
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1992

Computing the All-Pairs Longest Chains in the Plane Computing the All-Pairs Longest Chains in the Plane

Mikhail J. Atallah
Purdue University, mja@cs.purdue.edu

Danny Z. Chen

Report Number:
92-046

Atallah, Mikhail J. and Chen, Danny Z., "Computing the All-Pairs Longest Chains in the Plane" (1992).
Department of Computer Science Technical Reports. Paper 968.
https://docs.lib.purdue.edu/cstech/968

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

COMPUTING THE ALL-PAIRS
LONGEST CHAINS IN THE PLANE

Mikhail J. Atallah
Danny Z. Chen

CSD·TR-92-046
August 1992

(Revised November 1994)

International Journal of Computational Geometry & Applications
© World Scient.ific Publishing Company

Computing thE! All-Pairs Longest Chains in the Plane

Mikhail J. Atallah

Department oj Computer Science" Purdue Univer,ity.
West La/ayette. Indiana -17907, USA

and

Danny Z. Chen

Department oj Computer Science and Engineering, Univer,ity oj Notre Dame,
Notre Dame, Indiana ,46556, USA

Received (received date)
Revised (revised date)

Communicated by Editor's name

ABSTRACT

Many problems on sequences and on special kinds of graphs involve the comput.ation
of longesl. chains passing point.s in the plane. Given a set 5 of n point.s in the plane.
we consider the problem of computing the matrix of longest chain lengths between all
pairs of points in 5, and t.he matrix of "parent" point.ers that describes the n longest
chain trees. We present a simple sequent.ial algorithm for computing these matrices. Our
algorithm runs in 0(n 2) time, and hence is optimal. We also present a rather involved
parallel algorithm t.hat computes these matrices in 0«logn)2) time using 0(n2 /logn)
processors in the CREW PRAM model. These matrices enable us to report, in Ott)
time, the length of a longest chain between any two points in 5 by using one processor,
and t.he adual chain by using k processOni, where k is the number of points of 5 on that
chain. The space complexit.), of the algorit.hms is 0{n2).

K eyword,~: Comput.at.ional geomet.ry, CREW PRAM, increasing chains, longest paths,
Monge mat.rices, parallel algorit.hms, sequential algorit.hms

1. Introduetion

Problems that involve longest increasing subsequences of a given sequence of
numbers have attracted a lot of attention in the past. Probably the most studied
version is t.hat of the longu.t increasing subsequence (LIS), for which many O(n logn)
timc sequent.ial algorit.hms are known (examples are the results, 1,2,3 and many oth
ers). There is also a well-kllown connection between increasing subsequences and
problems on certain spccialized classes of graphs such as permutation graphs, circle
and circular-arc graphs, and interval graphs (for exampie, see references4 ,5,6,7,8,9,10).

This is not surprising, since all these problems involve objects that can be defined
by using two parameters.

This paper considers the all-pairs version of the problem, whose formulation we
state precisely next. Because our solution techniques are drawn from computational
geometry, we have chosen to formulate the problem as one on points in the plane:
In terms of sequences, the y-coordinate of a planar point corresponds to the value
of an entry in the sequence, and the position at which that entry occurs in the
sequence is determined by the x-coordinate; in terms of interval graphs, the x
coordinate corresponds to the beginning position of an interval and the y-coordinate
corresponds to its ending position; and so on. Thus our results have applications
to all of these problems. For example, in a sequence, we are in effect computing a
description of all longest increasing subsequences between all the pairs of positions
in the sequence; in a connected interval graph, we are computing a description of
all longest paths that are proper and extend from left to right (recall that a set
of intervals is proper if every interval in the set contains no other interval except
itself); also in interval graphs, by using our algorithms on anti-chains rather than
chains of points, we can compute a description of all tallest towers (where a tower
is a sequence of intervals such that if interval I follows interval J, then J contains
I).

A point p in the plane is said to dominate another point q iff x(p) ~ x(q) and
y(p) ~ y(q), where x{p') and y{p') respectively denote the x- and y-coordinates of
a point p'. Let S be a set of n points in the plane, and let (T = (PI, P2, ... , PI:) be
a sequence of points such that each Pi is in S. The sequence (T is increasing iff Pi
dominates Pi-I for all i, 1 < i $ k; such a sequence is called a chain, and we say
that it begins at PI, that it ends at PI:, and that its length is k (if the points are
weighted then the length of (T is the sum of the weights of its points). The chain (T

is longest if no other chain starting at PI and ending at PI: has greater length than
(T.

The problem we consider is that of computing an n x n matrix D of the lengths
of longest. chains between all the pairs of points in S; that is, D(p, q) is equal to the
length of a longest p-to-q chain. By convention, for P #= q, if q does not dominate P
then D(p, q) =-00. We also compute an n x n matrix P (shorthand for "parent")
such that P(p, q) is the successor of p in a p-to-q longest chain.

Sequent.ially, we give a simple O(n2) time algorithm for the unweighted case of
the problem (i .e., the weight. of every point in S is 1). Clearly, knowing P allows
one processor to trace a longest p-to-q chain in time proportional to its length.

In parallel, we solve the weighted version of the problem in O«log n)2) time using
O(n2 / log n) processors in the CREW PRAM model. We also show that a longest
p-to-q chain can be obtained in constant time by using k CREW PRAM processors,
where k is the number of points of S on that chain. The parallel algorithm bears
very little resemblance to the sequential one, which seems hard to "parallelize". It
also solves a more general (weighted) version of the problem. Recall that the CREW
PRAM is the synchronous shared-memory model in which multiple processors can
simultaneously read from the same memory location but at most one processor is
allowed to write to a memory location at each time unit.

An O(n 2 10gn) time sequential algorithm for this problem is quite trivial to

Figure 1: (a) Monotonicity holds for some chains, and (b) it fails to hold for others.

obtain, and to the best of our knowledge this was the best previously known bound
for this all-pairs version of the problem. There is a published 0(n2) time sequential
algorithm11 for a special case of this problem: That for chains which start in 8 and
end on a set of points that lie on a vertical line V, where V is to the right of 8. In
parallel, complexity bounds similar to ours were only known for the special case of
the layers of maxima problem, which can be viewed as the version of our problem
where the chains of interest begin in 8 but must end at the point (+00, +00).12 It
is actually quite easy to use the methods12,13 to solve the version of the problem
where the chains of interest begin in S but must end on a set of points on a vertical
line V that is to the right of S.

We now briefly discuss how our approach differs from the one for the special
version of the problem mentioned above, in which all the chains start in S and end
on a set of points on a vertical line V that is to the right of S. That special version
of the problem is subst.ant.ially easier, both sequentially and in parallel, because for
a fixed point. pES, the collection of longest chains that begin at p and end on
V have the following monotonicity property: Two such longest chains that end at
(respectively) q' and q", y(q') < y(q"), can always be chosen such that at no point
is the chain t.o q' higher (geometrically) than the chain to q" (intuitively, if it is
higher then t.here is a crossing between the two chains and we can "uncross" them).
Figure l(a) illustrates this. Such a monotonicity property is lacking in the general
version of the problem considered here: If q' and q" do not lie on the same vertical
line (see Figure I(b», then monotonicity need not hold, in the sense that either one
of the two p-t.o-q" chains shown could be a longest chain to q", so that such a chain
to q" might go either "above" or "below" a longest p-t~q' chain.

We are unable to obtain an O(n2) time sequential solution to the weighted
version of this problem, and we leave this as an open problem. Our parallel bounds,
on the other hand, hold for the weighted version of the problem.

Figure 2: The points of MD(p) are circled.

The rest of this paper is organized as follows. Section 2 deals with the sequential
algorithm, which is fairly simple. Section 3 discusses ·the parallel algorithm. We
have chosen to give the basic terminology and definitions separately for each of the
parallel and sequential algorithms, since they have little in common (this way the
reader int.erested in one of the two will not be forced to read material unrelated to
her interest). Section 4 concludes by mentioning a related new result and posing
some open problems.

2. Th(~ Sequential Algorithm

This section presents the O(n2) time sequential algorithm.

2.1. Preliminaries

The input consists of the set S of n points in the plane. For a point p E 8,
we use DOAf(p) to denote the subset of points in 8 - {p} that are dominated
by p. A point p of 8 is a maximum (or maximal element) of 8 iff no other point
of 8 dominates p. We use MAX(S) to denote the set of maxima of 8, listed by
increasing x-coordinates (and hence by decreasing y-coordinates). For a point p E
8, we abbreviate as MD(p) the set of maxima of DOM(p) (i.e., MAX(DOM(p))).
Figure 2 illustrates the definition of MD(p).

For a point p E 8, imagine partitioning DOM(p) U {p} into k subsets, where k =
max{ D(q, 1') Iq E DOM (1') u {p} }, such that the points in each subset all have their
longest chains to p of the same length. The subset of DOM(p) U {p} whose points
have a distance j to p is called the j-th domination la1lerof 1', denoted by Layerj (p).
For example, Layerdp) = {p}, Laycr2(p) = MD(p), and so on. In general, for each
j, Laycrj(p) = MA'\«DOM(p) U {p}) - U:~11Layeri(p)). We assume that each
layer of l' is sorted by increasing x-coordinates (hence by decreasing y-coordinates).

It should be clear that, if we were able to compute the domination layers of
each p E 5, then we would effectively have computed the desired D matrix. Our
sequential algorithm will therefore mainly concern itself with the computation of
these domination layers and of the P matrix. (The parallel algorithm deals with the
weighted version and will use a different approach - in fact most of the definitions
given above will not be used in the parallel algorithm.)

2.2. The Algorithm

Below is a high-level description of the sequential algorithm. We are assuming
that no two points in 5 have the same z- (resp., y-) coordinate, i.e., that if p, q E 5
and p #- q then z(p) #- z(q) and yep) #- y(q) (the algorithm can easily be modified
for the general case). By convention, walking forward (resp., backward) along an
MD(p) means moving along it by increasing (resp., decreasing) z-coordinates.

Step 1. We first compute MD(p) for every point p E 5. These MD(p)'s can
all be easily computed in O(n2) time as follows. We sort the points in 5 by their
x-coordinates, and then for each p E 5 we do the following. From the sorted list, we
obtain DOM(p), in O(n) time. Then we obtain the maximal elements of DOM(p),
also in D(n) time (this is possible since DOM (p) is available sorted). These maximal
elements of DOM(p) are, by definition, MD(p).

Step 2. We compute, for each pair of points p, q E 5, the position of yep) in
the list Y(MD(q», which is the list obtained from MD(q) by replacing every point
by its y-coordinate. This is easy to do in O(n) time for a particular Y(MD(q» and
all p E H, by merging Y(MLJ(q» with the sorted list of the y-coordinates of the
points in H. Doing this once for each q E S takes a total of O(n2

) time.
Step 3. For each point p E H, we obtain the domination layers of p and the

colUlTlIl that corresponds to p in matrix P. We do this in O(n) time for each p,
as follows. Clearly, we already have Layerdp) (= {p}) and Layer2(p) (= MD(p».
We obtain Laycrj+dlJ) from Layerj(p) in O(ILaycrj(p)1 + ILaycrj+dp)1) time, as
follows. Let Layerj (p) = (ai, a2, ... , aj:), where z(at} < z(a2) < ... < z(aj:).
We shall walk along the Layerj (p) list, creating the Layerj+dp) list as we go
along, in left; to right order. When we reach ai while scanning Layerj(p), we
compute the portion of Layerj+dp) that is in MD(ad but not in DOM(ai+t};
we call this portion Intcrvalj+dp, ad (it forms a contiguous interval of MD(ad).
Figure 3 illustrates the definition of Intcrva/j+l (p, ai). Note how, in Figure 3, point
w is in Laye7'j+! (p) n MD(a2) but not in Interva/j+l (p, a2)' We shall compute
Intervalj+dp, at>, Intcrvalj+dp, a2), ... , Intervalj+! (p, aj:), in that order. While
doing this, we maintain a variable called cutoff whose significance is that, when we
finish processing ai, cutoff contains the rightmost point in U~=1 Intervalj+! (p, at);
intuitively, cutoff is the "dominant" point among those in U~=1 Interva/j+l (p, at)
as far as the (yet to be computed) lists Intervalj+l (p, ai+d, ... , Intervalj+dp, aj:)
are concerned. In Figure 3, after Intcrvalj+dp, at> is computed, cutoff is point t,
and after Intervalj+l (p, a2) is computed cutoff is point q'.

To determine Intervalj +1 (p, al), we simply start at the beginning of MD(at> and
walk forward along MD(ad until we first reach a point q E MD(at} for which y(q) <

Figure 3: The points of Intervalj+! (p, a2) are shown circled.

y(a2) (we do not count q as being part of our "walk" along MD(ad). The (possibly
empty) portion of MD(ad so traced is obviously equal to Intervalj+dp, ad. If
Intcrvali+dp, ad is not empty, then we set cutoff equal to the predecessor of q in
MD(aI); otherwise cutoff remains undefined. For the example shown in Figure 3,
q = u and cutoff = t. We then proceed to processing a2.

If cutoff is undefincd (i.e., if lntervalj+dp, ad turned out to be empty), then
we process (l2 cxactly as explained above for al. Otherwise we process a2 as follows.
Recall that. we already know, from Step 2, the outcome of a hypothetical binary
search for y(a3) in Y(MLJ(a2»): Let q' be the predecessor of y(a3) in Y(MD(a2»'
that is, the lowest point. of MD(a2) whose y-coordinate is larger than y(a3)' If
no such poillt. q' exist.s on AID(a2) then surely Intervalj+dp, a2) is empty and we
move on to processing a3 (lcaving cutoff unchanged). So suppose that q' exists. If
x(q') < x(cutoff) thcn Inlcrvalj+dp, a2) is empty and we move on to processing
a3 (leaving rlttoff unchanged). If x(q') > x(cutoff) then we start at q' and walk
backward along MD(a2) until we reach a point whose x-coordinate is less than
x(cutoff); the portion of MD(a2) so traced is Intervalj+dp, a2)' In Figure 3, the
portion so traced consists of points q', v, and u, in that order (point s is not traced
because x(s) < x(t». In that case, we also update cutoff by setting it equal to q'
before we proceed to processing a3.

We process a3, a4, ... , ak. in that order, exactly as explained above except
that, when ai+l is processed, ai, ai+1, and ai+2 play the role of ai, a2, and a3,
respeetively.

Once we have obtained Layerj+dp) from Layerj(p), we must compute P(w,p)
for every w E Layerj+dp) (clearly, such a P(w,p) is in Laycrj(p», This is easily
done for all W E Laycrj+dp) in 0(1 Layerj (p)1 + ILayerj+l(p)1) time, by merging
the two list.s Layerj+dp) and Layerj (p).

This completes the descri;; ~,.;on of the sequential algorithm. We now turn our

attention to the parallel algorithm.

3. The Parallel Algorithm

This section presents the O((log n)2) time, O(n2/ log n) processor algorithm for
the weighted version of the problem.

3.1. Pnliminaries

Let S be a set of n. weighted points in the plane (i.e., each point pES is
associated with a nonncgative weight). The length of an increasing chain C through
some points in S is the total sum of the weights of the points in ens.

In what follows, we shall focus on showing that the claimed time complexity for
computing matrices D and P in the weighted case of the problem can be achieved
with O(n2 Iogn) work. (Recall that the work complexity of a parallel algorithm is
equal to the total number of operations performed by that algorithm.) This will
imply the O(n 2 / log n) processor bound, by Brent's theorem14:

Theorem 1 (Brent) Any synchronous parallel algorithm taking time T that con

sists of a total of W operations can be simulated by P processors in time O((W/P) +
T).
Remark:. There are actually two qualifications to the above Brent's theorem before
one can apply it to a PRAM: (i) At the beginning of the i-th parallel step, we must
be able to compute the amount of work Wi performed by that step, in time O(Wi/P)
and with P processors, and (ii) we must know how to assign each processor to its
task. Both qualifications (i) and (ii) to the theorem will be easily satisfied in our
algorithms, therefore the main difficulty will be how to achieve W operations in
time:T.

Here as in the shortest path results,15,16 an important method we use involves
multiplying special kinds of matrices. Although the situation depicted in Figure
1(b) implies that thc monotonicity structure that gives rise to such matrices is not
always availahle, the fact. that we can deal with the situation in Figure l(a) will be
useful. (This will all be madc precise later; for now we are only giving an overview.)
All matrix multiplications in our algorithm are in the (max, +) closed semi-ring,
i.e., (M' * A1/1)(i,j) = maxI: {M'(i, 10) + M"(k,j)}.

Lemma 1 Let V, V', and V/I be three vertical lines with x(V) < x(V') < x(V").
Let S" (resp., .';") be the sel of points in S whose x-coordinates are ~ x(V) (resp.,

x(V'») and ~ x(V') (resp., x(V"»). Let V (resp., V', V") contain a set X (resp.,

Y, Z) of points such. that the weights of the points in X (resp., Y, Z) are all zero,
that X (resp., Z) contains the horizontal projections of the points of S' (resp., S")

onto V (nsp., V"), and that the y-coordinates of Y are the union of those of X

with those of Z (see Figure 4). Let n = s' u Sli U XU}'· u Z. Then for every

increasing chain C through n from a point p E X to a point q E Z, y(p) ~ y(q),
there is a p-to-q increasing chain C' through n such that C' is at least as long as
C and that (" goes through some point w E Y.

Proof. Obvious. 0

Figure 4: Illustrating Lemma 1.

Lemma 2 Let V (resp., V', \,-''') be a vertical line that contains a set X (resp., Y,
Z) of points that are ordered by increasing y-coordinates along V (resp., V', V")
and whose weights are all zero. Let n = s u X U Y U Z. For subsets A, B ofn,
let M[A, B] be the length matrix of the longest chains through n from the points in
A to the points in B. Assume that x(V) < x(V') < x(V"), that IXI = IZI, and
that the y-coordinates of Yare the union of those of X with those of Z (hence IYI
= 2IXIJ. Then given the matrices M[X, Y] and M[Y, Z], the matrix M[X, Z] can
be computed in O(log IXI> time and O(lXI2) work in the CREW PRAM model.

Proof. Lemma 1 implies that M [X, Z] =M [X, Y] * M [Y, Z]. For every point
u E X and w E Z, let 9(u, w) be the (geometrically) lowest point v of Y for which
M[X, Z](u, w) = M[X, Y](u, v) + M[Y, Z](v, w). Ify(u) > y(w) (Le., M[X, Z](u, w)
=-00), then we define 9(u, w) to be the point v' ofY such that y(v') =y(u) (such
a v' exists in Y by the definition of Y). It is not hard to see that the following
property holds: For any points U], U2 in X and w], W2 in Z, if u] is below U2 and
WI is below W2, then we have the following properties:

2. 9(UI,Wt} is below or equal to 9(U2,wd.

It was showlI directly13 (and, indirectly l2) that whenever the above relationships
hold, then tlte 9 matrix can be computed in parallel within the claimed complexity
bounds: TIl<' relationships presented above are identical to property (4) on page 975
of the paper,13 where, in t.he last sentence of the paragraph preceding property (4),
it was stated that this property is the only structure needed by the algorithm 13 to
compute matrix 9 (we refer the reader to the algorithm in Section 6 of the paper ,13

in which it is transparent that the properties described above is indeed all that
is needed). By using this algorithm in our case, matrix 9 can be computed in

O(log IXI) time and O(IXI 2) work on the CREW PRAM. Once we have matrix (J,

it is straightforward to obtain from it the desired M[X, Z] matrix within the same
complexity bounds. 0

3.2. The Algorithm for Chain Lengths

The algorithm given in this subsection concerns itself with the computation of
the chain lengths only, not of the P matrix that describes the n trees of longest
chains. Including the computation of P here would have cluttered the exposition.
The next subsection will deal with the computation of P. In addition, it is not
immediately clear that the availability of P makes possible the reporting of a k
point chain in O(k) work and constant time. This too is postponed until the next
subsection.

Let 5 = {pi, P2, ... I l'n}, where z(pd < Z(P2) < .,. < z(Pn). Let Vo, Vi, ... ,
Vn be vertical lines such that z(Vo) < z(pd, z(Pn) < z(Vn), and z(pd < z(lti) <
z(pi+d for all i E {l,2, ... , n-l}.

Let T be a complete n-leaf binary tree. For each leaf v of T, if v is the i-th
leftmost leaf in T, then associate with v the region Iv of the plane that is between
lti-i and \Ii. For each internal node v of T, associate with v the region Iv consisting
of the union of the regions of its children. That is, if v has children u and w, then
Iv = I u U Iw •

Let v be any node of T. Suppose that the left (resp., right) boundary of Iv is
\Ii (resp., Vj), and let Sv = ~'i n Iv, that is, 5v is the subset of the input points
that lie in Iv. Observe that if v is at a height of h in T, then j - i= 2h = 15v I
(the height of v is the height of the subtree in T rooted at v, with leaves being at
a height of zero). Let Lv (resp., Rv) be the set of points on lti (resp., Vi) that are
the horizont.al projections of Sv on lti (resp., ltj). The points of Lv and Rv are, of
course, disjoint from the input set 5, and we assign to each of them a weight of
zero. Observe that

L ILvl = L IRvI =O(nlogn),
veT veT

because for each level of T, a point Pi E 5 appears in exactly one 5v of that level,
and hence creates at most two extra points, one in Lv and one in Rv (recall that a
level of T is the set of nodes in T that have the same distance to the root of T, so
that the root is at level zero, the two children of the root are at levell, and so on).

The algorithm consists of two phases: Phase 1 is relatively straightforward, while
Phase 2 is the key that. made our solution possible.

3.2.1. Phase 1

This phase' consists of computing, by starting at the leaves and going upward in
tree T, one level at a time, the M[Lv , Rv] matrices for nodes v of T, which contain
the lengths of all the Lv-t.o-Rv longest chains (chains that begin on Lv and end on
Rv , of caurSt' possibly going through points in 5v along the way). This information
is trivially available if t' is a leaf. So suppose that we have already computed this
information for level (+ 1, and we want to compute it for level f.

We claim that it suffices to show that the M[Lv , Rv] matrix can be computed
in O(ISvI2) work and O(logn) time for each node vat level f. This claim would
imply an O«logn)2) time, O(n2) work procedure for Phase 1, as follows. That the
time bound follows from the claim is obvious (we would spend logarithmic time per
level, and there is a logarithmic number of levels). The work bound would follow
from the fact that there are 2l nodes v at level f, each having ISv I = n/2l , and
hence the total work at level f would be

Summing over all levels f gives O(n2) total w~rk. We next prove the claim by
showing that the M[Lv, Rv] matrix can indeed be computed in O(ISvI2) work and
logarithmic time.

Let u (resp., w) be the left (resp., right) child of v in T. Let Y denote Ru
U Lw , that is, Y consists of the horizontal projections of the points of Sv on the
vertical line Vi that separates the region Iu from the region Iw • Our tool for
computing M[Lv , Rv] is Lemma 2. In order for Lemma 2 to be applicable, we must
have matrices M[Lv , Y] and M[Y, Rv]. What is already available to us (from the
computation at the children u and w of v) is matrices M[Lu, Ru] and M[Lw , Rw].
We only show how to obtain M[Lv , }'.] from M[Lu , Ru] in the claimed parallel
bounds (M[Y, Rv] can be obtained from M[Lw , Rw] in a similar way).

Note that Lv (resp., Y) consists of, in addition to the points in Lu (resp., Ru),
the points on the left (resp., right) boundary of Iu that are the horizontal projections
of the points in SUI' To obtain M[Lv , Y], what we need to compute is M[Lv , Y](p, q)
for every pair of points p and q, where p E Lv, q E Y, and either p E Lv - Lu or q E
Y -:Ru. If yep) > y(q), then computing M[Lv , Y](p, q) is trivial (since it is -00 in
this case). Hence we assume, without loss of generality (WLOG), that yep) ~ y(q).
We also assume that no two points in Bv have the same y-coordinate (the general
situation call be easily taken care of). We perform the following computation:

(i) Perform a parallel prefix 17,18 along Lv (resp., Y), in decreasing (resp., increas
ing) y-coordinates, to compute, for every point z E Lv - Lu (resp., Y - Ru),
the lowest (resp., highest) point I(z) (resp., h(z» such that I(z) E Lu (resp.,
h(z) E Ru) and that y(/(z» ~ y(z) (resp., y(h(z» ~ y(z».

(ii) For every pair of points p and q such that p E Lv, q E Y, and either p E Lv - Lu
or q E Y - Ru, do the following.

If yep) ~ y(l(p» ~ y(q), then let M[Lv,Y](p, q) = M[Lu, Ru](/(p) , h(q». (Ob
serve that in this case, y(l(p» ~ y(h(q» ~ y(q), since each point of Su has a
projection point in each of Lu and Ru.)

Otherwise, let M[Lv , Y](p, q) = O. (In this case, there obviously exists no
point:: E Su such that yep) ~ y(z) ~ y(q).)

It is easy to see that the computation described above can be easily done in O(ISv 12)
work and O(logn) time. Hence matrix M[Lv , Y] can be computed in the claimed
parallel bounds.

After both M[Lv,Y] and M[Y, Rv] are available, computing M[Lv,14] is easy.
Now, simply observe that t.he conditions of Lemma 2 are satisfied, with Lv playing
the role of .x and Rv playing the role of Z. That is, we can obtain M[Lv , 14] from
M[Lv,Y] and M[Y, Rv] in O(ISvI2

) work and logarithmic time. This completes the
proof.
Remark: The astute reader may have observed that the above procedure can
be modified so as to compute the Lv-to-Sv and Sv-to-14 chain lengths informa
tion. This would involve only a logarithmic factor of additional work, and would
exploit the kind of mOllotonicity property depicted in Figure lea) by using the lower
dimensional parallel matrix searching algorithm. 19 However, this would still leave
us far from having solved our problem: We would still need something like Phase
2 below, since we cannot afford to multiply "non-square" length matrices - as of
now, it is not known how to optimally (max, +)-multiply two non-square length
matrices (for example, the best parallel algorithm for multiplying a 1 x k length
matrix with a k x k matrix in logarithmic time takes O(k logk) work19). Observe
how Phase 2 below will satisfy the size requirements of Lemma 2, as expressed in
the requirement that IXI = IZI = IYI/2.

3.2.2. Phase 2

Whereas Phase 1 involved a bottom-up computation in tree T, Phase 2 will
involve a top-down computation, by starting at the root of T and proceeding one
level at a time until we reach the leaves. The purpose of the computation at a typical
level f. is more ambitious than in Phase 1: We now seek, for every pair of nodes u, W

at level f. such that u is to the left of w, the computation of the M[Ru, Lw] matrix
of chain lellgths (u is t.o the left of w iff it is in the subtree rooted at the left child
of the lowest. common ancest.or of u and w). rhe key idea is to get help from the
parents of tl and w, which we call u' and (respectively) w'. If u' = w', then the
desired information is trivially available; so suppose that u' :/; w'. We distinguish
four cases, which are illustrated in Figure 5.

Case 1: u is the right child of u', and w is the left child of w' (see Figure 5(a».
Simply obtain M[Ru, Lw] from M[Ru" LW/] which was computed earlier in
Phase 2.

Case 2: u is the right child of u', and w is the right child of w'. Let {J be the left
child of w' (see Figure 5(b». From the M[Ru/ Lw/j matrix which was com
puted earlier in Phase 2, obtain the M[Ru, L~] matrix. From the M[L~, R~]

matrix which was computed in Phase 1, we obtain the M[L~, Lw] matrix (this
computation is similar to steps (i) and (ii) of Phase 1). We use Lemma 2 to
obtain M[Ru, Lw] from M[Ru, L~] and M[L~, Lw].

Case 3: u is the left child of u', and w is the left child of w'. Let Q be the right
child of u' (see Figure 5(c». From the M[La, Ra]matrix which was computed
in Phase 1, we obtain the M[Ru, Ru/] matrix. Observe that M[Ru', LW/] was
already obtained earlier in Phase 2: Get from it the M[Ru/ Lw] matrix. We
use Lemma 2 to obt.ain M[Ru, Lw] from matrices M[Ru, Rul] and M[Ru', Lw].

Figure 5: Illustrating the four cases of Phase 2.

Case 4: u is the left child of u', and w is the right child of w'. Let 0' be the right
child of u' and f3 be the left child of w' (see Figure 5(d)). Since Phase 1 com

puted M[LQ" RQ']' we can obtain from it M[Ru, RQ']' then M[Ru, Ru/]. Simi
larly, we obtain M[LUl/, LUI] from M[L~, R~] which was computed in Phase 1.
Now, M[Ru/ LUll] is already available because Phase 2 is already done with
processing the pair u', w' (recall that Phase 2 processes the levels from the root
down). We use Lcmma 2 to obtain the matrix M[Ru, LUll] from M[Ru, Ru/]

: and M[Ru" LWI]' with Ru playing the role of X, Rul playing the role of Y,
: and Lfl'1 playing the role of Z. Finally, we use Lemma 2 again, this time to
obtain the desired matrix M[Ru, Lw] from M[Ru, LWI] and M[Lw/, LUI]'

The time taken by Phase 2 is clearly O«logn)2), since the procedure takes
logarithmic time at leach level of T. The work done for a particular pair u, w at
level £ is O«n/2l)2), and, since there are (2l)2 such pairs at level i, the total work
done at thai. level is O(n2). Summing over all the levels gives O(n210gn) work for
Phase 2. lienee it is Phase 2 that is the bottleneck in the work complexity. The
space used by Phase 2 is still O(n2) rather than O(n2 10gn), however, since we do
not need to st.ore the matrices for all the levels as Phase 2 proceeds: When we are
done with I(~vcl £, we can discard the matrices for level i-I since level £ + 1 will
only need the information produced at levell (recall that in Phase 2, the nodes of
T request help only from their parents, not from their grandparents or from nodes
higher up in T).

3.3. Computing the Actual Chains

In this subsection, we discuss how to obtain matrix P which contains the n trees
of longest chains, and how to preprocess the longest chain trees, so that each tree
can support. a longest chain query between any point in S and the point of S at the

root of that tree.
First we sketch how the algorithm in the previous subsection can be modi

fied so as to compute the P matrix as well. For each M[Ru, Lw] matrix com
puted by that algorithm, we compute a companion P[Ru, Lw] matrix whose sig
nificance is that, for pERu and q E Lw , P[Ru, Lw](p, q) is the first point of
S that lies on a longest p-to-q chain (it is undefined if no p-to-q chain contains
any point of S). Note that only the points of S can be "parents". It is quite
easy to modify the computation of an M[X, Z] length matrix so that it also pro
duces P[X, Z): If M[X, Z] is obtained by using Lemma 2, then P[X, Z] can be
obtained from P[X, Y] or P[}", Z] as a "byproduct" of this computation. For
example, if q dominates p and if M[X, Z](p, q) = M[X, Y](p, t) + M[Y, Z](t, q),
then we distinguish two cases for obtaining P[X, Z](p, q): If P[X, Y](p, t) is unde
fined, then P[X, Z](p, q) = pry, Z](t, q) (which could also be undefined); otherwise
P[X,Z](p,q) = P[X, Y](p,t). When the modified algorithm finishes computing
P[Ru, Lw) for all the leaves u, w (at the end of Phase 2), it is easy to obtain matrix
P: If Su = {pd, Ru = {pD, Sw = {Pi}, Lw = {pil, then we set P(Pi,Pi) equal
to P[Ru , Lw) (p~, pj) if the latter is defined; otherwise, we set P(Pi, Pi) equal to P;
if Pi dominates Pi, and set P(p;, p;) to be undefined if Pi does not dominate Pi·
From now on, we assume that matrix P is available. Note that this matrix is a
description of n trees of longest chains, each rooted at a point of S.

We preprocess each longest chain tree so that the following type of queries can
be quickly answered: Given a node P in the tree and a positive integer i, find the
i-th node on the path from p to the root of the tree, Such queries are called leve/
ancestor qUfTies by Berkman and Vishkin,20 who gave efficient parallel algorithms
for preprocessing rooted trees so that the level-ancestor queries can be answered
quickly. The work of Berkman and Vishkin2o,21 shows (implicitly) that a level
ancestor query can be handled sequentially in constant time, after a logarithmic
time and linear work preprocessing in the CREW PRAM model. The preprocessing
of the longest chain trees is done by simply applying the result of Berkman and
Vishkin to ea.ch of the n trees, in O(logn) time and O(n2) work altogether.

For the sake of processor assignment in reporting actual longest chains, we also
need to compute the number of points of S on the actual longest chain which is to
be reported. Suppose a longest chain between points P and q in S is to be reported.
The number of points of .') on such a p-to-q chain can be obtained from the depth
of p in the longest chain tree rooted at q. It is well-known that the depths of nodes
in a rooted tree can be computed within the required complexity bounds by using
the Euler Tour technique.22

To report. an actual longest chain between points Pand q in S, we do the following
(WLOG, WI' assume that. q dominates p). First, we go to the longest chain tree
rooted at (say) q, and find the number of nodes on the path in that tree from node
p to the root. q. Let that number be k. The p-to-q path In that tree corresponds to a
longest chain from p to q, which we would like to report. We do so by performing, in
parallel, k - 1 level-ancestor queries, using node P and integers 1, 2, ... , k - 1. Each
query is handled by one processor in O(1) time. These queries find each point on the

p-to-q chain. Finally, we report the k points of that chain in parallel, by assigning
to k processors the task of reporting those k points (one point per processor).

4. Further Remarks

By using the methods we developed here in combination with other ideas, we
can improve the processor complexity of the layers of maxima problem: We can
achieve the same O«logn)2) time complexity as the results 12 with O(n2j(logn)3)
processors, instead of the O(n2 j log n) processors used in the algorithms. 12 The
algorithm achieving these parallel bounds for the layers of maxima problem will be
given.23

We conclude this paper by mentioning several open problems:

• Give an O(n2) time sequential algorithm for the weighted case.

• Give an O(n2) time sequential algorithm for the three dimensional version of
the problem (ullweighted).

• For thc three dimcnsional version of the problem, give an NC parallel algo
rithm that uses a quadratic (to within a polylo~arithmic factor) number of
processors.

Acknowledgements

The authors would like to thank the referees for pointing out an error in the
manuscript and for other helpful comments. This research was supported by the
Leon;ardo Fibonacci Institute in Trento, Italy. Additional support was provided
by the Air Force Office of Scientific Research under Grant AFOSR-90-0107, by
the National Library of Medicine under Grant ROI-LM05118, and by the National
Science Foundation under Grant CCR-9202807. Part of this research was done
while the first author was visiting LIPN, Paris, France. A preliminary version
of this work appeared in Lecture Notes in Computer Science, No. 709: Proc. of
the Third Workshop on Algorithms and Data Structures, Montreal, Canada, 1993,
pp. 1-13.

References

1. R. B. K. Dewar, S. M. Merritt and M. Sharir, "Some modified algorithms for Dijk
stra's longest upsequence problem", Acta Informatica 18 (1) (1982) 1-15.

2. E. W. Dijkstra, "Some beautiful arguments using mathematical induction", Acta
informatica 13 (1) (1980) 1·-8.

3. M. L. Fredman, "On computing the length of longest increasing subsequences",
Discrete Mathematics (1975) 29-35.

4. S. Even, A. Pnucli and A. Lempel, "Permutation graphs and transitive graphs",
Journul of the ACM 19 (3) (1972) 400-410.

5. F. Gavril, "Algorithms for a maximum clique and a maximum independent set of a
circle graph", Networks (1973) 261-273.

6. F. Gavril, "Algorithms on circular-arc graphs", Network& (1974) 357-369.

7. U. 1. Gupta, D. T. Lee and Y.-T. Leung, "Efficient algorithms for interval graphs
and circular-arc graphs", Network& (1982) 459-467.

8. W.-L. Hsu, "Maximum weight clique algorithms for circular-arc graphs and circle
graphs", SIAM J. Comput. (1985) 224-231.

9. A. Pnueli, A. Lempel and S. Even, "Transitive orientation of graphs and identifica
tion of permutation graphs", Canadian Journal oj Math. 23 (1) (1971) 160-175.

10. D. Rotem and U. Urrutia, "Finding maximum cliques in circle graphs", Network&
(1981) 269-278.

11. A. Apostolico, M. J. Atallah and S. E. Hambrusch, "New clique and independent
set algorithms for circle graphs", Di&crete Appl. Math. 36 (1992) 1-24.

12. A. Aggarwal and J. Park, "Notes on searching in multidimensional monotone ar
rays", Proc. f9th Annual IEEE Sympo&ium on Foundations oj Computer Science,
1988, pp. 497-512.

13. A. Apostolico, M. J. Atallah, L. L. Larmore and H. S. McFaddin, "Efficient parallel
algorithms for string editing and related problems", SIAM J. Comput. 19 (5) (1990)
968-988.

14. R. P. Brent, "The paralld evaluation of general arithmetic expressions", Journal
oj the ACM 21 (2) (1974) 201-206.

15. M. J. Atallah and D. Z. Chen, "Parallel rectilinear shortest paths with rectangular
obstacles", Computational Geometry: Theory and Application& 1 (1991) 79-113.

16. M. J. Atallah and D. Z. Chen, "On parallel rectilinear obstacle-avoiding paths",
Computational Geometry: Theory and Applications 3 (1993) 307-313.

17. C. P. Kruskal, L. Rudolph and M. Snir, "The power of parallel prefix", IEEE Trans.
Comput. C-34 (1985) 965--968.

18. R. E. Ladner and M. J. Fischer, "Parallel prefix computation", Journal oj the ACM
: 27 (4) (1980) 831-838.

19. M. J. Atallah and S. R. Kosaraju, "An efficient parallel algorithm for the row
minima. of a totally monotone matrix", Proc. fnd ACM-SIAM Symp. on Di&crete
Algorithms, San Francisco, 1991, pp. 394-403.

20. o. Berkman and U. Vishkin, "Finding level-ancestors in trees", Tech. Rept.
UMIACS-TR-91-9, University of Maryland, 1991.

21. o. Berkman and U. Vishkin, personal communication.

22. R. E. Tarjan and U. Vishkin, "An efficient parallel biconnectivity algorithm", SIAM
J. Comput. 14 (4) (1985) 862-874.

23. M. J. Atallah and D. Z. Chen, manuscript, 1993.

p

q"

q'

p

q"

(a)

Figure 1

(b)

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•

•

•
•

•

• • P
•••••••••••••4t................... :: ...@ @ @ i

··@~·····. :
·················

Figure 2

..

•

•

•

•
•• •

• •
• • • p

...~ a. :
t. a2 :...•.....@. ~

S U (i) • :
• v q @ a3 :....•..~ ~......... a4 j

..............................•......
w

•

Figure 3

...

x
.............•

..........

......•

S'

y. z

. .

. .

. .

S"

Figure 4

u' w'

/\/\
u w

(a)

u· w·

/\/\
u a w

(c)

Figure 5

u' w'

AA
u p w

(b)

u' w'

AA
u a p w

(d)

	Computing the All-Pairs Longest Chains in the Plane
	Report Number:
	

	tmp.1307986960.pdf.sE9gY

