
Computing Symbolic Steady States of Boolean Networks

Hannes Klarner Alexander Bockmayr Heike Siebert

Matheon preprint

http://opus4.kobv.de/opus4-matheon

Preprint April 2014

Computing Symbolic Steady States of Boolean
Networks

Hannes Klarner, Alexander Bockmayr and Heike Siebert

Freie Universität Berlin, FB Mathematik und Informatik
Arnimallee 6, 14195 Berlin, Germany

Hannes.Klarner@FU-Berlin.de

Abstract. Asymptotic behavior is often of particular interest when an-
alyzing asynchronous Boolean networks representing biological systems
such as signal transduction or gene regulatory networks. Methods based
on a generalization of the steady state notion, the so-called symbolic
steady states, can be exploited to investigate attractor properties as well
as for model reduction techniques conserving attractors. In this paper, we
propose a novel optimization-based method for computing all maximal
symbolic steady states and motivate their use. In particular, we add a
new result yielding a lower bound for the number of cyclic attractors and
illustrate the methods with a short study of a MAPK pathway model.

1 Introduction

Boolean network models have long since proved their worth in the context of
modeling complex biological systems [1]. Of particular interest are number and
size of attractors as well as their location in state space since these proper-
ties often relate well to important biological behavior. Different approaches are
available to solve several variations of this problem (see e. g. [2] and references
therein).

In this paper, we utilize the notion of symbolic steady state [3] and a gen-
eralization called seeds which represent dynamically closed subspaces of state
space, i.e., subspaces that no trajectory can leave. This property can clearly be
exploited for model reduction and attractor analysis as has been illustrated in
[3]. However, related methods can only be useful in practice if identification of
such symbolic steady states is not based on comprehensive state space analysis.

After providing the relevant terminology, we motivate our research by pre-
senting some theoretical results concerning model reduction and number of at-
tractors. We then introduce the prime implicant graph as an object capturing the
essential dynamical information of a network and a related optimization-based
approach allowing for efficient computation of maximal symbolic steady states.
Lastly, we provide a short illustration using a MAPK pathway model.

1.1 Background

We consider variables from the Boolean domain B = {0, 1} where 1 and 0 repre-
sent the truth values true and false. A Boolean expression f over the variables

V = {v1, . . . , vn} is defined by a formula over the grammar

f ::= 0 | 1 | v | f | f1 · f2 | f1 + f2

where v ∈ V signifies a variable, f the negation, f1 · f2 the conjunction and
f1 + f2 the (inclusive) disjunction of the expressions f, f1 and f2. Given an
assignment s : V → B, an expression f can be evaluated to a value f(s) ∈ B
by substituting the values s(v) for the variables v ∈ V . If f(s) = f(t) for
all assignments s, t : V → B, we say f is constant and write f = c, with
c ∈ B being the constant value. A Boolean network (V, F) consists of n variables
V = {v1, . . . , vn} and n corresponding Boolean expressions F = {f1, . . . , fn}
over V . In this context, an assignment s : V → B is also called a state of the
network and the state space S = S(V) consists of all possible 2n states. The
expressions F can be thought of as a function F : S → S governing the network
behavior. The image F (s) of a state s under F is defined to be the state t that
satisfies t(vi) = fi(s). The steady states or fixpoints S = S(V, F) of a Boolean
network (V, F) are all states s ∈ S that satisfy F (s) = s. To illustrate these
concepts we introduce a running example in Fig. 1.

f1 = v1 + v2

f2 = v1 · v4
f3 = v1 · v4
f4 = v3

f1(1101) = 1 + 1 = 1

f2(1101) = 1 · 1 = 1

f3(1101) = 1 · 1 = 0

f4(1101) = 0 = 1

F (1101) = 1101

F (0000) = 0001

S = {1101}

Fig. 1. (left) An example Boolean network with 4 variables. (middle) An example for
how the Boolean expressions are evaluated for a given state s = 1101. We specify states
by a sequence of n values that correspond to the variables in the order given in V , i.e.,
s = 1101 should be read as s(v1) = 1, s(v2) = 1, s(v3) = 0 and s(v4) = 1. (right) An
example of the image F (s) of two states 1101 and 0000 where the first is a steady state
and the second is not.

2 Methods

2.1 Symbolic Steady States and Seeds

A partial or symbolic state of the network (V, F) is an assignment p : U → B
where U ⊆ V is a subset of variables. The set PS = PS(V, F) denotes all
possible 3n partial states of V . We denote the domain U of a partial state p
by Up. The partial state p ∈ PS with Up = ∅ is called the empty partial state
and denoted by p = ∅. A partial state p references the subspace S[p] := {s ∈
S | ∀v ∈ Up : s(v) = p(v)} of S. The size |p| of a partial state p is defined to
be |p| := |Up|. Two partial states p, q ∈ PS are said to be consistent if for all
v ∈ Up ∩ Uq : p(v) = q(v). With the ordering p ≤ q iff p, q are consistent and

Up ⊆ Uq, PS becomes a partially ordered set. We define the union p t q of two
consistent partial states p, q by Uptq := Up ∪ Uq and p t q(v) := p(v), if v ∈ Up,
and p t q(v) := q(v), otherwise. Every ∅ 6= p ∈ PS has a unique decomposition
into |p| partial states of size 1. For example, 021314 = 02 t 13 t 14.

Analogous to the evaluation f(s) of an expression f at a state s we define the
expression f [p] obtained by substituting the values p(v) for the variables v ∈ Up

in f . The image F [p] of a partial state under F = {f1, . . . , fn} is the partial
state q : Uq → B defined by Uq := {vi ∈ V | fi[p] is constant} and q(vi) := fi[p],
for all vi ∈ Uq. If Uq = ∅, we have F [p] = ∅.

Like in [3], a symbolic steady state is a partial state p that satisfies F [p] = p,
and a seed is a partial state p that satisfies F [p] ≥ p. As we will see, these
conditions ensure that the network components that belong to Up stay fixed
when regarding the network dynamics in the subspace S[p]. We write Seeds =
Seeds(V, F) := {p ∈ PS | F [p] ≥ p} and SymS = SymS(V, F) := {p ∈
PS | F [p] = p}. For our running example, these concepts are illustrated in
Fig. 2. Note that seeds are a relaxation of symbolic steady states and S ⊆
SymS ⊆ Seeds holds, i.e., every steady state is a symbolic steady state and
every symbolic steady state is a seed. The motivation for this terminology is
that for every seed p there is a unique corresponding symbolic steady state q
obtained by repeatedly applying F [·] until F k[p] = F k+1[p] =: q. This process
is also called percolation. Note that if p is a seed, then F [p] is also a seed (since
for any r ∈ PS with r ≥ p and any expression f , if f [p] = c then f [r] = c).

p := 11 q := 0102 r := 1314 s := 0214

f1[p] = 1 f1[q] = 0 f1[r] = v1 + v2 f1[s] = v1 + 0
f2[p] = 1 · v4 f2[q] = 0 f2[r] = v1 · 1 f2[s] = v1 · 1
f3[p] = 0 f3[q] = 0 · v4 f3[r] = v1 · 1 f3[s] = v1 · 1
f4[p] = v3 f4[q] = v3 f4[r] = 0 f4[s] = v3
F [p] = 1103 > p F [q] = 0102 = q F [r] = 04 6≥ r F [s] = ∅

Fig. 2. We specify partial states by a sequence of |p| values whose subscript corresponds
to the index of the variable, i.e., 1103 means Up = {v1, v3} and p(v1) = 1, p(v3) = 0.
Here, p is a seed but not a symbolic steady state because F [p] > p, whereas q is a
symbolic steady state because F [q] = q and r and s are neither seeds nor symbolic
steady states. The example network has 4 seeds and 3 symbolic steady states, namely
Seeds = {∅, 11, 0102, 1101} and SymS = {∅, 0102, 1101}.

2.2 Applications

The state transition graph of a Boolean network (V, F) is the directed graph
(S,→) where S is the state space of (V, F) and the transitions → ⊆ S × S are
obtained from F via a given update rule. We mention two update rules here, the
synchronous rule and its transition relation �F ⊆ S×S, and the asynchronous

rule and its transition relation ↪→F ⊆ S×S. The former is defined by s�F t iff
F (s) = t. To define ↪→F we need the Hamming distance ∆ : S × S → {1, . . . , n}
between states which is given by ∆(s, t) := |{v ∈ V | s(v) 6= t(v)}|. We define
s ↪→F t iff either s = t and F (s) = s or ∆(s, t) = 1 and ∆(t, F (s)) < ∆(s, F (s)).

Since (S,→) is a directed graph, the standard digraph terminology applies. A
path in (S,→) is a sequence of states (s1, . . . , sl+1) with si → si+1, for 1 ≤ i ≤ l.
When Boolean networks are used to model the dynamics of a system, paths are
also called trajectories. An non-empty set R ⊆ S is a trap set if for every r ∈ R
and s ∈ S with r → s it holds that s ∈ R. An inclusion-wise minimal trap
set is also called an attractor of (V, F). Note that every trap set contains at
least one minimal trap set and therefore at least one attractor. We distinguish
two types of attractors depending on their size. If X ⊆ S is an attractor and
|X| = 1 then X is a steady state and if |X| > 1 we call it a cyclic attractor. As
mentioned before, a symbolic state p references the subspace S[p]. A central idea
for various applications is given in the next result, which immediately follows
from the properties of p and the definition of ↪→F and �F .

Theorem 1. If p ∈ Seeds, then S[p] is a trap set in (S, ↪→F) and in (S,�F).

Proof. Assume p ∈ Seeds but S[p] is not a trap set. Then there is a r → s such
that r ∈ S[p] and s 6∈ S[p]. But then ∃vi ∈ Up : fi(r) 6= p(vi) which contradicts
p ≤ r and fi[p] = p(vi).

Application 1: Model Reduction Let R ⊆ S be a trap set. The partial state
p := stab(R) ∈ PS obtained from R by Up := {v ∈ V | ∀s, t ∈ R : s(v) = t(v)}
and p(v) := s(v), for v ∈ Up and s ∈ R arbitrary, is called the induced stable state
of R. Note that, in general, the induced stable state of a trap set references a
superset of R, i.e., S[stab(R)] ⊇ R. A natural model reduction technique is based
on the observation that for any trap set R ⊆ S, the transitions of any trajectory
with an initial state s1 ∈ R are governed by the reduced system (Vp, Fp) with
p := stab(R) and

Vp := {v ∈ V | v 6∈ Up}, Fp := {fi[p] | fi ∈ F, vi ∈ Vp} .

Intuitively speaking, the network (Vp, Fp) is obtained by ”dividing out” the par-
tial state p that describes the steady variables in R, see [3] for more details and
Fig. 3 for an application to the running example.

Since seeds reference trap sets and since p ∈ Seeds implies that stab(S[p]) =
p, they naturally lend themselves for the above mentioned model reduction tech-
nique. The largest reduction in terms of state space cardinality is then obtained
by considering those symbolic steady states that are maximal w. r. t. the partial
order ≤, since they yield the smallest subspaces S[p].

Application 2: Cyclic Attractors The set max(SymS) of maximal symbolic
steady states w.r.t. ≤ has the property that every p ∈ max(SymS) with |p| < n
is such that S[p] contains only cyclic attractors.

f3 = v4

f4 = v3

(a) Reduction by p = 0102

f2 = v4

f3 = 0

f4 = v3

(b) Reduction by q = 11

0000 0001

01010100

0010 0011

01110110

1000 1001

11011100

1010 1011

11111110

S[0102] S[11]

S[1101]S[∅]

(c) The state transition graph (S, ↪→F)

Fig. 3. (a,b) The trap set reduction applied to the 2 seeds p = 0102 and q = 11 of
the running example. (c) The asynchronous state transition graph (S, ↪→F). The 2
attractors are highlighted with red states and transitions. Rounded rectangles indicate
the 4 trap sets that correspond to the 4 seeds of (V, F). Note that each trap set contains
an attractor and that p = 0102, which is maximal w.r.t. ≤ and satisfies |p| = 2 < n, is
such that S[p] contains only cyclic attractors. q = 11 on the other hand is not maximal
and so S[q] may, as is the case here, not contain a cyclic attractor.

Theorem 2. |{p ∈ max(SymS) | |p| < n}| is a lower bound on the number of
cyclic attractors of (V, F).

Proof. Let p ∈ max(SymS) and |p| < n. By Theorem 1, S[p] is a trap set and
therefore contains an attractor X. If X = {x} then x is a steady state such that
p ≤ x, which contradicts the maximality of p.

Furthermore, since stab(S[p]) = p for p ∈ SymS, we may conclude that
some v ∈ V \ Ustab(S[p]) must be involved in the cyclic behavior. In our running
example, the partial state p = 0102 is a maximal symbolic steady state and
therefore contains only cyclic attractors, see Fig. 3.

Note that S ⊆ max(Seeds) = max(SymS) ⊆ SymS. Calculating all maxi-
mal symbolic steady states thus yields, in addition to the information on cyclic
attractors, also all steady states.

2.3 The Prime Implicant Graph

In this section we propose a method for computing the seeds of (V, F). The
idea is to translate the task into a hypergraph problem in which every seed is
represented by a set of arcs that satisfy certain constraints. As we will show,
those arc sets can be computed with existing solvers for integer linear programs.

We consider a directed hypergraph in which each arc corresponds to a min-
imal size implicant of fi or fi, for some vi ∈ V . Minimal size implicants were
named prime implicants by Quine in [4]. We define the following slight variation:
For c ∈ B, a c-prime implicant of a non-constant f is a partial state p ∈ PS
satisfying f [p] = c, and f [q] 6= c for all q < p. For a constant fi = c we define

that p with Up := {vi} and p(vi) = c is its single prime implicant. In the running
example, 1112 satisfies f1[1112] = 1. But it is not a 1-prime implicant of f1,
because 11 < 1112 and f1[11] = 1. The set of all prime implicants of a Boolean
network is denoted by

PI = PI(V, F) := {(p, c, vi) ∈ PS × B× V | p is a c-prime implicant of fi}.

The prime implicant graph is the directed hypergraph (N ,A) where N =
N (V) := {p ∈ PS | |p| = 1} consists of all size 1 partial states (correspond-
ing to literals in propositional logic). The arcs A = A(V, F) ⊂ 2N × 2N are
defined by the mapping α : PI → 2N × 2N , (p, c, vi) 7→ ({p1, . . . , p|p|}, {q}),
where

(1) p = p1 t · · · t p|p| is the unique decomposition of p into size 1 partial states,
(2) q ∈ PS is defined by Uq := {vi} and q(vi) := c.

The prime implicant graph has exactly one arc for every prime implicant, i.e.,
A := {α(p, c, vi) | (p, c, vi) ∈ PI}. The head of an arc a = ({p1, . . . , pk}, {q}) is
denoted by H(a) := q, and its tail by T (a) = p1 t · · · t pk. The prime implicant
graph of the running example is given in Fig. 4.

2.4 Prime Implicants and Seeds

Now we establish a relationship between subsets A ⊆ A and the seeds of a
network (V, F). To do so we need the notions of consistency and stability. A
subset A ⊆ A is consistent if for all a1, a2 ∈ A the partial states H(a1) and
H(a2) are consistent. If A = {a1, . . . , am} ⊆ A is consistent, the union H(a1) t
· · ·tH(am) is called the induced partial state of A and denoted by H(A). For the
special case A = ∅ we define H(A) := ∅. A subset A ⊆ A is stable if for every
a ∈ A there is a consistent subset Ba ⊆ A such that T (a) ≤ H(Ba). Intuitively,
in this case the requirement T (a) for each implication a ∈ A to become effective
is met by some assumptions Ba. The stable and consistent subsets of A for the
running example and their induced partial states are given in Fig. 4. The central
idea for the computation of Seeds is given in the next result:

Theorem 3. p ∈ Seeds if and only if there is a stable and consistent A ⊆ A
such that H(A) = p.

Proof. The statement of the theorem is trivially true for p = ∅ and A = ∅.
Hence, assume ∅ 6= p. Let vi ∈ Up. Since F [p] ≥ p it follows that fi[p] = p(vi)

and hence that there is a p(vi)-prime implicant qi of fi that satisfies qi ≤ p. The
set A := {α(qi, p(vi), vi) | vi ∈ Up} is, by definition, consistent and satisfies
H(A) = p. But it is also stable because ∀a ∈ A : T (a) ≤ p. Let ∅ 6= A ⊆ A be
stable and consistent. Then ∀vi ∈ UH(A) : ∃a ∈ A : H(a) = H(A)(vi). Hence
F [H(A)] ≥ H(A) and H(A) ∈ Seeds.

Corollary 1. Inclusion-wise maximal stable and consistent arc sets induce max-
imal seeds and therefore maximal symbolic steady states.

PI A
(11, 1, v1) a1

(12, 1, v1) a2

(0102, 0, v1) a3

(1114, 1, v2) a4

(01, 0, v2) a5

(04, 0, v2) a6

(0114, 1, v3) a7

(11, 0, v3) a8

(04, 0, v3) a9

(03, 1, v4) a10

(13, 0, v4) a11

(a)

v1
0

1

v2
0

1

v3
0

1

v4
0

1

a3

a1 a2

a5

a6a4

a9

a8

a7

a11

a10

(b)

A = ∅, B = {a3, a5}, C = {a1},
D1 = {a1, a4, a8, a10}
D2 = {a2, a4, a8, a10}
D3 = {a1, a2, a4, a8, a10}

(c)

Fig. 4. (a) The complete set PI of prime implicants of the example network, given in
(p, c, vi) notation. (b) The prime implicant graph (N ,A) of the running example. The
8 nodes are grouped into 4 pairs 0i, 1i that belong to the same variable vi. Gray discs
represent the groups and are not elements of N . Nodes that correspond to positive
literals are drawn in black and negated literals in white. Hyperarcs are represented by
several arcs having a common arrowhead. The colors indicate 3 different stable and
consistent arc sets. (c) The stable and consistent arc sets induce the following seeds:
H(A) = ∅, H(B) = 0102, H(C) = 11 and for i = 1, 2, 3 : H(Di) = 1101.

A special case of seeds was first studied in [5, 6], where the authors describe
self-freezing circuits that rely on canalizing effects. They occur if, in our termi-
nology, there is a stable and consistent arc set ∅ 6= A that contains exclusively
size 1 prime implicants, i.e., for all a ∈ A we have |T (a)| = 1.

2.5 Computation of the Stable and Consistent Arc Sets

We propose an optimization-based method for finding all maximal stable and
consistent arc sets in (N ,A). Integer linear programming (ILP) has previously
been suggested as a method for solving problems arising in the study of Boolean
networks, see e.g. [7] and references therein. As a preliminary step, the prime
implicants PI have to be enumerated. This can be achieved with any implemen-
tation of the Quine-McCluskey algorithm, see e. g. [8]. Although for sufficiently

complex expressions fi ∈ F the enumeration of PI itself can be a hard problem,
we found that the complexity of F in typical biological models is low enough for
this step to be negligible.

We now formulate a 0-1 optimization problem to compute maximal stable
and consistent arc sets A ⊆ A. For every arc a = (p, c, vi) ∈ PI we introduce a
variable xa ∈ {0, 1} indicating whether or not a is a member of the set A ⊆ A
that we want to compute. We denote these variables by X := {xa | a ∈ PI}.
In addition, we introduce for every vi ∈ V two variables y0i , y

1
i ∈ {0, 1} that

indicate whether vi is in the domain of the induced partial state and, if so, what
value it takes. We denote them by Y := {yci | c ∈ B, vi ∈ V }. For any c ∈ B,
we require yci = 1 if and only if vi ∈ UH(A) and H(A)(vi) = c. To encode this
requirement, we use the logical constraints

yci ⇐⇒
∨

a∈Bc
i

xa, for all c ∈ B, vi ∈ V. (C1)

Here, Bc
i := {a ∈ A | {vi} = UH(a), H(a)(vi) = c} denotes the arcs inducing vi to

take the value c, and⇒ and ∨ are the standard logical connectives for implication
and disjunction. Next, we want to enforce the set A := {a ∈ A | xa = 1} to
be stable and consistent. To achieve this, we add the following constraints (C2)
resp. (C3):

y0i ∨ y1i , for all vi ∈ V, (C2)

xa ⇒ y
T (a)(vi)
i , for all a ∈ A, vi ∈ UT (a). (C3)

To find a first maximal stable and consistent set A ⊆ A, we solve the 0-1 opti-
mization problem (here

∑
denotes addition)

maximize
∑
xa∈X

xa, such that (C1), (C2), (C3). (0-1)

All maximal seeds can be enumerated by iteratively solving problem (0-1).
Whenever a new solution z : X∪Y → {0, 1} is found, we add a so-called no-good
cut, which prevents this solution from being computed again. For example, we
can use the constraint∨

xa∈G(z)

xa, where G(z) := {xa ∈ X | z(xa) = 0}. (C4)

To solve problem (0-1) in practice, we reformulated the constraints
(C1)-(C4) as linear 0-1 inequalities. A Python implementation us-
ing the integer programming solver Gurobi [9] is available at
http://sourceforge.net/projects/boolnetfixpoints.

3 Application to a MAPK pathway model

We computed max(SymS) for a network that models the influence of the MAPK
pathway on cancer cell fate decisions, published in [10]. It consists of 53 variables

that represent signaling proteins, genes and phenomenological components like
proliferation or apoptosis. We found that there are 18 maximal symbolic steady
states, 12 of which are steady states. Hence, following Application 2 in Sect. 2.2,
there are at least 6 cyclic attractors whose properties can be comprehensively
investigated using the 6 corresponding reduced models. An illustration of the
largest maximal symbolic steady state, and therefore the smallest corresponding
sub-model, is given in Fig. 3.

EGFR_stimulus FGFR3_stimulus TGFBR_stimulus DNA_damage

TGFBR

GADD45TAK1

ATM

TAOK

SMAD

MDM2p53

MTK1

p38

PTEN

JNK

MAX
ATF2

JUN

AP1

p14

PKC

PLCG

RAS MAP3K

FRS2

FGFR3EGFR

GAB1

SPRY

PI3K
p21

PDK1

AKT

p70

ERK

GRB2

SOS

RAF

MEK1

RSK ELK1

PPP2CA

DUSP1

FOXO3BCL2

MYC

MSK FOS

CREB

APOPTOSISPROLIFERATION GROWTH ARREST

Fig. 5. A representation of the largest of the 6 maximal symbolic steady states p that
satisfy |p| < n. Here, |p| = 45 and the remaining sub-model (Vp, Fp) contains therefore
53 − 45 = 8 = |Vp| variables. The underlying interaction graph is taken from [10].
Black and white components belong to Up, with the values 1 and 0 respectively. Red
components belong to the remaining sub-model.

4 Discussion

In this paper we propose a way of determining seeds and symbolic steady states of
interest, e.g., in the context of model reduction and for estimating the number
of cyclic attractors. We provide an optimization-based method for computing
seeds exploiting the prime implicant graph. This graph captures properties of
fundamental importance for the network behavior, allowing to analyze certain
aspects of asymptotic dynamics without having to calculate the state transition
graph. Here, we focused on maximal seeds and symbolic steady states, however,

we find that minimal seeds also carry interesting information. We currently work
on extending our methods exploiting this potential of the prime implicant graph
and seeds in general, particularly for studying questions related to reachability
and to decision making.

The optimization-based method for finding maximal symbolic steady states
can be extended from Boolean to multi-valued networks by generalizing the
notion of prime implicants from Boolean to multi-valued expressions. Theorem 1
holds not only for synchronous or asynchronous but for any update rule (see [11]
for other update rules) and also stochastic simulations. Just as the steady states
of a dynamic Boolean network are independent of the update rule, so are the
seeds and symbolic steady states.

Regarding the efficiency of the ILP method, we have performed computa-
tional experiments with random Boolean networks that indicate good scalabil-
ity, yielding results in minutes for networks with restricted maximal in-degree
and hundreds of variables. We plan to extend this evaluation and to investigate
avenues to increase the efficiency, e.g., by considering not only ILP but also
pseudo-Boolean or SAT solvers for handling the problem.

References

1. Wang, R.S., Saadatpour, A., Albert, R.: Boolean modeling in systems biology: an
overview of methodology and applications. Physical biology 9(5) (2012) 055001

2. Dubrova, E., Teslenko, M.: A SAT-based algorithm for finding attractors in syn-
chronous boolean networks. IEEE/ACM Transactions on Computational Biology
and Bioinformatics (TCBB) 8(5) (2011) 1393–1399

3. Siebert, H.: Analysis of discrete bioregulatory networks using symbolic steady
states. Bulletin of Mathematical Biology 73 (2011) 873–898

4. Quine, W.V.: The problem of simplifying truth functions. The American Mathe-
matical Monthly 59(8) (1952) 521–531

5. Fogelman-Soulie, F.: Parallel and sequential computation on boolean networks.
Theoretical computer science 40 (1985) 275–300

6. Kauffman, S.A.: The origins of order: Self organization and selection in evolution.
Oxford University Press, USA (1993)

7. Akutsu, T., Yang, Z., Hayashida, M., Tamura, T.: Integer programming-based
approach to attractor detection and control of boolean networks. IEICE TRANS-
ACTIONS on Information and Systems 95(12) (2012) 2960–2970

8. Dick, R.: Quine-McCluskey two-level logic minimization method.
http://pypi.python.org/pypi/qm/0.2 (2008) Online, accessed in April-2014.

9. Gurobi Optimization, I.: Gurobi optimizer reference manual (2014)
10. Grieco, L., Calzone, L., Bernard-Pierrot, I., Radvanyi, F., Kahn-Perlès, B., Thief-

fry, D.: Integrative modelling of the influence of mapk network on cancer cell fate
decision. PLoS computational biology 9(10) (2013) e1003286

11. Gershenson, C.: Updating schemes in random boolean networks: Do they really
matter. In: Artificial Life IX Proceedings of the Ninth International Conference
on the Simulation and Synthesis of Living Systems, MIT Press (2004) 238–243

