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Figure 1. Interactive colorization using multimaps for defining regions: a) original gray scale image (luminance channel) , b) Multimap and

c) Colored image in which the chrominance channels are provided by the user. The colorization was achieved with the method presented

in this paper.

Abstract

We propose a gray scale image colorization method

based on a Bayesian segmentation framework in which the

classes are established from scribbles made by a user on the

image. These scribbles can be considered as a multimap

(multilabels map) that defines the boundary conditions of

a probability measure field to be computed in each pixel.

The components of such a probability measure field express

the degree of belonging of each pixel to spatially smooth

classes. In a first step we obtain the probability measure

field by computing the global minima of a positive definite

quadratic cost function with linear constraints. Then color

is introduced in a second step through a pixelwise opera-

tion. The computed probabilities (memberships) are used

for defining the weights of a simple linear combination of

user provided colors associated to each class. An advan-

tage of our method is that it allows us to re–colorize part or

the whole image in an easy way, without need of recomput-

ing the memberships (or α–channels).

1. Introduction

Colorization is a technique of transferring color to

grayscale, sepia or monochromatic images. This technique

dates from the beginning of the last century when color was

partially transferred to black and white films. However, it

was in the 1970’s when Markle and Hunt introduced, for the

first time, a colorization technique aided by computers [1].

The principal shortcoming of colorization is the hard in-

tensive human labor and the consuming time. Because of

that, at the very beginning of the 1990’s the film coloriza-

tion industry practically stopped until the DVD age when

there has been a renaissance of this technique.

Conceptually, the colorization begins with the segmenta-

tion of the image, or a sequence of images, in regions with

an assumed same color. Afterwards, it comes the process

of assigning color to each detected region. This approach

requires achieving a robust segmentation that is in itself a

challenging problem.

In spite of the fact that many colorization algorithms

have been developed in recent years [2, 3, 4, 5, 6, 7, 8,

9, 10, 11, 12, 13], only a few of them [6, 14, 15] use the



idea of segmentation. The reason seems to be, for color-

ing purposes, that regions to be segmented come from dif-

ferent groups: faces, coats, hair, forest, landscapes and,

up to now, there is no proficient method that automati-

cally discerns among this huge range of features. In the

absence of an automatic general purpose segmentation al-

gorithm, other alternatives have appeared in recent years.

Techniques that use human interaction (semi-automatic al-

gorithms) have been introduced as part of vision algorithms.

These interactive techniques have been largely used in seg-

mentation [16, 17, 18, 19, 20] and many other computer vi-

sion tasks; for instance in matting [13, 21, 22], in coloriza-

tion [3, 12, 13, 15] and others. Until recent time, the com-

puter based image segmentation methods were limited to

expensive hardware and therefore, only available for a few

specialists and scientific or medical applications. Nowa-

days, with the explosion of digital imaging devices and the

computational power of personal computers, the use of so-

phisticated methods in commercial processing software has

become popular.

In interactive colorization procedures, one uses a gray

scale image as the luminance channel and computes the

chrominance for each pixel by propagating the colors from

user labeled pixels. The process is illustrated in Fig. 1. In

this paper, we propose an interactive colorization method

based on a Bayessian framework for image segmentation in

regions with similar color. Also, our method can success-

fully be used either for recolorization or for colorization of

isolated objects.

This paper is organized as follows: in section 2 we give

some principal ideas used for solving the colorization task.

Section 3 is devoted to theoretical aspects from which the

proposed method is based. In section 4 we explain the de-

tails of the proposed colorization method. Section 5 shows

some experimental results and finally, in the last section, we

present our conclusions.

2. Previous work

Many colorization algorithms have been proposed in the

last 6 years [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]. One

can find two main groups in colorization methods. In the

first group one can set those methods in which the color is

transferred from an image source to a greyscale using some

corresponding criterion. In the second group, one can set

semiautomatic algorithms that propagate the color informa-

tion provided by a user in some regions of the image.

Reinhard et al. stated the basis for transferring color be-

tween digital images [2]. Afterwards, Welsh et al. extended

the previous method for colorizing greyscale images using

a scan–line matching procedure [3]. In that technique, the

chromaticity channels are transferred from the source im-

age to the target image by finding regions that best match

their local mean and variance of the luminance channel, al-

though the method accepts other statistics. In this work,

both images, target and source, are transformed to the lαβ
color space. This space was created for minimizing the cor-

relation between color components: l represents the lumi-

nance component and α, β represent the chrominance com-

ponents, see Ref. [23]. In order to improve the last method,

Blasi and Recupero proposed a sophisticated data structure

for accelerating the matching process: the antipole tree [3].

Chen et al., in Ref. [6], proposed a combination of com-

position [24] and colorization [3] methods. First, they ex-

tract objects from the image to be colorized by applying a

matting algorithm, then each object is colorized using the

method proposed by Welsh et al., and in the last step, they

make a composition of all objects to obtain the final col-

orized image. Tai et al. treat the problem of transferring

color among regions of two natural images [14]. The first

step of this approach is to make a probabilistic segmenta-

tion of the two images (source and target) in regions with

soft boundaries using a modified EM algorithm for segmen-

tation, thereafter they construct a color mapping function

from the source image to the target image.

Automatic color transfer methods will equally transfer

color between regions with similar luminance features (gray

mean level, standard deviation or higher–level pixel context

features, as in [25]). This may not work in many cases. For

instance, consider the simple case in which the gray mean

is the used feature, then a grass field and a sky region may

have similar gray scale values, but different colors. There-

fore, in general, colorization requires high–level knowledge

that can only be provided by the final user: a human.

On the other hand, Levin et al. presented a novel in-

teractive method for colorization based on an optimization

procedure [8]. Their proposal consists of the minimization

of a free-parameter cost functional. The algorithm prop-

agates the color information from pixels colored by hand

to the rest of the image by using an anisotropic diffusion

process. They assume that neighboring pixels with simi-

lar gray levels should have similar colors. The solution is

achieved in the color space Y uv. Assuming g a gray scale

image they set the luminance channel of the colored image

as Y = g and the chrominance components u and v are

computed with a diffusion scheme by minimizing

J(u, v) =
∑

x∈Ω

(

u(x) −
∑

y∈Nx

ωxyu(y)
)2

+
∑

x∈Ω

(

v(x) −
∑

y∈Nx

ωxyv(y)
)2

; (1)

where x ∈ Ω ⊂ L denotes a pixel position: x = [x1, x2] for

a static image and x = [x1, x2, t] for the case of video col-

orization, Ω is the region to colorize in the volumetric regu-

lar lattice L and Nx denotes the set of the first neighbors of

x: Nx = {y ∈ Ω : |x− y| = 1}. The procedure propagates



the color information from a set of pixels colored by hand,

Ω̄ ⊂ L, with Ω̄ ∩ Ω = ∅. The gray scale image ωxy are

weights close to zero if the pixels x and y lay at different

sides of an intensity edge. They use, for instance, as the

weight function: ωxy ∝ exp
[

−γ (g(x) − g(y))
2
]

, where

the weights satisfy the relation:
∑

y∈Nx

ωxy = 1, see [15].

In this paper we present an interactive colorization tech-

nique based on an optimal efficient segmentation. Differ-

ently from the segmentation procedures proposed in Refs.

[4, 11, 13, 14], we used a segmentation procedure based

on the minimization of a quadratic cost function with well-

known convergence and numerical stability properties.

3. Coloring based on Multiclass Image Seg-

mentation

Now we consider the segmentation case in which some

pixels in the region of interest, Ω, are labeled by hand in an

interactive process. Assuming K = {1, 2, . . . , K} the class

label set, we define the pixels set (region) that belongs to

the class k as Rk = {x : R(x) = k}, and

R(x) ∈ {0} ∪ K, ∀x ∈ Ω, (2)

is the label field (class map or multimap) where

R(x) = k > 0 indicates that the pixel x is assigned to

the class k and R(x) = 0 if the class pixel is unknown and

needs to be estimated. Let g be an intensity image such that

g(x) ∈ t, where t = {t1, t2, . . . , tT } are discrete intensity

values, then the density distribution for the intensity classes

are empirically estimated by using a histogram technique.

That is, let ĥk(t) be the smoothed normalized histograms

(
∑

t ĥk(t) = 1) of the intensity values, then the likelihood

of the pixel x to a given class k is computed with:

vk(x) =
ĥk(x) + ǫ

∑

j(ĥj(x) + ǫ)
, ∀k > 0; (3)

with ǫ = 1 × 10−4. Then the task is to compute the prob-

ability measure field α at each pixel such that αk(x) is the

probability of the pixel x to be assigned to the class k. Such

a probability vector field α must satisfy:

K
∑

k=1

αk(x) = 1, ∀x ∈ Ω; (4)

αk(x) ≥ 0, ∀k ∈ K,∀x ∈ Ω; (5)

α(x) ≈ α(y), ∀x ∈ Ω,∀y ∈ Nx. (6)

Note that (4) and (5) constraint α to be a probability mea-

sure field and (6) to be spatially smooth. The soft constraint

(6) is enforced by introducing a Gibbsian prior distribution

based on MRF models and the spatial smoothness is con-

trolled by the positive parameter λ in the potential

λ

2

∑

y∈Nx

{

wxy|α(x) − α(y)|2
}

;

where the weight wxy ≈ 0 if an intensity edge is detected

between the pixels x and y, otherwise wxy ≈ 1. In this

work we investigate the weight function:

wxy =

(

γ

γ + |g(x) − g(y)|2

)p

. (7)

According to our experiments p = 1/2 produces good

results, see section 4.

Following [26, 27, 28], the soft image multiclass seg-

mentation is formulated in the Bayessian regularization

framework, the maximization of the posterior distribution

takes the form P (α|R, g) ∝ exp [−U(α, θ)] and the max-

imum at posteriori (MAP) estimator is computed by mini-

mizing the cost function:

U(α) =
∑

x

{ K
∑

k=1

α2

k(x) [− log vk(x)] [1 − δ(R(x))]

+
λ

2

∑

y∈Nx

wxy|α(x) − α(y)|2
}

, (8)

subject to the constraints (4) and (5). We initially set:

αk(x) =

{

δ(R(x) − k) if R(x) > 0
vk(x) if R(x) = 0

(9)

for ∀k ∈ K,∀x ∈ Ω; where δ is the Kronecker delta.

The convex quadratic programming problem in (8) can

efficiently be solved by using the Lagrange multiplier pro-

cedure for the equality constraint (4). Differently from the

proposal in [26], we are not penalizing the α(x)’s entropy

and thus we keep the energy (8) convex. Therefore we guar-

antee convergence to the global minima see [26, 27, 28].

Once the measure field, α, is computed, we assign a user

selected color Ck = [Rk, Gk, Bk]T , in the RGB space, to

each class. Then, the color Ck is converted into a color

space in which the intensity and the color information are

independent. For example, the color spaces: Lαβ, Y IQ,

Y uv, I1I2I3, HSV , CIE-Lab and CIE-Luv [29]. In gen-

eral, we denote the transformed color space by LC1C2:





Lk

C1k

C2k



 = T





Rk

Gk

Bk



 ; (10)

where Lk is the luminance component, C1k, C2k are the

chrominance components for the class k; T is the applied

transformation. Such a transformation is linear for the



Y IQ, Y uv, I1I2I3 spaces. In the Y uv–space, for instance,

T is defined by the matrix:

T =





0.299 0.587 0.114
−0.147 −0.289 0.437
0.615 −0.515 0.100



 . (11)

(a) (b) (c)

Figure 2. Result of colorization using 6 classes. a) Grayscale

image b) Scribbled image c) Colorized image.

Figure 3. Colorization using 6 classes. Each image represents

a component of the vector measure of the probability of each class.

For the CIE, lαβ and HSV spaces, the transformation T is

non–linear, see details of the transformations for the other

spaces used in this paper in Refs. [23, 29, 30, 31]. Then,

for each x ∈ Ω we obtain the components l(x), c1(x) and

c2(x) in the LC1C2 space by a linear combination of the

chrominance components C1k and C2k, keeping the lumi-

nance component of the original image unchanged. We

compute the luminance component, I , by transforming the

RGB image (in grays) G = [g, g, g]T , and taking the first

component:

I(x) = [T (G(x))]
1
. (12)

(a) (b) (c)

Figure 4. a) Gray scale image b) Multimap c ) Colored image.



Figure 5. Flexibility for assigning and reassigning colors to

images.

(a) (b)

Figure 6. a) Mask obtained from vector measure field b) Extracted

colorized object.

(a) Y UV (b) Y IQ (c) I1I2I3

(d) lαβ (e) Lab (f) Luv

(g) HSV

Figure 7. Colorization results using different color models, a)–c)

linear color models and d)–g) non linear color models.

Note that for linear spaces Y IQ, Y UV and I1I2I3, we

have I(x) = g(x). Now, the color components at each pixel

x ∈ Ω are computed with:

l(x) = I(x), (13)

c1(x) =

K
∑

k=1

α̂k(x)C1k, (14)

c2(x) =
K

∑

k=1

α̂k(x)C2k; (15)

where α̂k(x) can be understood as the contribution (mat-

ting factor) of the class color Ck to the pixel x. The matting

factors are computed with:

α̂k(x) =
αn

k (x)
∑K

k=1
αn

k (x)
. (16)

According to our experiments, n ∈ [0.5, 1] produces

good results. Note that, because (4), for n = 1, one has

α̂k(x) = αk(x).
Finally, the colored image g̃ is computed in the RGB–

space by applying the corresponding inverse transforma-

tion:

g̃(x) = T −1





l(x)
c1(x)
c2(x)



 . (17)

Observe that the step of assigning color to each region

Rk is completely independent of the segmentation stage.

It means that, once we have computed the vector measure

field, α, for the whole image, we can reassign over and over

the colors to one or more regions by just recomputing the

color components with Eqs. (14) and (15), and transform-

ing the image with (17) . Also note that it may be possible

to assign the same color to different regions. This makes

the proposed method very versatile.

4. Experiments

In this section we describe the colorization process using

an experiment. Additionally, we show some other results of

colorization and recolorization that demonstrate the method

capabilities. Most of the images presented here were taken

from Berkeley Image Database [32, 33]. First, they were

converted into greyscale images and then the process of col-

orization was applied.

The process of colorization begins by making a “hard”

pixel labeling from the user marked regions (multimap): for

every x ∈ Rk with k > 0, we set αk(x) = 1 and αl(x) = 0
for l 
= k. The remainder pixels are “soft” segmented by

minimizing the functional (8). Fig. 2 illustrates the col-

orization process. Panel 2–a shows the original gray scale



image, the scribbles for 6 classes are shown in panel 2–b

and the colored image in panel 2–c. The computed class

memberships (probabilities) are shown in Fig. 3. The last

step consists of assigning color to every region, this is done

by applying equations (13)–(15) in LC1C2 color space and

the inverse transformation into RGB color space. Note that

smooth inter–region probability transitions produce smooth

color transitions (as in the face regions) and, conversely,

sharp intensity edges produce sharp color transitions. In

Figs. 1 and 4 we show additional experiments that demon-

strate the method capability.

An advantage of this method is that it allows us to recol-

orize part or the whole image without spending more com-

putational time. Once we have computed the probability

measure field, α, of probability we can reassign colors to

some labels by just reapplying equations (13)–(15). In Fig.

5 we present experimental results that illustrate the method

flexibility by changing colors and keeping the memberships

fixed. Additionally, we can select some particular classes

for segmenting and colorizing a particular object, see Fig.

6.

Experiments with different color models demonstrates

that the final results do not depend on the chosen model but

on the user ability for selecting the appropriate color palette,

see Fig. 7.

5. Conclusions

We have presented a two steps interactive colorization

procedure. The first step consists of computing a probabilis-

tic segmentation and in the second stage the color properties

are specified.

The here proposed interactive colorization method is

constructed on the multiclass segmentation algorithm re-

cently reported in [26, 27, 28]. The segmentation process

consists of the minimization of a linearly constrained pos-

itive definite quadratic cost function and thus the conver-

gence to the global minima is guaranteed. We associate a

color to each class and then the pixel chrominance is a linear

combination of the chrominance associated to the classes.

The color component values depend on the computed prob-

ability of belonging to the respective class of each pixel.

We have demonstrated the algorithm flexibility by ex-

tending the colorization procedure for recolorization and

multicomponent object segmentation.
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