each vehicle itinerary defines tasks that

have to be assigned to drivers. More precisely, a task is a sequence of driver requiring vehicle

movements between two consecutive relief points, i.e., tasks are the most elementary portion of

work that can be assigned to a driver. For example, in Figure 1 we present a situation, where

a driver is required to be present if a vehicle is outside of the depot, and the only relief point

other than the depot is station C. Thereby, vehicle block I and vehicle block II consist of 3 and

1 tasks, respectively. A piece of work is a sequence of tasks without any break (i.e., each task

in a piece of work begins at the time point when the previous one ends), and a (driver) duty is

either a single piece of work or a sequence of pieces of work separated by breaks. The first three

tasks in Figure 1 could define six pieces of work (these are (task I), (task II), (task III), (task I,

task II), (task II, task III) and (task I, task II, task III)), while task IV can be contained by only

one piece of work. In this figure we depict only three pieces of work. Again, these three pieces

of work could define four driver duties (these are (piece of work I), (piece II), (piece III), and

(piece II, piece III)), however we depict only one.

The crew scheduling problem (CSP) can be stated as follows: find a set of duties for a given

set of tasks such that each task is covered by a duty that can be performed by a single driver;

each duty satisfies a wide variety of federal laws, safety regulations, and (collective) in-house

agreements; and labor costs are minimized.

Finally, the integrated vehicle and crew scheduling problem (VCSP) can be stated as follows:

for a set of trips find a minimum cost set of vehicle itineraries and driver duties such that both

4 Markó Horváth, Tamás Kis

the vehicle and the crew schedules are feasible and compatible with each other (that is, the driver

schedule is feasible according to tasks determined by the vehicle schedule). Again, based on the

number of depots we have the single-depot vehicle and crew scheduling problem (SDVCSP), or

the multiple-depot vehicle and crew scheduling problem (MDVCSP).

time

A BB C B C A B B AA B

d
e
p
o
t

d
e
p
o
t

d
e
p
o
t

task I task II task III task IV

piece of work I piece of work II piece of work III

driver duty

vehicle block I vehicle block II

vehicle itinerary

A

pull-out to A

A B

trip from A to B

B C

deadhead from B to C

relief point

Fig. 1 Route of a vehicle and some driver activities (based on Figure 1.4 in (Steinzen, 2007))

2.1 Assumptions

In the followings we introduce our assumptions about the MDVCSP.

Rule 1 Each vehicle is assigned to a depot where its daily schedule starts end ends. Each depot

is unlimited in capacity, that is, it can store an unlimited number of vehicles.

Rule 2 A vehicle returns to its depot if the idle time between two consecutive trips is long enough

to perform a round trip to the depot.

Rule 3 Each driver is assigned to a depot and may only conduct tasks on vehicles from this

particular depot. However, a duty does not necessarily start and end in this depot.

Rule 4 A piece of work is only restricted by its duration. It may have a minimum and maximum

duration.

Rule 5 (continuous attendance) A driver is required to be present if a vehicle is outside of

a depot, while no driver is needed when the vehicle is parked in the depot.

Rule 6 (restricted changeover) Drivers may only change their vehicle during a break, i.e.,

between two pieces of work.

Integrated multiple-depot vehicle and crew scheduling 5

Rules 1–6 are customary assumptions in the literature (Huisman, 2004; Huisman et al., 2005;

Steinzen, 2007; Steinzen et al., 2010).

Rule 2 was originally proposed for vehicle scheduling problems to reduce the number of

constraints by introducing the concept of short arcs, and long arcs, see e.g., Freling et al. (1995b).

Basically, in their network model arcs representing vehicle movements with appropriate long idle

time were replaced with so-called long arcs representing round trips to the depot, and for such arcs

they did not require the continuous attendance. This idea was applied for integrated problems as

well (e.g., Freling et al. (2003); Huisman et al. (2005); Steinzen et al. (2010)), however, it is worth

mentioning that omitting such long waiting and deadheads may change the set of potential tasks

(see Rule 5), hence the set of feasible duties can be changed. Rule 2 can create another problem

when time-space network approaches are used for the VCSP. Steinzen (2007) and Steinzen et al.

(2010) suggested to eliminate appropriate (long) arcs from network to ensure Rule 2, but it is

not sufficient by itself as we will show in Section 4.1. That is why we will handle Rule 2 as a

lazy rule, i.e., we will eliminate long arcs from the network model of the problem, but we will

not make further efforts to satisfy Rule 2.

To ensure Rule 6, we need to redefine the concept of a piece of work, that is, in the rest of

this paper a piece of work is a sequence of tasks without any break that is performed by the

same vehicle. Remark that pieces of work in Figure 1 correspond to the new concept.

Rule 7 A duty consists of one or two pieces of work. Each duty starts with a sign-on and ends

with a sign-off by the driver. Feasibility of a duty can depend only on earliest/latest (sign-on)

start/(sign-off) end time; minimum/maximum piece length; minimum/maximum break length;

minimum/maximum working time; minimum/maximum spread time.

In our terminology working time is the time that driver spends on the vehicle (i.e., the total

duration of the pieces of work consisted by the duty), and spread time is the total duration of

the sign-on, the sign-off, the pieces of work and the breaks.

Rule 8 Vehicle cost is a combination of a fixed asset cost for using the vehicle and a variable

operation cost. Asset cost depends only on depot. Operation cost is a linear function of travel and

idle time outside the depot.

Rule 9 Duty cost is a combination of a fixed driver cost for using a driver and a variable working

cost. Driver cost depends only on depot. Working cost is a linear function of working time.

In fact, fixed costs in Rules 8–9 are not restrictions as we assumed that each depot consists

of a homogeneous fleet of vehicles and crew is a group of anonymous drivers.

6 Markó Horváth, Tamás Kis

3 Literature review

3.1 Sequential vehicle and crew scheduling

The MDVSP is shown to be NP-hard by Bertossi et al. (1987), which is in strong contrast with

the polynomial solvability of the SDVSP, see e.g., Freling et al. (2001). An overview of different

vehicle scheduling models can be found in (Bunte and Kliewer, 2009). For heuristic solution

approaches for the MDVSP we refer to Pepin et al. (2006).

Both the VSP and the CSP can be interpreted as an assignment problem, the CSP is more

complicated than the VSP because of the wide variety of working rules (e.g., minimum/maximum

working time for drivers, minimum/maximums spread time for duties, etc.). Fischetti et al. (1987,

1989) show that the CSP is NP-hard if either spread time or working time constraints are present.

3.2 Partial integration

Until the late nineties the complete integration of vehicle scheduling and crew scheduling was

computationally intractable, thus most of the early approaches are based on a heuristic integra-

tion.

Ball et al. (1983) propose the first partially integrated approach for the single-depot case.

They schedule crew first including vehicle scheduling considerations and construct a feasible

vehicle schedule afterward. Similar heuristics for the single-depot case are proposed by Tosini

and Vercellis (1988), Falkner and Ryan (1992), and Patrikalakis and Xerocostas (1992).

Other approaches schedule vehicles first but include crew scheduling considerations and subse-

quently generate feasible crew schedules, see e.g., Scott (1985) and Darby-Dowman et al. (1988).

Gintner et al. (2008) apply another partial integration approach for the multiple-depot case.

They perform vehicle scheduling first and crew scheduling afterward, but they use a time-space

network approach for vehicle scheduling that allow to change the corresponding optimal vehicle

schedule without loss of optimality in the crew scheduling phase.

3.3 Complete integration

In Table 1 we collect the core of modeling and solution approaches of completely integrated

models, details are explained below.

3.3.1 Single-depot case

Freling et al. (1995a) propose the first fully integrated approach for the single-depot case. Their

integer programming model uses a so-called connection-based network and consists of three

components: a quasi-assignment formulation for vehicle scheduling, a set partitioning formulation

Integrated multiple-depot vehicle and crew scheduling 7

Table 1 Modeling and solution approaches for the complete integration

Reference Modeling approach Solution approach

Networka Vehicle scheduling part Crew scheduling part Typeb Core

Single-depot case

Freling et al. (1995a) CB quasi-assignment set partitioning H LR-CGc

Friberg and Haase (1999) CB set partitioning set partitioning E BCPd

Haase et al. (2001) DB side constraints multicommodity flow E BCP

Freling et al. (2003) CB quasi-assignment set partitioning H LR-CG

Laurent and Hao (2008) (constraint programming approach) H GRASPe

Multiple-depot case

Gaffi and Nonato (1999) CB quasi-assignment set partitioning H LR-CG

Huisman et al. (2005) CB multicommodity flow set partitioning H LR-CG

Borndörfer et al. (2008) CB multicommodity flow set partitioning H LR-CG

Mesquita and Paias (2008) CB multicommodity flow set partitioning/covering H PBf

Mesquita et al. (2009) CB multicommodity flow set partitioning/covering H/E BPg

Steinzen et al. (2010) TS multicommodity flow set partitioning H LR-CG

a CB: connection-based; DB: driver-based; TS: time-space
b H: heuristic approach; E: exact method
c Lagrangian relaxation based column generation
d branch-and-cut-and-price
e greedy randomized adaptive search procedure
f (LP-relaxation based) price-and-branch
g branch-and-price

for crew scheduling, and additional linking constraints that ensure the compatibility of vehicle and

crew schedules. Their solution approach uses column generation in combination with Lagrangian

relaxation. That is, linking constraints are relaxed in a Lagrangian way and the crew scheduling

part is relaxed to a set covering formulation that yields two independent Lagrangian subproblems:

a single-depot vehicle scheduling problem and a selection problem. They solve the Lagrangian

dual problem with a subgradient algorithm, and suggest a two-phase pricing method to generate

new columns (i.e., duties) for the crew scheduling part. They apply several heuristics to obtain

feasible integer solutions for the original problem. This modeling and solution approach provides

the basis for many other publications, e.g., Freling et al. (2003); Huisman (2004); Huisman et al.

(2005); Steinzen (2007); Steinzen et al. (2010).

Friberg and Haase (1999) propose the first exact algorithm for the single-depot case. Their

mathematical programming formulation is a combination of set partitioning formulations for the

vehicle scheduling problem and for the crew scheduling problem, respectively. They develop a

branch-and-cut-and-price algorithm, i.e., the LP-relaxation in each node of the search-tree is

solved by column generation, moreover, polyhedral cuts are added to strengthen the relaxation.

Columns for the vehicle scheduling subproblem are generated by solving shortest path problems

on acyclic graphs, however, the pricing problem for the crew scheduling subproblem is modeled

as a resource constrained shortest path problem which is solved by a dynamic programming

algorithm.

8 Markó Horváth, Tamás Kis

Haase et al. (2001) propose another exact solution approach for the single-depot case. In their

view each driver duty must start and end in the depot. Their crew-based mathematical model

is a multicommodity flow formulation that relies on a so-called driver network structure. Side

constraints are used to guarantee that an optimal compatible vehicle schedule could be derived.

That formulation uses a set of path flow variables for drivers and only one additional variable

to count vehicles. They propose a branch-and-price algorithm, where cutting planes are added

to the master problem to reinforce linear relaxations throughout the search-tree. Each pricing

problem is transformed into a shortest path problem with resource constraints and solved by a

dynamic programming algorithm.

Laurent and Hao (2008) consider a situation where all vehicles are parked in the same depot,

however, the vehicles may belong to different categories. Thus, their case is more general than a

single-depot case, but more special than the general multiple-depot case which we consider in this

paper. They also use simplified crew constraints in contrast to Rule 7, e.g., they have restrictions

only for the spread and working times. Their formulation relies on a constraint satisfaction and

optimization model, and they apply a heuristic greedy randomized adaptive search procedure to

solve the problem.

3.3.2 Multiple-depot case

Gaffi and Nonato (1999) introduce the integrated problem for the multiple-depot case. However,

their approach is developed for the extra-urban mass transit setting, where drivers are virtually

tied to their vehicles. Hence, for example, they assume that a driver is assigned to the same

vehicle during the whole duty, and all pieces of work start and end in the depot. Their heuristic

procedure is based on column generation in combination with Lagrangian relaxation.

Huisman (2004) and Huisman et al. (2005) propose the first general approaches for the

multiple-depot case. Huisman (2004) explicitly introduces Rules 1, 3, 4, 5, 6, and Rule 2 is

applied in his mathematical formulation to reduce the number of constraints. That formula-

tion complies also with Rules 7, 8 and 9. Huisman (2004) and Huisman et al. (2005) extend

the modeling and solution approaches of Freling et al. (2003) and Haase et al. (2001) for the

multiple-depot case. That is, they use a multicommodity flow formulation for the vehicle sche-

duling part which is based on connection-based networks, and additional constraints are used to

link duty and flow variables. In the first phase of their solution approach they calculate a lower

bound on the optimum using a column generation algorithm where the master problem is solved

with Lagrangian relaxation by a subgradient algorithm. For generating duties they apply a two-

step procedure similar to that of Freling et al. (1995a), that is, they generate pieces of work with

shortest path algorithms, while duties are generated by a simple enumerating procedure. Feasible

solutions are obtained in the second phase. Huisman (2004) and Huisman et al. (2005) propose

an alternative formulation obtained from the previous one containing only variables related to

Integrated multiple-depot vehicle and crew scheduling 9

crew duties. However, additional constraints are added to count the number of vehicles and to

consider fixed vehicle costs. They apply a solution approach similar to the one for the previous

formulation.

In (Huisman, 2004; Huisman et al., 2005) the authors propose their randomly generated

instances which are widely used in the literature (Borndörfer et al., 2008; Mesquita and Paias,

2008; Mesquita et al., 2009; Steinzen, 2007; Steinzen et al., 2010) and in this paper as well.

Borndörfer et al. (2008) use a modeling approach similar to that of Freling et al. (1995a). Their

solution approach also relies on a Lagrangian relaxation based column generation procedure, but

they use inexact proximal bundle method to solve Lagrangian dual problems. The bundle method

is embedded in a backtracking procedure to produce an integer solution in the second phase.

Mesquita and Paias (2008) propose a modeling approach similar to that of Huisman (2004).

However, there are some fundamental differences between the problem definition of Mesquita and

Paias (2008) and that of Huisman (2004). For example, in (Mesquita and Paias, 2008) the authors

consider each end location of a trip as a potential relief point. Moreover, they allow drivers to

change vehicles whenever there is a relief point, and to use vehicles from any depot, that is,

their model do not comply with Rules 3 and 6. They use a multicommodity flow formulation for

the vehicle scheduling part, and set partitioning/covering formulations for the crew scheduling

part. They apply a price-and-branch algorithm, that is, they solve the LP-relaxation of the

problem with a column generation approach, and if the resulted optimal solution is fractional

they apply a branch-and-bound procedure to obtain feasible integer solution to the problem. The

pricing problems are modeled as resource constrained shortest path problems and are solved by

a dynamic programming algorithm.

Mesquita et al. (2009) propose exact and non-exact branch-and-price procedures for the same

problem definition and formulation as in (Mesquita and Paias, 2008).

Steinzen (2007) and Steinzen et al. (2010) use a similar modeling approach for the multiple-

depot case as in (Huisman, 2004), however, their mathematical formulation is based on time-

space networks. Their Lagrangian relaxation based column generation approach is also similar to

that of Huisman (2004), but in their case pricing problems are modeled by resource constrained

shortest path problems on time-space networks which are solved by a dynamic programming

algorithm. Finally, they devise a heuristic branch-and-price procedure which alternates between

vehicle and crew scheduling to obtain feasible solutions.

Our contributions In this paper we present a novel problem formulation derived from that of

Steinzen et al. (2010). We developed a branch-and-price procedure including (i) an effective

pricing procedure based on that of Freling et al. (1995a) using several acceleration strategies,

(ii) some branching strategies (iii) and a simple primal heuristic. We also present our computa-

tional results compared with other well-known solution approaches.

10 Markó Horváth, Tamás Kis

As we discussed above, several problem definitions have been proposed for the (integrated)

vehicle and crew scheduling problem. Because of the differences between these assumptions, fair

comparisons cannot be established between all approaches. That is, a feasible solution for a given

approach may not be feasible for another one, and vice-versa. As we mentioned in Section 2.1,

our assumptions comply with those of Huisman et al. (2005); Steinzen et al. (2010), however,

they differ from the assumptions of Mesquita and Paias (2008); Mesquita et al. (2009).

4 Problem formulation

In this section we discuss our mathematical formulation for the MDVCSP, and we shortly present

the well-known time-space network structure the formulation bases on. First of all, we remark

that we use the concept of vertex in graph/network terminology, and we use the concept of node

for search-trees.

4.1 Time-space network structure

In a time-space network each vertex represents a (time, space) pair (where space is either a

station or the depot), and arcs represent vehicle movements. In the following we present how we

build a time-space network for a given depot. For a detailed description about building time-space

networks we refer to Kliewer et al. (2006).

For each trip that can be operated from the depot we add four vertices to the network

representing the (departing time, departing station), (arriving time, arriving station), (pull-out

time, depot) and (pull-in time, depot) pairs, respectively. Additionally, we add a trip arc to the

network from the departing vertex to the arriving vertex, and a pull-out arc (pull-in arc) from the

pull-out vertex (arriving vertex) to the departing vertex (pull-in vertex). Of course, if a vertex

or a pull-in/out arc already exists we do not duplicate them (e.g., arriving vertex of trip t3 and

departing vertex of trip t4 are the same in Figure 2).

To represent waiting at a station or in the depot we create for each space its timeline, that

is, we collect all vertices that represent this space and sort them in increasing order according to

their represented time, then we add a waiting arc between consecutive vertices. Let s and t be

the first and last vertex of the timeline of the depot, respectively. We add an extra circulation

arc from t to s. Note that at a station it is sufficient to start that connecting process with the

first vertex that represents arriving event, since there is no reason for a vehicle to wait at a

station until a trip ends there. Moreover, according to Rule 2 we do not connect consecutive

vertices together if the duration of that waiting arc would not be shorter than the duration of

a round trip. As you can see in Figure 2 we do not connect the arriving vertex of trip t1 with

the departing vertex of trip t2 at station C, since there is enough time for a vehicle to perform

a round trip. It is worth mentioning that both of the two waiting arcs are necessary at station

Integrated multiple-depot vehicle and crew scheduling 11

B — as they ensure the connections between trips t2 and t4, and trips t3 and t5, respectively

— however, a vehicle operating trips t2 and t5 can use these arcs to wait in station B instead

of performing a round trip as required by Rule 2. That is why we mentioned that omitting long

arcs is not sufficient to satisfy Rule 2, and that is why we do not strive to satisfy Rule 2 in the

rest of our solution approach.

To represent deadhead movements between stations we add deadhead arcs connecting the

arriving vertex of a trip with the departing vertex of an another trip. One of the most important

properties of time-space networks is that we should not represent all of the deadhead movements

explicitly. For example, in Figure 2 trips t3 and t6 are compatible (i.e., can be performed by the

same vehicle), thus we connect their corresponding arriving/departing vertices with a deadhead

arc. However, trips t2 and t6 are also compatible, but is not necessary to add any deadhead arc

between them, since these can be operated by the same vehicle by using the first waiting arc

and the deadhead arc. Of course, we omit a deadhead arc if it is longer than the corresponding

round trip.

Note that each path from s to t corresponds to a vehicle itinerary (and vice versa), and a

piece of work can be represented as a path between two relief points using nondepot-arcs only.

station A

station B

station C

depot

t1

t2

t3

t4 t5

t6

trip arc

pull-out/in arc

waiting arc

circulation arc

deadhead arc

Fig. 2 Time-space network

4.2 Mathematical formulation

In this section we describe our formulation used in the rest of the paper. But before, we describe

that of Steinzen et al. (2010), from which our formulation will be derived.

4.2.1 The problem formulation of Steinzen et al. (2010)

Let D = {d1, d2, . . . , d|D|} be the set of depots, and T be the set of trips. Let Dd = (V d, Ad) be

the time-space network for depot d ∈ D, and let Ãd ⊂ Ad be the set of nondepot-arcs (i.e., all

arcs but the arcs of the timeline of the depot and the circulation arc). It is worth mentioning

that Ãd is the set of arcs that require both of vehicle and driver activities. Remember that a path

12 Markó Horváth, Tamás Kis

between two vertices that correspond to relief points and using nondepot-arcs only represents

a piece of work. Let Kd be the set of feasible duties that can be operated from depot d ∈ D
and Kd(i, j) ⊆ Kd the set of duties covering arc (i, j) ∈ Ãd. For depot d ∈ D we denote by

Ad(t) ⊆ Ad the set of arcs corresponding to trip t ∈ T . Note that Ad(t) is empty if trip t cannot

be operated from depot d, otherwise it contains a single arc.

Steinzen et al. (2010) use two types of variables. First, they associate a flow variable ydij with

each arc (i, j) ∈ Ad indicating whether that arc is used and assigned to depot d ∈ D. The binary

duty variables xdk (k ∈ Kd) indicate whether duty k is selected for depot d ∈ D.

On the one hand, Steinzen et al. (2010) assign a vehicle cost cdij to each arc (i, j) ∈ Ad. That

is, cdij is the asset cost for using a vehicle if (i, j) is the circulation arc of Dd; cdij is the operation

cost of the represented vehicle movement if (i, j) ∈ Ãd; otherwise cdij is equal to zero. On the

other hand, one could associate a working cost gdij with each arc (i, j) ∈ Ãd. With this, the duty

cost fdk of duty k ∈ Kd is the sum of the fixed driver cost, and the working cost of its pieces of

work. The formulation of Steinzen et al. (2010) is the following:

min
∑
d∈D

∑
(i,j)∈Ad

cdijy
d
ij +

∑
d∈D

∑
k∈Kd

fdkx
d
k (1)

∑
d∈D

∑
(i,j)∈Ad(t)

ydij = 1, ∀ t ∈ T (2)

∑
j:(j,i)∈Ad

ydji −
∑

j:(i,j)∈Ad

ydij = 0 ∀ d ∈ D,∀ i ∈ V d (3)

∑
k∈Kd(i,j)

xdk − ydij = 0 ∀ d ∈ D,∀ (i, j) ∈ Ãd (4)

0 ≤ ydij ≤ udij , ydij ∈ N, ∀ d ∈ D,∀ (i, j) ∈ Ad (5)

xkd ∈ {0, 1}, ∀ d ∈ D,∀ k ∈ Kd. (6)

The objective (1) minimizes the sum of vehicle and crew costs. Constraint set (2) ensures that

the set of trips are partitioned among the depots and each trip is covered by a single vehicle.

Constraints (3) are the flow conservation constraints corresponding to the multicommodity flow

formulation for the vehicle scheduling problem. Constraint set (4) links the vehicle and crew

schedules, that is, each nondepot-arc should be covered by the same number of vehicles and

duties. Constraints (5) ensure that the maximum capacity of flow variables is satisfied. Steinzen

et al. (2010) set udij to 1 on trip arcs (i, j) ∈ Ãd, however, these constraints are redundant

according to (2). They also set udij to 1 on pull-in/out arcs (i, j) ∈ Ãd, which are technical

constraints (note that they use unique pull-in/out arcs for each trip). For all other arcs they use

maximum capacity ud equal to the number of vehicles available in depot d ∈ D.

Integrated multiple-depot vehicle and crew scheduling 13

4.2.2 Our problem formulation

Our mathematical programming formulation is obtained from that of Steinzen et al. (2010)

described above by dropping the redundant and technical capacity constraints from (5), and

eliminating most of the flow variables by substituting them using constraints (4).

However, our formulation can also be interpreted directly from the problem definition. We use

the same notations as before. Further on, let Ād = Ad \ Ãd be the set of depot-arcs (i.e., the arcs

of the timeline of the depot and the circulation arc), and V̄ d ⊂ V d be the set of depot-vertices

of Dd (i.e., vertices of the timeline of the depot). For depot d ∈ D we denote by Kd(t) ⊆ Kd the

set of duties covering trip t ∈ T , furthermore, we denote by Kd
−(i) ⊆ Kd (Kd

+(i) ⊆ Kd) the set

of duties that contain a piece of work starting (ending) in vertex i ∈ V d.

We also use two types of variables. First, we associate a flow variable ydij with each depot-arc

(i, j) ∈ Ād indicating the number of vehicles that cross arc (i, j). To ensure continuous attendance

(Rule 5), and restricted changeover (Rule 6), the second type of our variables combines drivers

and vehicles outside of a depot. Remember that a path between two vertices that correspond

to relief points and using nondepot-arcs only represents a piece of work. From a different angle,

such a path can be considered as a part of some vehicle block, that is why we can handle a piece

of work as a driver-vehicle pair. That is, binary duty variable xdk indicates whether duty k ∈ Kd

is selected for depot d ∈ D, if so, it means that a driver is assigned to duty k and for each piece

of work of the duty a vehicle is assigned.

We also assign vehicle costs cdij to each arc (i, j) ∈ Ad, and a working cost gdij to each

arc (i, j) ∈ Ãd. With this, the driver cost (vehicle cost) of a piece of work is the cost of the

corresponding path according to arc costs gdij (cdij), and the combined duty cost f̃dk of duty

k ∈ Kd is the sum of the fixed driver cost, the vehicle cost of its pieces of work, and the working

cost of its pieces of work. Now, we formulate the MDVCSP as:

min
∑
d∈D

∑
(i,j)∈Ād

cdijy
d
ij +

∑
d∈D

∑
k∈Kd

f̃dkx
d
k (7)

∑
d∈D

∑
k∈Kd(t)

xdk = 1, ∀ t ∈ T (8)

∑
k∈Kd

+(i)

xdk −
∑

k∈Kd
−(i)

xdk = 0, ∀ d ∈ D,∀ i ∈ V d \ V̄ d (9)

∑
(i,j)∈Ād

ydij +
∑

k∈Kd
+(i)

xdk −
∑

(j,i)∈Ād

ydji −
∑

k∈Kd
−(i)

xdk = 0, ∀ d ∈ D,∀ i ∈ V̄ d (10)

0 ≤ ydij , ydij ∈ Z, ∀ d ∈ D,∀ (i, j) ∈ Ād (11)

xkd ∈ {0, 1}, ∀ d ∈ D,∀ k ∈ Kd. (12)

The objective (7) minimizes the sum of vehicle and crew costs, as the fixed asset costs for the

vehicles are built in the first term of (7), and all the other costs are contained in the second

14 Markó Horváth, Tamás Kis

term of (7). Constraint set (8) ensures that each trip is covered by exactly one duty. Constraint

sets (9)–(10) connect flow variables with the vehicle part of duty variables. That is, (9) specifies

for a nondepot-vertex i that the number of pieces of work ending in vertex i (i.e., the number of

vehicles arriving at vertex i) must be equal to the number of pieces of work starting in vertex i

(i.e., the number of vehicles departing from vertex i). Constraint set (10) is analogous for depot-

vertices, but it takes into consideration that vehicles can wait in the depots. Note that flow

variables are implicit integer, that is, they are always integer if duty variables are integer.

It is worth mentioning that in our formulation a duty variable (i.e., the corresponding column)

contains only relevant information about the duty, namely, the start/end vertices of the piece(s)

of work of the duty and the trips covered by the duty, if any. Notice that deadhead routes (e.g.,

routes between two consecutive trips) are not considered by the constraints. Moreover, the rules

concerning the feasibility of duties do not appear explicitly in this formulation, only in the set Kd.

Note that limits on the number of vehicles in depots can be imposed by adding the constraints

ydts ≤ ud to the model, where (t, s) is the circulation arc of the corresponding depot.

By construction, we have the following result.

Proposition 1 Each optimal solution of the formulation (7)–(12) corresponds to an optimal

solution for the MDVCSP, and each optimal solution for the MDVCSP is represented as an

optimal solution for the formulation (7)–(12).

5 Solution approach

In this section we present our solution method for the MDVCSP which is a branch-and-price

procedure to solve master problem (7)–(12). That is, we compute a MIP containing just a few

columns of the master problem (called restricted master problem) and perform a branch-and-

bound procedure such that in each node of the search-tree we may add new columns (i.e., duties)

to the LP-relaxation of the current restricted master problem.

More precisely, we create an initial restricted master problem (described in Section 5.1). We

solve each node LP to optimality, that is, for each node we generate new duties until no one

with a negative reduced cost is left as we describe in Section 5.2. At the root node we apply a

two-stage approach. In the first stage we generate duties that contain one or two pieces of work

starting and ending in the depot, and at the end of this stage we perform a primal solution search

(described in Section 5.4). The reason for this is that with such a column set the constraints (9)–

(10) are easy to satisfy, hence we expect that the search procedure can quickly find a good primal

solution. In the second stage we generate duties without any limitations for their start and end

locations, and we may also perform a primal solution search at the end of the stage. We describe

our branching rules in Section 5.3. Our primary branching strategy is to assign trips to depots,

and we use the SPP-based branching strategy as a secondary rule (if the primary rule failed to

branch), and as a last resort, one may rely on the default branching strategy of the MIP solver.

Integrated multiple-depot vehicle and crew scheduling 15

5.1 Initial restricted master problem

The initial restricted master problem contains all of the flow variables and a set of initial duty

variables that we create by obtaining a feasible solution for the MDVCSP by using a sequential

procedure. That is, we first formulate the MDVSP problem as a minimum cost multicommodity

flow problem on the time-space networks using the given vehicle costs as in (Kliewer et al.,

2006), and solve the MIP model with a standard software. Then, independently for each depot

we create a set-partitioning formulation for the CSP (e.g., Freling et al. (2003)) to assign drivers

to the obtained vehicle schedules. We solve the LP-relaxations of these problems with a column

generation approach similar to the one we discuss in Section 5.2, then we solve the resulting

restricted master problems with branch-and-bound, and use the solutions as initial column set

for the MDVCSP.

Note, that if we failed to obtain feasible integer solution for any of the CSP problems, we

could use fictive columns for the initial restricted master problem penalized by a high cost, or

we could start branch-and-price with an initial restricted master problem containing no duty

variables (see Farkas pricing in Section 5.2.3).

5.2 Pricing variables

Once the corresponding restricted master problem is solved we attempt to price out new variables

(i.e., new duties) by using the dual information of the solution. Let λt (t ∈ T) and µd
i (i ∈ V d,

d ∈ D) be the dual variables associated to constraints (8) and (9)–(10), respectively.

To generate feasible duties we use a two-phase procedure similar to the one proposed by

Freling et al. (1995a), that is, in the first phase we generate a set of feasible pieces by using a

so-called piece generation network, and in the second phase we derive feasible duties. Since we

generate pieces of work and duties independently for each depot, in the rest of this section we

fix a depot d ∈ D.

5.2.1 Generation of pieces of work

For each depot we derive a piece generation network from the corresponding time-space network

consisting of all original arcs but depot-arcs, that is, the piece generation network for depot d

is D̂d = (V d, Ad \ Ād). We recall that each path in D̂d between two vertices that correspond

to relief points represents a piece of work. For a piece of work p let A[p] and T [p] be the set of

arcs and the set of trips covered by p, respectively, and let s[p] and e[p] be the start and the

end vertex of p, respectively. The combined cost h of a piece of work p is the sum of vehicle and

driver costs for all arcs covered by the piece of work, formally

h(p) :=
∑

ij∈A[p]

cdij + gdij .

16 Markó Horváth, Tamás Kis

The reduced cost ĥ of a piece of work p (and the reduced cost of the corresponding path) is

ĥ(p) := h(p)− µd
s[p] + µd

e[p] −
∑

t∈T [p]

λdt .

For the sake of efficiency, we do not generate all of the pieces of work, but obtain a set of

feasible pieces by considering only the minimum reduced cost path between any two vertices

in D̂d. To do this, we predetermine a processing order of vertices of D̂d (which is a topological

order in case the network is acyclic). By that, for any given node we can determine the shortest

path arborescence in O(|A|) time, thus we can determine the minimum reduced cost path for

each pair of vertices in O(|A||V |) total time.

At the root node of the search-tree it is clear that considering only the minimum reduced

cost paths is sufficient in the sense that we will find at least one piece of work with negative

reduced cost, if any. However, when branching decisions are to be considered this strategy may

fail to find appropriate pieces. For example, assume that piece of work p corresponding to the

minimum reduced cost path between vertices u and v is infeasible according to some of the

branching decisions, but there is an another u–v path with negative reduced cost that admits a

piece of work p′ which is feasible according to all of the branching decisions. It is clear that we

will fail to find the feasible piece of work p′, since it is overshadowed by the infeasible piece of

work p. That is why we should take branching decisions into consideration during piece or/and

duty generation. We postpone the details until Section 5.3.

5.2.2 Generation of duties

Duties consisting of one piece of work can be easily generated by iterating over the previously

obtained piece of work set. To generate combined duties (i.e., duties consisting of two pieces of

work) we apply a straightforward pairing procedure using proper data structures and several

acceleration techniques in order to avoid enumerating inherently infeasible pairs.

Once a set of pieces of work is obtained we build two piece handler data structures: A and

B. In piece handler A (B) we create a time block for each time t in the time horizon containing

pieces of work with sign-on start time (start time) t, and pieces of work in a block are sorted in

increasing order according to their end time (sign-off end time).

In the following we describe how we generate feasible duties for a given combined duty type

using the piece handlers. Briefly stated, we choose a piece of work as the first piece of the potential

duty, then we enumerate the appropriate second pieces. The sketch of the procedure is presented

in Algorithm 1.

For a combined duty type D let Dmin
start and Dmax

start be the earliest and latest sign-on start time,

Dmax
end be the latest sign-off end time, Dmin

piece be the minimum piece length, Dmin
break and Dmax

break be

the minimum and maximum break length, Dmax
working be the maximum working time, Dmax

spread be

Integrated multiple-depot vehicle and crew scheduling 17

Algorithm 1 Generating combined duties
1: procedure generateDuties(A,B, D)

2: ESf ← earliest sign-on start time for the first piece

3: LSf ← latest sign-on start time for the first piece

4: for bf in ESf . . . LSf do

5: for pf in A[bf] do

6: ESs ← earliest start time for the second piece

7: LSs ← latest start time for the second piece

8: for bs in ESs . . . LSs do

9: LEs ← latest sign-off end time for the second piece

10: for ps in B[bs] do

11: if (pf , ps) is feasible according to type D and

(pf , ps) is feasible according to branching decisions and

(pf , ps) has negative reduced cost then

12: save duty (pf , ps)

13: end if

14: end for

15: end for

16: end for

17: end for

18: end procedure

the maximum spread time. For a given piece of work p denote with pet its end time; with pwt its

working time; and with pson and psoff its sign-on start time and sign-off end time, respectively.

First, we calculate an earliest and latest sign-on start time for the first piece of work (ESf

and LSf , respectively) using the properties of duty type D. For example, we can simply use the

trivial values ESf = Dmin
start and LSf = Dmax

start, however we can easily strengthen LSf such that:

LSf = min
{
Dmax

start, D
max
end −Dmin

spread

}
.

After these values are calculated we iterate over the appropriate blocks of piece handler A (de-

noted by A[·]), and over the pieces of these blocks (line 4–5). For the actual first piece pf we

calculate an earliest and latest start time for the potential second piece of work (ESs and LSs,

respectively). Again, we can use trivial bounds where we only take break length into considera-

tion: ESs = petf + Dmin
break and LSs = petf + Dmax

break, however we can use stricter bound for LSs,

that is

LSs = min
{
petf +Dmax

break, D
max
end −Dmin

piece

}
.

Then, we iterate over the appropriate blocks of piece handler B, and over the pieces of these

blocks (line 8 and 10). However, we can avoid to iterate over all the seconds pieces that constitute

infeasible duty with the actual first piece. That is, we calculate a latest sign-off end time LEs

for the potential second piece, and if psoffs > LEs holds for the current second piece ps then we

can stop to iterate over the pieces of the current block, since pieces are sorted in increasing order

18 Markó Horváth, Tamás Kis

according to their sign-off end time. For example, we can use the following value:

LEs = min
{
Dmax

end , bs + (Dmax
working − pwt

f), Dmax
spread − psonf

}
,

where bs is the common start time of pieces of work in the current block. Once we have a piece

of work pair (pf , ps) we check whether it constitutes a feasible duty according to the given type,

if so, we can check whether it is feasible according to branching decisions.

5.2.3 Farkas pricing

After branching is performed the restricted master problem of a new node may be infeasible due

to fixings, but it does not mean that the master problem of the node is infeasible, so the node

can not be pruned.

Again, one could resolve this issue by adding fictive columns to the LP penalized by a high

cost, but instead, in such cases we perform a so-called Farkas pricing. That is, if the restricted

master problem is infeasible we can obtain dual Farkas multipliers λ̄t and µ̄d
v associated with

constraints (8) and (9)–(10), respectively, to prove infeasibility according to the Farkas-Lemma.

To make restricted master problem feasible we have to find a new column that violates this

proof. It can be shown that this pricing problem is similar to the pricing problem for reduced

cost pricing, but now we use a zero objective function and the dual Farkas multipliers instead

of the original objective function and the dual solution. Thus, we can use the pricing method

discussed in Section 5.2 with a minor modification to make the restricted master problem feasible.

5.3 Branching strategies

Now, we present our strategies to perform branch in a node where the optimal solution for the

final restricted master problem is fractional. Remark, that flow variables ydij are implicit integer,

hence it is sufficient to consider only duty variables xdk in a branching rule.

5.3.1 Assign trips to depots

Our first branching strategies can be used in the multiple-depot case when there exists a trip

that belongs to several depots in the current LP-relaxation. Formally, consider a fractional so-

lution (x̄, ȳ) to the relaxation of the corresponding restricted master problem, and let Cx̄(t, d)

denote the commitment of trip t to depot d, that is

Cx̄(t, d) :=
∑

k∈Kd(t)

x̄dk.

If 0 < Cx̄(t, d) < 1 holds for a trip t and a depot d it means that trip t is committed to

multiple depots according to solution x̄. In this case we choose a trip t̄ and a depot d̄ such that

(t̄, d̄) = arg min(t,d) |Cx̄(t, d)− 0.5|. We have two possibilities to perform branch on pair (t̄, d̄):

Integrated multiple-depot vehicle and crew scheduling 19

1. Partitioning: We create exactly two branches. We require to cover trip t̄ by a duty from

depot d̄ on the one branch, and to cover by a duty from a depot that differs from d̄ on the

other branch. Formally, ∑
k∈Kd̄(t̄)

xd̄k = 1, binding branch (13)

∑
k∈Kd̄(t̄)

xd̄k = 0, banning branch. (14)

2. Splitting: Assume that trip t̄ can be performed from depots di1 , di2 , . . . , diq . We create q bran-

ches, and force to cover trip t̄ by a duty from depot dij on the jth branch (1 ≤ j ≤ q). Formally,

for the jth branch we have ∑
k∈K

dij (t̄)

x
dij

k = 1. (15)

Note that these two branching rules are the same if we have exactly two depots.

As we remarked above, these branching rules are not complete in the sense that they cannot

be used if each trip t is committed for a single depot, i.e., Cx̄(t, d) = 1 holds for some depot d.

However, handling these branching rules is quite easy without adding any inequalities of (13)–

(14) or (15) to the problem. That is, on the one hand we can easily fix the appropriate existing

variables to zero according to the corresponding branch. On the other hand, if a trip is forbidden

to cover by a duty from the depot for which we want to price out new duties, we just erase the

corresponding trip-arc from the piece generation network of the depot, and the pricing procedure

described in Section 5.2 can be used without any modification.

5.3.2 SPP-based branching

This branching strategy is based on the branching scheme proposed by Ryan and Foster (1981) for

problems with set partitioning structure, i.e., for MIPs of the form min{wx | Ax = 1, x ∈ {0, 1}n},
where A is a m×n matrix with 0/1 columns representing some subsets of a set. Their branching

scheme uses the observation that in every fractional solution of the LP-relaxation, there exists

a pair of rows (ai·, aj·) with 0 <
∑

c∈C(i,j) xc < 1, where C(i, j) is the set of columns covering

both constraints ai· and aj·, i.e., C(i, j) = {c ∈ {1, . . . , n} | aic = ajc = 1}. Their branching rule

creates two branches: one forcing to cover rows ai· and aj· by the same column, and another one

forcing to cover the two rows by different columns.

In our branching strategy, we branch on duty variables utilizing the set partitioning structure

of constraints (8). Consider a fractional solution (x̄, ȳ) to the relaxation of the corresponding

restricted master problem, and for trips t, u and depot d let

Bx̄(t, u; d) :=
∑

k∈Kd(t,u)

x̄dk,

20 Markó Horváth, Tamás Kis

where Kd(t, u) ⊂ Kd is the set of duties covering both trips t and u. We select a pair of trips (t̄, ū)

and a depot d̄ to branch on such that (t̄, ū; d̄) = arg min(t,u;d) |Bx̄(t, u; d)− 0.5|. The branching

scheme requires to cover trips t̄ and ū by the same duty from depot d on one branch and not to

cover by the same duty from depot d on the other. Formally,∑
k∈Kd̄(t̄,ū)

xdk = 1, same branch (16)

∑
k∈Kd̄(t̄,ū)

xdk = 0, diff branch. (17)

Note that this branching rule can be used for both of the single-depot and the multiple-depot

case if there exists trips t, u and a depot d such that 0 < Bx̄(t, u; d) < 1.

Again, we do not intend to add any of the inequalities (16)–(17) to the restricted master

problem, however, handling this branching rule in the pricing procedure is a bit cumbersome as

we explain in the following. Assume that in a node we would like to generate new feasible duties

for a given depot, but a branching decision requires not to cover trips t and u by the same duty.

In addition, assume that a combined duty consisting of pieces of work pt and pu has a negative

reduced cost, where pieces of work pt and pu contain trips t and u, respectively. This duty is

infeasible according to the branching decision, and it may shadow a feasible duty with negative

reduced cost. Thus we have to ensure that pieces of work (i) containing trip t, (ii) not containing

trip t, (iii) containing trip u, (iv) not containing trip u are also generated. These terms are going

to be more complicated in nodes with higher depth. In order to resolve this difficulties we apply

a two-step procedure. That is, in the first step we generate duties as we described before until

no more duties with negative reduced cost are left. If in the last pricing round we do not refuse

any duties according to branching decisions, we can stop (i.e., the node is solved to optimality),

since no overshadowed duties with negative reduced costs are left. Otherwise, in the second step

we choose a duty which was refused in the last pricing round and generate all duties that may

be overshadowed by this duty. More specifically, assume that the refused duty consists of pieces

of work p1 and p2 where pi refers to an ui–vi path for i = 1, 2, respectively. We construct a piece

of work set S by generating all pieces of work that correspond to an ui–vi path (i = 1, 2). To

generate duties in the second step we use the piece of work set corresponding to the shortest

paths along with the piece of work set S. We repeat this procedure until no duties with negative

reduced cost are left or refused.

5.3.3 Default 0-1 branching

As we mentioned before, when all of our strategies failed to branch, as a last resort we rely on

the default branching strategy of the MIP solver. That is, a fractional duty variable xdk is chosen,

and it is forced to 0 on the left branch and 1 on the right branch. In the former case we need to

ensure that this forbidden duty will be not regenerated during the pricing procedure. Thus, for

Integrated multiple-depot vehicle and crew scheduling 21

each node we maintain a list of forbidden duties and once a potential duty occurs in the pricing

procedure (see Algorithm 1, line 11) we check whether it is in the list, and if so, we reject that

duty since it is infeasible according to branching decisions.

5.4 Primal solution search

Any time during the solution method we can perform an obvious primal solution search approach,

that is we solve problem (7)–(12) with the current column set. However, such a problem can be

hard to solve, so it is not worth to apply this method frequently.

6 Computational results

In this section we present our computational results.

6.1 Test environment and implementation

All the computational experiments were performed on a workstation with 4GB RAM, and XEON

X5650 CPU of 2.67 GHz, and under Linux operating system. All experiments were run using a

single thread only.

Our solution method was implemented in C++ programming language using SCIP Optimi-

zation Suite (version 3.1.1) (Achterberg, 2009) as a branch-and-price framework. We also used

FICO Xpress Optimization Suite (version 28.01.09) (FICO, 2008) callable library (Xpress) to

solve certain phases. To handle graphs and to perform network algorithms we used the LEMON

C++ library (version 1.3.1) (Dezső et al., 2011).

6.2 Instances and problem parameters

We tried to comply with Steinzen et al. (2010) as much as possible, that is, we used the same

instance set, the same duty parameters and the same costs as in (Steinzen et al., 2010).

We used the randomly generated problem instances of Huisman available in (Huisman, 2003)

and described in (Huisman et al., 2005). These instances are classified into two classes according

to travel speed (i.e., length of the trips), that is, class A consists of shorter trips than class B,

hence vehicle blocks and duties cover more trips, thus instances in class A can be considered

more difficult. In class A for each n = 80, 100, 160, 200, 320 there are 10 instances (one trip-file

and one deadhead-file) containing n trips and requiring 4 depots and 4 or 5 stations.

In accordance with Huisman (2004) we used five types of duties with the properties described

in Table 2. A tripper duty consists of one piece of work with length between 30 minutes and

22 Markó Horváth, Tamás Kis

Table 2 Properties of duty types

Tripper Early Day Late Split

Min Max Min Max Min Max Min Max Min Max

start time 8:00 13:15

end time 16:30 18:14 19:30

piece length 0:30 5:00 0:30 5:00 0:30 5:00 0:30 5:00 0:30 5:00

break length - - 0:45 0:45 0:45 1:30

spread time 9:45 9:45 9:45 12:00

working time 9:00 9:00 9:00 9:00

5 hours, while the combined duties (early, day, late, split) contains exactly two pieces of work

separated by a break. For duties starting (ending) in a depot we assessed a sign-on (sign-off)

time of 10 (of 5) minutes, and for duties starting (ending) at a station we assessed a sign-on

(sign-off) time of 15 minutes plus the deadhead time between the start (end) station and the

depot. Start and end times in Table 2 correspond to the sign-on start and sign-off end time of

the duty, respectively.

We assigned a fixed cost of 1000 for each vehicle and a cost of 1 for each minute a vehicle is

outside of the depot. We assigned a fixed cost of 1000 for each duty and a cost of 0.1 for each

minute a driver is working.

6.3 Running details

We solved problems with gap limit set to 0.5%, and time limit set to 20× |T | seconds, i.e., the

solution process could be stopped due to three reasons: (i) the best solution was proven to be

optimal, (ii) the gap limit was reached (i.e., the relative gap between the lower bound and the

current best solution was at most 0.5%), (iii) the time limit was reached (i.e., the execution time

exceeded 20× |T | seconds).

As we mentioned in Section 5, at the root node we used a two-stage approach for generating

duties. At the end of the first stage we applied our primal heuristic, that is, we called Xpress

with time limit set to 60 seconds to solve the current restricted master problem. At the end of

the second stage we applied this heuristic only if the number of variables did not exceed 30 000.

6.4 Experiments

6.4.1 Branching rules

In these experiments we aimed to compare the two branching strategies described in Section 5.3.1.

In order to make a more extensive experiment we matched all of the trip-files with all of the

Integrated multiple-depot vehicle and crew scheduling 23

Table 3 Summary of experiments on branching rules

Problem Rule Status Bound Best solution Time

O G T Lower Upper Gap v d v+d

80A Partitioning 9 50 41 34 772.2 35 410.8 1.8% 9.5 18.5 28.0 755.6

Splitting 8 49 43 34 769.4 35 481.4 2.0% 9.5 18.6 28.0 777.5

100A Partitioning 6 49 45 41 624.0 42 464.2 2.0% 11.4 22.1 33.5 1136.6

Splitting 5 43 52 41 621.7 42 533.2 2.2% 11.4 22.1 33.6 1205.4

deadhead-files for these tests, i.e., we used 10 × 10 = 100 problem instances. In Table 3 we

present our results where we indicate the summarized solution status (these are, the number of

instances that solved to optimality (O), the number of instances where gap limit was reached

(G), the number of instances where solving process was stopped due to time limit (T)); the best

lower (Lower) and upper bound (Upper) and the corresponding gap (Gap) which is calculated

as 100 × (Upper − Lower)/Lower; the number of vehicles (v) and the number of drivers (d) in

the best solution; and the execution time in seconds (Time).

Both for 80-trip and 100-trip instances, the partitioning based branching strategy gave the

best results in terms of execution time, and the quality of solutions as well. Moreover, more

instances were solved within the time limit with that rule. According to these results, in the

following experiments we used the partitioning rule as the primary branching strategy.

6.4.2 Evaluation of the integrated method

In Tables 4 and 5 we present the evaluation of our integrated method on 80-trip and 100-trip

instances, respectively. In these table we indicate the solution status (optimal: the instance is

solved to optimality; gap/time limit: the solving process is stopped due to the gap/time limit was

reached); the lower bound at the root node (Root), and at the end of the procedure (Global);

the value of the best solution (Upper bound); the corresponding gap (Gap) which is calculated

as 100× (Upper bound−Global)/Global; and the execution time in seconds (Time).

We can see that 2 out of ten 80-trip instances are solved to optimality, and 3 other instances

are solved with gap less than 0.5%, moreover, the average gap of the 80-trips instances is 2.5%.

For the 100-trip instances we also solved 2 out of ten instances to optimality, and 4 more instances

are solved with gap limit, while the average gap is 2.2%.

We also remark that most of the computation time was spent at the root node for finding

the optimal LP solution which sometimes required the generation of thousands of columns. In

the other tree nodes, finding the optimum solution took much less effort in general.

24 Markó Horváth, Tamás Kis

Table 4 Summary of the evaluation of the integrated method on problem set 80A

Problem Status Lower bound Upper bound Gap Time

Root Global

1 gap limit 31 619.6 31 619.6 31 702.3 0.3% 88.6

2 time limit 27 497.8 27 498.3 29 079.7 5.8% 1602.5

3 optimal 32 750.7 32 750.7 32 750.7 0.0% 87.1

4 time limit 34 162.4 34 169.8 34 922.2 2.2% 1600.6

5 gap limit 32 175.4 32 175.4 32 188.6 0.0% 112.0

6 time limit 31 393.9 31 407.5 32 879.4 4.7% 1602.6

7 gap limit 36 133.7 36 133.7 36 266.6 0.4% 115.9

8 time limit 43 017.6 43 040.9 44 419.3 3.2% 1601.1

9 optimal 34 638.4 34 638.4 34 643.9 0.0% 734.0

10 time limit 42 583.6 42 619.4 45 716.3 7.3% 1601.3

average 34 597.3 34 605.4 35 456.9 2.5% 914.6

Table 5 Summary of the evaluation of the integrated method on problem set 100A

Problem Status Lower bound Upper bound Gap Time

Root Global

1 optimal 49 183.8 49 183.8 49 183.8 0.0% 390.8

2 time limit 41 311.8 41 326.8 43 552.4 5.4% 2002.3

3 time limit 35 896.6 35 910.3 38 519.5 7.3% 2000.8

4 gap limit 40 217.2 40 217.2 40 255.5 0.1% 175.1

5 optimal 45 424.8 45 424.8 45 424.8 0.0% 344.5

6 gap limit 35 543.3 35 543.3 35 543.8 0.0% 230.0

7 time limit 36 242.3 36 257.3 37 231.3 2.7% 2003.2

8 gap limit 45 403.5 45 403.5 45 453.4 0.1% 237.1

9 time limit 50 566.0 50 572.6 53 708.4 6.2% 2002.7

10 gap limit 33 912.2 33 912.2 34 001.5 0.3% 683.7

average 41 370.2 41 375.2 42 287.4 2.2% 1007.0

6.4.3 Comparison of methods

In Table 6 we summarize our comparison of sequential and integrated methods, while the detailed

results of our experiments can be found in Tables 7 and 8. Method Seq. refers to the sequential

approach we used to obtain in the initial restricted master problem, while the next two methods

refer to our integrated approach. In case of method Int. (first) we interrupted the solution pro-

cedure right after we found a feasible solution to the problem. In case of method Int. (timelimit)

we interrupted our procedure only when the time limit was reached (or we found a good enough

solution). Method Int. (Steinzen et al., 2010) refers to the integrated approach of Steinzen et al.

(2010) which was tested on a Dell OptiPlex GX620 personal computer with an Intel Pentium IV

Integrated multiple-depot vehicle and crew scheduling 25

Table 6 Comparing sequential and integrated methods

Problem Method v d v+d Cost Time

80A Seq.a 9.2 24.3 33.5 40 588.0 1.2

Int. (first)a 9.6 18.6 28.2 35 668.5 4.1

Int. (timelimit)a 9.5 18.5 28.0 35 456.9 914.6

Int. (Steinzen et al., 2010)b 9.2 19.1 28.2 235.0

100A Seq. 11.0 28.2 39.2 47 792.7 1.6

Int. (first) 11.4 22.0 33.4 42 428.5 31.8

Int. (timelimit) 11.4 21.9 33.3 42 287.4 1007.0

Int. (Steinzen et al., 2010) 11.0 22.7 33.7 369.0

a tested on a workstation with 4GB RAM, and XEON X5650 CPU of 2.67 GHz,

and under Linux operating system.
b tested on a Dell OptiPlex GX620 personal computer with an Intel Pentium IV

3.4 GHz processor and 2 GB of main memory under Windows XP.

3.4 GHz processor under Windows XP. In this table we indicate the number of vehicles (v), the

number of drivers (d), the cost of the best solution (Cost); and the execution time in seconds

(Time). Note that in Table 6 in case of method Int. (Steinzen et al., 2010) we do not indicate

the solution costs, and in Tables 7 and 8 we do not indicate the results of method Int. (Steinzen

et al., 2010) since these are not provided in (Steinzen et al., 2010). We contacted the authors,

however, they could not provide these detailed results.

On the one hand, our experiments re-proved that one can obtain better solutions using the

integrated approach instead of the sequential method. On the other hand, observe that we could

improve on the first integer solution if we run the procedure until a time limit or a gap limit is

reached, however, the average improvement over the first integer feasible solution is 1.1% in the

80-trip case, and 0.3% in the 100-trip case.

One can see that our integrated method found solutions with fewer vehicles plus drivers than

Steinzen et al. (2010). Both for 80-trip and 100-trip instances, our method found the first integer

solution quickly in 4.1 and 31.8 seconds, respectively, and on average it was at least as good as

the final solution of Steinzen et al. (2010). We also note that Steinzen et al. (2010) presented

computational results for instances with n = 160, 200, 320, 400, 640, as well, however, solving

instances with 160 trips took already about 1600 seconds on average, while 640-trip instances

required about 16 hours. We also made experiments on the 160-trip instances, however, we were

not able to solve any of these instances neither to optimality, nor with gap limit, in fact, the

column generation procedure at the root node required more than 3 hours on average. Our best

solutions yielded 11.5% gap on average, and the average number of vehicles and drivers used in

these solutions (v + d = 50.5) is worse than that of Steinzen et al. (2010) (v + d = 46.6).

26 Markó Horváth, Tamás Kis

Table 7 Comparing sequential and integrated methods on problem set 80A

Problem Method v d v+d Cost Time

1 Seq. 9 21 30 36 525.2 0.4

Int. (first) 9 16 25 31 702.3 1.4

Int. (timelimit) 9 16 25 31 702.3 88.6

2 Seq. 7 19 26 31 747.5 2.4

Int. (first) 8 15 23 29 079.7 10.7

Int. (timelimit) 8 15 23 29 079.7 1602.5

3 Seq. 9 28 37 43 155.6 0.4

Int. (first) 9 17 26 32 750.7 1.2

Int. (timelimit) 9 17 26 32 750.7 87.1

4 Seq. 9 22 31 38 551.5 0.6

Int. (first) 9 18 27 34 922.2 2.7

Int. (timelimit) 9 18 27 34 922.2 1600.6

5 Seq. 9 29 38 43 364.7 1.4

Int. (first) 9 17 26 32 188.6 1.6

Int. (timelimit) 9 17 26 32 188.6 112.0

6 Seq. 8 21 29 35 747.4 2.3

Int. (first) 9 17 26 32 879.4 4.9

Int. (timelimit) 9 17 26 32 879.4 1602.6

7 Seq. 10 25 35 41 946.5 0.9

Int. (first) 10 19 29 36 283.1 0.9

Int. (timelimit) 10 19 29 36 266.6 115.9

8 Seq. 11 28 39 48 293.9 0.6

Int. (first) 11 24 35 44 419.3 1.4

Int. (timelimit) 11 24 35 44 419.3 1601.1

9 Seq. 9 22 31 38 355.7 1.8

Int. (first) 10 19 29 36 742.9 13.6

Int. (timelimit) 9 18 27 34 643.9 734.0

10 Seq. 11 28 39 48 191.6 1.0

Int. (first) 12 24 36 45 716.3 2.7

Int. (timelimit) 12 24 36 45 716.3 1601.3

average Seq. 9.2 24.3 33.5 40 588.0 1.2

Int. (first) 9.6 18.6 28.2 35 668.5 4.1

Int. (timelimit) 9.5 18.5 28.0 35 456.9 914.6

7 Conclusions

In this paper we have devised an exact method for solving the integrated multiple-depot vehicle

and crew scheduling problem optimally. Our computational results show that with limited com-

putational resources (computation time + single CPU thread), nearly optimal schedules can be

Integrated multiple-depot vehicle and crew scheduling 27

Table 8 Comparing sequential and integrated methods on problem set 100A

Problem Method v d v+d Cost Time

1 Seq. 13 30 43 53 098.0 1.2

Int. (first) 13 27 40 50 243.2 62.1

Int. (timelimit) 13 26 39 49 183.8 390.8

2 Seq. 11 29 40 48 977.1 0.9

Int. (first) 12 22 34 43 552.4 61.5

Int. (timelimit) 12 22 34 43 552.4 2002.3

3 Seq. 9 25 34 41 973.9 0.8

Int. (first) 11 19 30 38 519.5 62.2

Int. (timelimit) 11 19 30 38 519.5 2000.8

4 Seq. 11 28 39 47 042.1 1.1

Int. (first) 11 21 32 40 255.5 4.3

Int. (timelimit) 11 21 32 40 255.5 175.1

5 Seq. 12 29 41 50 366.5 1.1

Int. (first) 12 24 36 45 630.5 4.1

Int. (timelimit) 12 24 36 45 424.8 344.5

6 Seq. 10 23 33 40 405.2 1.3

Int. (first) 10 18 28 35 579.0 2.4

Int. (timelimit) 10 18 28 35 543.8 230.0

7 Seq. 10 23 33 40 954.1 3.2

Int. (first) 10 19 29 37 231.3 65.5

Int. (timelimit) 10 19 29 37 231.3 2003.2

8 Seq. 12 29 41 50 224.6 1.1

Int. (first) 12 24 36 45 563.4 3.5

Int. (timelimit) 12 24 36 45 453.4 237.1

9 Seq. 13 34 47 57 771.2 2.8

Int. (first) 14 28 42 53 708.4 45.4

Int. (timelimit) 14 28 42 53 708.4 2002.7

10 Seq. 9 32 41 47 113.8 2.6

Int. (first) 9 18 27 34 001.5 7.1

Int. (timelimit) 9 18 27 34 001.5 683.7

average Seq. 11.0 28.2 39.2 47 792.7 1.6

Int. (first) 11.4 22.0 33.4 42 428.5 31.8

Int. (timelimit) 11.4 21.9 33.3 42 287.4 1007.0

found for problems with 80–100 trips and 4 depots. In order to increase the problem size, one

possible direction is to exploit multiple CPU cores/threads, but for that, one needs a parallel

branch-and-price solver. Currently, the parallel branch-and-price implementation of SCIP is at

28 Markó Horváth, Tamás Kis

the conceptual stage. Another option would be to get lower bounds faster, for which further

acceleration strategies are needed.

Acknowledgements This work has been supported by the OTKA grant K112881, and by the GINOP-2.3.2-15-

2016-00002 grant of the Ministry of National Economy of Hungary. The authors are grateful to the developers of

the SCIP Optimization Suite for their support.

References

T. Achterberg. SCIP: solving constraint integer programs. Mathematical Programming Compu-

tation, 1(1):1–41, 2009. http://mpc.zib.de/index.php/MPC/article/view/4.

M. Ball, L. Bodin, and R. Dial. A matching based heuristic for scheduling mass transit crews

and vehicles. Transportation Science, 17(1):4–31, 1983.

J. Balogh and J. Békési. Driver scheduling for vehicle schedules using a set covering approach:

a case study. In Proceedings of the 10th International Conference on Applied Informatics,

Accepted, 2014.

J. Békési, A. Brodnik, M. Krész, and D. Pash. An integrated framework for bus logistics mana-

gement: Case studies. Logistik Management, pages 389–411, 2009.

A. A. Bertossi, P. Carraresi, and G. Gallo. On some matching problems arising in vehicle

scheduling models. Networks, 17(3):271–281, 1987.

L. Bodin, B. Golden, and A. Assad. Routing and scheduling of vehicles and crews: the state of

the art. Computers & Operations Research, 10(2):63–211, 1983.

R. Borndörfer, A. Löbel, and S. Weider. A bundle method for integrated multi-depot vehicle and

duty scheduling in public transit. Computer-Aided Systems in Public Transport, pages 3–24,

2008.

S. Bunte and N. Kliewer. An overview on vehicle scheduling models. Public Transport, 1(4):

299–317, 2009.

K. Darby-Dowman, J. Jachnik, R. Lewis, and G. Mitra. Integrated decision support systems for

urban transport scheduling: Discussion of implementation and experience. In Computer-Aided

Transit Scheduling, pages 226–239. Springer, 1988.

B. Dezső, A. Jüttner, and P. Kovács. LEMON–an open source C++ graph template library.

Electronic Notes in Theoretical Computer Science, 264(5):23–45, 2011.

J. Falkner and D. Ryan. Express: Set partitioning for bus crew scheduling in christchurch. In

Computer-Aided Transit Scheduling, pages 359–378. Springer, 1992.

FICO. Xpress optimization suite, 2008.

M. Fischetti, S. Martello, and P. Toth. The fixed job schedule problem with spread-time con-

straints. Operations Research, 35(6):849–858, 1987.

Integrated multiple-depot vehicle and crew scheduling 29

M. Fischetti, S. Martello, and P. Toth. The fixed job schedule problem with working-time

constraints. Operations Research, 37(3):395–403, 1989.

R. Freling, C. G. E. Boender, and J. M. P. Paixão. An integrated approach to vehicle and crew

scheduling. Technical Report 9503/A, Econometric Institute, Erasmus University Rotterdam,

Rotterdam, The Netherlands, 1995a.

R. Freling, J. M. P. Paixão, and A. P. Wagelmans. Models and algorithms for vehicle scheduling.

Econometric Institute, Erasmus University Rotterdam Rotterdam, The Netherlands, 1995b.

R. Freling, A. P. Wagelmans, and J. M. P. Paixão. Models and algorithms for single-depot vehicle

scheduling. Transportation Science, 35(2):165–180, 2001.

R. Freling, D. Huisman, and A. P. Wagelmans. Models and algorithms for integration of vehicle

and crew scheduling. Journal of Scheduling, 6(1):63–85, 2003.

C. Friberg and K. Haase. An exact branch and cut algorithm for the vehicle and crew scheduling

problem. In Computer-Aided Transit Scheduling, pages 63–80. Springer, 1999.

A. Gaffi and M. Nonato. An integrated approach to ex-urban crew and vehicle scheduling. In

Computer-Aided Transit Scheduling, pages 103–128. Springer, 1999.

V. Gintner, N. Kliewer, and L. Suhl. A crew scheduling approach for public transit enhanced

with aspects from vehicle scheduling. In Computer-Aided Systems in Public Transport, pages

25–42. Springer, 2008.

K. Haase, G. Desaulniers, and J. Desrosiers. Simultaneous vehicle and crew scheduling in urban

mass transit systems. Transportation Science, 35(3):286–303, 2001.

D. Huisman. Random data instances for multiple-depot vehicle and crew scheduling, 2003.

http://people.few.eur.nl/huisman/instances.htm.

D. Huisman. Integrated and Dynamic Vehicle and Crew Scheduling. PhD thesis, Erasmus School

of Economics (ESE), 2004.

D. Huisman, R. Freling, and A. P. Wagelmans. Multiple-depot integrated vehicle and crew

scheduling. Transportation Science, 39(4):491–502, 2005.

N. Kliewer, T. Mellouli, and L. Suhl. A time–space network based exact optimization model

for multi-depot bus scheduling. European Journal of Operational Research, 175(3):1616–1627,

2006.

B. Laurent and J.-K. Hao. Simultaneous vehicle and crew scheduling for extra urban transports.

In New Frontiers in Applied Artificial Intelligence, pages 466–475. Springer, 2008.

M. Mesquita and A. Paias. Set partitioning/covering-based approaches for the integrated vehicle

and crew scheduling problem. Computers & Operations Research, 35(5):1562–1575, 2008.

M. Mesquita, A. Paias, and A. Resṕıcio. Branching approaches for integrated vehicle and crew

scheduling. Public Transport, 1(1):21–37, 2009.

I. Patrikalakis and D. Xerocostas. A new decomposition scheme of the urban public transport

scheduling problem. In Computer-Aided Transit Scheduling, pages 407–425. Springer, 1992.

30 Markó Horváth, Tamás Kis

A.-S. Pepin, G. Desaulniers, A. Hertz, and D. Huisman. Comparison of heuristic approaches

for the multiple depot vehicle scheduling problem. Technical report, Econometric Institute

Research Papers, 2006.

D. M. Ryan and B. A. Foster. An integer programming approach to scheduling. Computer

scheduling of public transport urban passenger vehicle and crew scheduling, pages 269–280,

1981.

D. Scott. A large scale linear programming approach to the public transport scheduling and

costing problem. In Computer Scheduling of Public Transport 2, pages 473–491. Elsevier,

1985.

I. Steinzen. Topics in integrated vehicle and crew scheduling in public transit. PhD thesis,

University of Paderborn, 2007.

I. Steinzen, V. Gintner, L. Suhl, and N. Kliewer. A time-space network approach for the integrated

vehicle-and crew-scheduling problem with multiple depots. Transportation Science, 44(3):367–

382, 2010.

E. Tosini and C. Vercellis. An interactive system for extra-urban vehicle and crew scheduling

problems. In Computer-Aided Transit Scheduling, pages 41–53. Springer, 1988.

