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Abstract The common zeros of two bivariate functions can be computed by finding
the common zeros of their polynomial interpolants expressed in a tensor Chebyshev
basis. From here we develop a bivariate rootfinding algorithm based on the hidden
variable resultant method and Bézout matrices with polynomial entries. Using tech-
niques including domain subdivision, Bézoutian regularization, and local refinement
we are able to reliably and accurately compute the simple common zeros of two smooth
functions with polynomial interpolants of very high degree (≥1,000). We analyze the
resultant method and its conditioning by noting that the Bézout matrices are matrix
polynomials. Two implementations are available: one on the Matlab Central File
Exchange and another in the roots command in Chebfun2 that is adapted to suit
Chebfun’s methodology.
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182 Y. Nakatsukasa et al.

1 Introduction

There are two operations on bivariate functions that are commonly referred to as
rootfinding: (1) Finding the zero level curves of f (x, y), and (2) Finding the common
zeros of f (x, y) and g(x, y). Despite sharing the same name these operations are
mathematically distinct; the first has solutions along curves while the second, typically,
has isolated solutions. In this paper we concentrate on the second, that is, computing
all the real pairs (x, y) ∈ [−1, 1] × [−1, 1] such that

(
f (x, y)

g(x, y)

)
= 0 (1)

under the assumption that f and g are real-valued in [−1, 1]×[−1, 1] and the solution
set is zero-dimensional, i.e., the solutions are isolated. In this typical situation we
describe a robust, accurate, and fast numerical algorithm that can solve problems of
much higher degree than in previous studies.

Our first step is to replace f and g in (1) by polynomial interpolants p and q,
respectively, before finding the common zeros of the corresponding polynomial sys-
tem. Throughout this paper we assume that f and g are smooth bivariate functions,
and p and q are their polynomial interpolants, which approximate f and g to relative
machine precision. The polynomials p and q are of the form:

p(x, y) =
m p∑

i=0

n p∑

j=0

Pi j Ti (y)T j (x), q(x, y) =
mq∑

i=0

nq∑

j=0

Qi j Ti (y)T j (x), (2)

where T j (x) = cos( j cos−1(x)) is the Chebyshev polynomial of degree j , and P ∈
R

(m p+1)×(n p+1), Q ∈ R
(mq+1)×(nq+1) are the matrices of coefficients. The polynomial

interpolants p and q satisfy

‖ f − p‖∞ = O(u)‖ f ‖∞, ‖g − q‖∞ = O(u)‖g‖∞, (3)

where ‖ f ‖∞ = maxx,y∈[−1,1] | f (x, y)| and u is the unit roundoff.
The resulting polynomial system, p(x, y) = q(x, y) = 0, is solved by an algorithm

based on the hidden variable resultant method and Bézout resultant matrices that
have entries containing univariate polynomials. One component of the solutions is
computed by solving a polynomial eigenvalue problem via a standard approach in
the matrix polynomial literature known as linearization [22] and a robust eigenvalue
solver, such as the eig command in Matlab. The remaining component is found by
univariate rootfinding based on the colleague matrix [13]. Usually, resultant methods
have several computational drawbacks and our algorithm is motivated by attempting
to overcome them:

1. Computational complexity: The complexity of resultant methods based on Bézout
(and Sylvester) matrices grows like the degree of p and q to the power of 6.
Therefore, computations quickly become unfeasible when the degrees are larger
than, say, 30, and this is one reason why the literature concentrates on examples
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Computing common zeros of two bivariate functions 183

with degree 20, or smaller [1,10,19,28,34]. Typically, we reduce the complexity to
quartic scaling, and sometimes even further, by using domain subdivision, which
is beneficial for both accuracy and efficiency (see Sect. 4). Subdivision can allow
us to compute the common zeros to (1) with polynomial interpolants of degree as
large as 1,000, or more.

2. Conditioning: We analyze the conditioning of Bézout matrix polynomials and
derive condition numbers. The analysis reveals that recasting the problem in terms
of resultants can worsen the conditioning of the problem, and we resolve this
via a local refinement process. The Bézout local refinement process improves the
accuracy significantly, and also identifies and removes spurious zeros; a well-
known difficulty for resultant-based methods.

3. Numerical instability: The Bézout matrix polynomial is often numerically close
to singular, leading to numerical difficulties, and to overcome this we apply a reg-
ularization step. The regularization we employ crucially depends on the symmetry
of Bézout matrices. We proceed to solve the polynomial eigenvalue problem by
linearization, which avoids the interpolation of highly oscillatory determinants of
resultants, overcoming further numerical difficulties.

4. Robustness: It is not essential for a bivariate rootfinding method to construct an
eigenvalue problem, but if it does it is convenient and can improve robustness.
For this reason we solve an eigenvalue problem to find one component of the
solutions to p(x, y) = q(x, y) = 0, and a second eigenvalue problem to find
the other. Therefore, our algorithm inherits some of its robustness from the QZ
algorithm [23], which is implemented in the eig command in Matlab.

5. Resultant construction: Resultant methods are more commonly based on Sylvester
resultant matrices that are preferred due to their ease of construction, and this is
especially true when dealing with polynomials expressed in an orthogonal polyno-
mial basis rather than the monomial basis. However, the Bézout resultant matrices,
when using the tensor Chebyshev basis, are also easily constructed by using the
Matlab code in [39]. We choose Bézout over Sylvester because its conditioning
can be analyzed (see Sect. 5) so its numerical behavior is better understood, and
its symmetry can be exploited.

For definiteness, unless stated otherwise, we consider the problem of finding the com-
mon zeros in the domain [−1, 1]× [−1, 1], but the algorithm and codes deal with any
rectangular domain.

Figure 1 summarizes the main steps in our bivariate rootfinding algorithm based
on the hidden variable resultant method, domain subdivision, Bézout regularization,
and the tensor Chebyshev basis. In particular, it is crucial that we express the polyno-
mial interpolants of f and g in a tensor Chebyshev basis so that we can employ fast
transforms for interpolation based on the fast Fourier transform, overcome numerical
instability associated with interpolation at equally-spaced points, and prevent the com-
mon zeros from being sensitive to perturbations of the polynomial coefficients [52].

Subdivision is also a key part of our algorithm and is crucial for the method to
be practical for polynomial systems of high degree. There are two alternative subdi-
vision strategies. The first consists of resampling the original functions f and g to
construct new interpolants on each subdomain and the second involves resampling
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184 Y. Nakatsukasa et al.

Fig. 1 Flowchart of our bivariate rootfinder based on the hidden variable resultant method and Bézout
matrices. First, we approximate f and g by polynomials, using domain subdivision until the polynomial
degree on each subdomain is ≤ 16 (Sect. 4). Then, we construct the resultant (Sect. 3), regularize (Sect. 6),
and solve for one of the components before using a univariate rootfinder for the remaining component of
the common zeros. Finally, we improve the accuracy of the solutions by local refinement (Sect. 7)

the global interpolants. The first implementation is available on Matlab Central File
Exchange [38], and it is particularly advantageous for functions that, for example,
have highly varying magnitudes or cannot be evaluated with constant relative accu-
racy throughout the domain. The second approach is compatible with the Chebfun
environment [51], where the interpolants may have been constructed from sampling
data. This version of the code is available in the roots command of Chebfun2 [48],
a software package written in Matlab for computing with bivariate functions.

Both implementations are capable of finding the common zeros of f and g when
the degrees of their polynomial interpolants are much higher than in previous studies.
For example, the built-in commands in Maple and Mathematica, which implement
resultant-based algorithms in the monomial basis, require about 60 s for degree 16
examples (with dubious accuracy) and cannot handle degree 30 or higher; however,
it should be noted that these algorithms also compute complex solutions, while we
focus on real solutions. Our Matlab codes solve degree 16 in a fraction of a second,
need about 5 s for degree 40, and approximately 100 s for degree 100. Often, the
runtime scales quartically, and sometimes much less, with the degree, and our codes
can solve problems with degree 1,000 (see Sect. 8). In this paper we refer to the
maximal degree instead of the total degree, that is,

∑N
i=0

∑N
j=0 ci j yi x j is a degree N

bivariate polynomial.
In the next section we review previous literature related to solving p(x, y) =

q(x, y) = 0. The core of our codes is a hidden variable resultant algorithm, exploiting
Bézout matrices, that allows us to efficiently and reliably solve bivariate polynomial
systems of low degree (≤16). Section 3 contains the details of this method based on
Bézout technology. In Sect. 4 we explain the process of domain subdivision in our
algorithm. Section 5 analyzes the conditioning of the Bézout resultant method. In
Sect. 6 we describe a regularization step to improve the stability of the algorithm. In
Sect. 7 we discuss further details of the algorithm, and in Sect. 8 we present several
numerical examples that highlight its robustness and accuracy.

2 Existing bivariate rootfinding algorithms

A number of studies have been carried out on bivariate rootfinding [10,20,28,34], and
we mainly concentrate on approaches that require numeric, as opposed to symbolic,
computations. These include variations on the resultant method, contouring algo-
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Computing common zeros of two bivariate functions 185

rithms, homotopy continuation, and a two-parameter eigenvalue approach. It is also
worth mentioning the existence of important approaches based on Gröbner bases, even
though some symbolic manipulations are usually employed [17]. Generally, Gröbner
bases are feasible only for small degree polynomial systems because of their com-
plexity and numerical instability.

2.1 Resultant methods

The hidden variable resultant method is based on selecting one variable, say y, and
writing p and q as polynomials in x with coefficients in R[y], that is,

p(x, y) = py(x) =
n p∑

j=0

α j (y)x j , q(x, y) = qy(x) =
nq∑

j=0

β j (y)x j . (4)

Note that, although we have expressed (4) in the monomial basis, any polynomial basis
can be used, see, for example, [9]. Monomials are the standard basis in the literature
[18,21], due to their simplicity and flexibility for algebraic manipulations. On the
other hand, the Chebyshev polynomial basis is a better choice for numerical stability
on the real interval [−1, 1] [50]. For this reason, we always express polynomials in
the Chebyshev basis.

The two polynomials py(x) and qy(x) in (4), thought of as univariate in x , have a
common zero if and only if a resultant matrix is singular [5]. Therefore, the y-values
of the solutions to (1) can be computed by finding the y-values such that a resultant
matrix is singular.

There are many different resultant matrices such as Sylvester [18], Bézout [8],
and other matrices [5,21,29], and this choice can affect subsequent efficiency (see
Table 1) and conditioning (see Sect. 5). Usually, resultant matrices are constructed
from polynomials expressed in the monomial basis [10,34], but they can be derived
when using any other bases [9].

Finding the y-values such that the resultant matrix is singular is equivalent to a
polynomial eigenvalue problem, and many techniques exist such as methods based
on contour integrals [2,7], Newton-type methods, inverse iteration methods (see the
review [36]), the Ehrlich–Aberth method [11], and the standard approach of solving
via linearization [22]. In our implementation we use linearization, which replaces
a polynomial eigenvalue problem with a generalized eigenvalue problem with the
same eigenvalues and Jordan structure [22]. Then we apply the QZ algorithm to the
linearization; for a discussion of possible alternatives, see [36]. We leave for future
research the study of the possible incorporation in our algorithm of alternative matrix
polynomial eigensolvers.

Another related approach is the u-resultant method, which works similarly and
starts by introducing a dummy variable to make the polynomial interpolants homo-
geneous. The hidden variable resultant method is then applied to the new polynomial
system selecting the dummy variable first. This is quite natural because it ensures
that the x- and y-variables are treated in the same way, but unfortunately, making a
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polynomial homogeneous inherently requires the monomial basis, and hence, entails
a corresponding numerical instability.

Some resultant methods first apply a coordinate rotation, such as the
BivariateRootfinding command in Maple, which is used to ensure that two
common zeros do not share the same y-value. We provide a careful case-by-case
study to show that our approach does not require such a transform. Furthermore, other
changes of variables can be applied, such as x = (z+ω)/2 and y = (z−ω)/2 [45], then
selecting the variable ω, which satisfies ω = z̄ when x and y are real. We have found
that such changes of variables give little improvement for most practical examples.

2.2 Contouring algorithms

Contouring algorithms such as marching squares and marching triangles [26] are
employed in computer graphics to generate zero level curves of bivariate functions.
These contouring algorithms can be very efficient at solving (1), and until this paper
the roots(f,g) command in Chebfun2 exclusively employed such a contouring
approach [48]. In the older version of Chebfun2 the zero level curves of f and g

were computed separately using the Matlab command contourc, and then the
intersections of these zero level curves were used as initial guesses for Newton’s
iteration.

Contouring algorithms suffer from several drawbacks:

1. The level curves of f and g may not be smooth even for very low degree polyno-
mials, for example, f (x, y) = y2 − x3.

2. The number of disconnected components of the level curves of f and g can be
potentially quite large [24].

3. Contours of f or g are not always grouped correctly, leading to the potential for
missed solutions.

4. The zero level curves must be discretized and therefore, the algorithm requires a
fine tuning of parameters to balance efficiency and reliability.

For many practical applications solving (1) via a contouring algorithm may be an
adequate approach, but not always.

Remark 1 The roots(f,g) command in Chebfun2 implements both the algorithm
based on a contouring algorithm and the approach described in this paper. An optional
parameter can be supplied to select one or the other of these choices. We have decided
to keep the contouring approach as an option because it can sometimes run faster, but
we treat its computed solutions with suspicion, and we employ the algorithm in this
paper as a robust alternative.

2.3 Other numerical methods

Homotopy continuation methods [44] have a simple underlying approach based on
solving an initial easy polynomial system that can be continuously deformed into (1).
Along the way several polynomial systems are solved with the current solution set
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being used as an initial guess for the next. These methods have received significant
research attention and are a purely numerical approach that can solve multivariate
rootfinding problems [6,44].

The two-parameter eigenvalue approach constructs a determinantal expression for
the polynomial interpolants to f and g and then rewrites p(x, y) = q(x, y) = 0 as a
two-parameter eigenvalue problem [3],

A1v = x B1v + yC1v, A2w = x B2w + yC2w.

This approach has advantages because the two-parameter eigenvalue problem can be
solved with the QZ algorithm [27], or other techniques [27]. However, the construction
of a determinantal expression, and hence the matrices Ai , Bi , Ci for i = 1, 2, currently
requires the solution of a multivariate polynomial system [41]. Alternatively, matrices
of much larger size can be constructed using a generalized companion form, but these
are too large to be efficient [37].

3 The resultant method with Bézout matrices

We now describe the hidden variable resultant method using Bézout matrices that
forms the core of our algorithm. The initial step of the resultant method selects a
variable to solve for first, and our choice is based on the efficiency of subsequent
steps. For simplicity, throughout the paper, we select the y-variable and write the
polynomials p(x, y) and q(x, y) as functions of x with coefficients in R[y], using the
Chebyshev basis:

py(x) =
n p∑

j=0

α j (y)T j (x), qy(x) =
nq∑

j=0

β j (y)T j (x), x ∈ [−1, 1], (5)

where α j , β j ∈ R[y], i.e., polynomials in y with real coefficients,have the polynomial
expansions

α j (y) =
m p∑

i=0

Pi j Ti (y), β j (y) =
mq∑

i=0

Qi j Ti (y), y ∈ [−1, 1],

where the matrices P and Q are as in (2).
The (Chebyshev) Bézout matrix of py and qy in (5), denoted by B(py, qy), is

defined1 by B(py, qy) = (bi j )0≤i, j≤N−1 [39], where N = max(n p, nq) and the
entries satisfy

py(s)qy(t) − py(t)qy(s)

s − t
=

N−1∑

i, j=0

bi j Ti (s)T j (t). (6)

1 Historically, this functional viewpoint of a Bézout matrix is in fact due to Cayley, who modified the
original method of Bézout, both in the monomial basis [43, Lesson IX].
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We observe that since bi j ∈ R[y], B(py, qy) can be expressed as a matrix polyno-

mial [22], i.e., a polynomial with matrix coefficients, that is

B(y) = B(py, qy)(y) =
M∑

i=0

Ai Ti (y), Ai ∈ R
N×N , (7)

where M = m p +mq is the sum of the degrees of p(x, y) and q(x, y) in the y-variable.
The resultant of py and qy is defined as the determinant of B(y), which is a scalar
univariate polynomial in y. The usual resultant definition is via the Sylvester matrix,
but we use the symmetric Bézout matrix, and later explain that these two definitions
are subtly different (see Sect. 3.1).

It is well-known [18, Proposition 3.5.8 and Corollary 3.5.4] that two bivariate
polynomials share a common factor in R[x, y] only if their resultant is identically zero.
Throughout this paper we are assuming the solution set to (1) is zero-dimensional and
hence that the polynomial interpolants p and q do not share a common factor. This
has two important implications:

– (Bézout’s Theorem) The number of solutions to p(x, y) = q(x, y) = 0 is
finite [30, Ch. 3];

– (Non-degeneracy) The resultant, det(B(y)), is not identically zero and therefore,
B(y) is a regular matrix polynomial [22].

Since the resultant is not identically zero, the solutions to

det (B(y)) = det
(
B(py, qy)

)
= 0 (8)

are the finite eigenvalues of B(y), and we observe that if y∗ is a finite eigenvalue of
B(y), then the resultant of py∗(x) = p(x, y∗) and qy∗(x) = q(x, y∗) is zero. Usually,
a zero resultant means that p(x, y∗) and q(x, y∗) share a finite common root [5], but
they can also have a “common root at infinity” (see Sect. 3.1).

The eigenvalues of B(y) can be found via linearization of matrix polynomials
expressed in polynomial bases [33,39], which constructs a generalized eigenvalue
problem Cv = λEv with the same eigenvalues as B(y). In our implementation
we choose the colleague linearization, which is a companion-like matrix pencil for
(matrix) polynomials expressed in the Chebyshev basis and employ the eig command
in Matlab to solve Cv = λEv. The process of linearization converts the problem of
finding the eigenvalues of B(y), a matrix polynomial of degree M and size N , to an
M N × M N generalized eigenvalue problem. Typically, the majority of the computa-
tional cost of our algorithm is in solving these generalized eigenvalue problems.

After filtering out the y-values that do not correspond to solutions in [−1, 1] ×
[−1, 1], the x-values are computed via two independent univariate rootfinding prob-
lems: py(x) = 0 and qy(x) = 0. These univariate problems are solved by a rootfinder
based on the colleague matrix [13,51] (see Sect. 7).

The resultant method with Bézout matrices also works if we select the x-value to
solve for first, and this choice can change the cost of the computation. Let n p and
m p be the degrees of p(x, y) in the x- and y-variable, respectively, and similarly
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Computing common zeros of two bivariate functions 189

Table 1 Sizes and degrees of matrix polynomials constructed from the Bézout and Sylvester [5] resultant
matrices

Resultant Size of Ai in (7) Degree Size of Cv = λEv

Bézout (y first) max(n p, nq ) m p + mq max(n p, nq )(m p + mq )

Bézout (x first) max(m p, mq ) n p + nq max(m p, mq )(n p + nq )

Sylvester (y first) n p + nq max(m p, mq ) max(m p, mq )(n p + nq )

Sylvester (x first) m p + mq max(n p, nq ) max(n p, nq )(m p + mq )

The product of the size of the Ai in (7) and degree is the size of the resulting generalized eigenvalue problem
Cv = λEv, which depends on whether the x- or y-variable is solved for first. We use the Bézout resultant
matrix and solve for the y-values first if max(n p, nq )(m p + mq ) ≤ max(m p, mq )(n p + nq ); the x-values
first, otherwise

let nq and mq be the degrees for q(x, y). If the y-values are solved for first, then
the generalized eigenvalue problem Cv = λEv formed after linearization is of size
max(n p, nq)(m p + mq) and the cube of this number is the expected computational
complexity. If the x-values are solved for first, then the generalized eigenvalue problem
is of size max(m p, mq)(n p + nq), which is usually roughly comparable, but in some
cases can be considerably larger (or smaller). Table 1 gives the various sizes and degrees
resulting from the choice of resultant matrix and variable computed first. We always
use Bézout resultant matrices because of their symmetry, but select the variable to
solve for first by minimizing the size of the resulting generalized eigenvalue problem.

3.1 Algebraic subtleties

The resultant method is mathematically quite subtle [18, Ch. 3 & 9], and we summarize
some of these subtleties here. These delicate issues arise because there are many
different ways in which a common zero of p and q can manifest itself as an eigenvalue
of B(y). As always we assume that the solution set to p(x, y) = q(x, y) = 0 is zero-
dimensional, and here further assume the common zeros are simple, i.e., if (x∗, y∗) is
a common zero of p and q, then the Jacobian of p and q is invertible there. There are
two mutually exclusive cases:

1. Finite common zero: There exists (x∗, y∗) ∈ C
2 such that p(x, y∗) and

q(x, y∗) are nonzero and share a common finite root at x∗. In this case,
y∗ is an eigenvalue of B(y) with an eigenvector in Vandermonde form, i.e.,[
T0(x∗), T1(x∗), . . . , TN−1(x∗)

]T
.

2. Common zero at infinity: There exists y∗ ∈ C such that p(x, y∗) and q(x, y∗)
are nonzero and both have a zero coefficient in TN (x). We say that they share a
“common zero at infinity” and in this case, y∗ is a finite eigenvalue of B(y) with
eigenvector [0, 0, . . . , 0, 1]T .

Note that, if the degrees in x of py(x) and qy(x) differ, then the definition of the
resultant via B(y) is slightly different from the determinant of the Sylvester matrix, as
can be seen from a result in [31]. For instance, if n p > nq , then the two determinants
differ by a factor C(αn p (y))n p−nq , when C is a constant and αn p (y) is the leading
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coefficient of py(x), but this does not alter the eigenvalues corresponding to finite
common zeros.

The algebraic subtlety continues when there are many common zeros (possibly
including “zeros at infinity”) of p and q sharing the same y-value. In this case B(y)

has an eigenvalue with multiplicity greater than 1 even though p and q only have
simple common zeros. Furthermore, there can exist y∗ ∈ C such that either p(x, y∗) or
q(x, y∗) is identically zero, in which case y∗ is an eigenvalue of B(y) with B(y∗) = 0,
a zero matrix.

Eigenvalues of B(y) of multiplicity > 1 can be ill-conditioned and hence, difficult to
compute accurately, particularly in the presence of nontrivial Jordan chains. However,
in the generic case where all the common zeros of p and q are simple,2 the x-values for
any two common zeros with the same y-value are distinct. Moreover, the eigenvalues of
B(y) have the same geometric and algebraic multiplicity with eigenvectors spanned by
Vandermonde vectors span{

[
T0(xi ), . . . , TN−1(xi )

]T }, where xi are the x-values of the
common zeros (xi , y∗). This means the eigenvalues of B(y) in [−1, 1] are semisimple,
and hence can be obtained accurately. The intuitive explanation is that such solutions
result only in nondefective (or semisimple) eigenvalues of B(y), and nondefective
multiple eigenvalues are no more sensitive to perturbation than simple eigenvalues for
both matrices [46] and matrix pencils [53], showing they are well-conditioned. This
is often overlooked and multiple eigenvalues are sometimes unnecessarily assumed
to be ill-conditioned. Therefore, if the original problem (1) only has simple common
zeros, then the resultant method can compute accurate solutions and there is no need
to perform a change of variables so that well-separated common zeros have different
y-values.

In the presence of multiple or near-multiple common zeros the situation becomes
more delicate, and in such cases the corresponding eigenvalues of B(y) are ill-
conditioned (see Theorem 1). Our focus is on the generic case where the solutions are
simple, and a reasonable requirement for a numerical algorithm is that it detects simple
common zeros that are not too ill-conditioned, while multiple zeros are inherently ill-
conditioned and difficult to compute accurately. Our code typically computes common
zeros of multiplicity two with O(u1/2) accuracy, i.e., the error expected from a back-
ward stable algorithm. However, since near-multiple solutions are also ill-conditioned
any numerical scheme, including our own, suffer from inevitable numerical difficul-
ties.

4 Subdivision of the domain

The Bézout resultant method of Sect. 3 requires three main features to become practi-
cal: subdivision, local Bézout refinement, and regularization. The first of these is a 2D
version of Boyd’s subdivision technique for univariate rootfinding [14,15], as utilized
for many years in Chebfun [13,51].

2 This includes those at infinity. The requirement can be formalized, but the algebraic details are beyond
the scope of this paper.
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Fig. 2 Le f t Subdivision of [−1, 1]× [−1, 1] used for f = sin((x −1/10)y) cos(1/(x + (y −9/10)+5))

and g = (y −1/10) cos((x + (y +9/10)2/4)). The blue and red lines represent subdivisions used to ensure
the piecewise interpolants to f and g have degree ≤ 16, and the green lines are for both. The black dot is
the only common zero. Right Zero contours (blue, red) and solutions (black) for oscillatory functions f

and g as in (9)

We recursively subdivide [−1, 1]×[−1, 1], in the x- and y-variable independently,
until the polynomial interpolants of f and g on each subdomain are of degree ≤
16, a parameter determined by experimentation. Specifically, we subdivide in x if
max(n p, nq) > 16, and subdivide in y if max(m p, mq) > 16. Figure 2 (left) shows
how [−1, 1]×[−1, 1] is subdivided for sin((x−1/10)y) cos(1/(x+(y−9/10)+5)) =
(y − 1/10) cos((x + (y + 9/10)2/4)) = 0. A polynomial system of degree ≤ 16 is
solved on each subdomain.

Occasionally, f and g require a different amount of subdivision in one or both of
the coordinate directions. Regardless, we need to subdivide f and g on the same grids.
For example, consider the following problem:

(
f (x, y)

g(x, y)

)
=

(
sin(30x − y/30) + y

sin(x/30 − 30y) − x

)
= 0, (x, y) ∈ [−1, 1] × [−1, 1]. (9)

Here, the global interpolants p and q have polynomial degrees (m p, n p, mq , nq) =
(7, 63, 62, 6), so f requires many subdivisions in x , and g requires many in y. How-
ever, since f and g must be subdivided on the same grids we actually subdivide f

and g many times in both coordinate directions. Figure 2 shows the zero contours and
common zeros for (9).

We do not exactly bisect in the x- or y-direction, but instead subdivide asymmetri-
cally to avoid splitting exactly at a solution to f (x, y) = g(x, y) = 0. That is, in the
x-direction we subdivide [−1, 1]×[−1, 1] into the two subdomains [−1, rx ]×[−1, 1]
and [rx , 1] × [−1, 1], and in the y-direction [−1, 1] × [−1, ry] and [−1, 1] × [ry, 1],
where rx and ry are small arbitrary constants.3 This is to avoid accidentally subdivid-

3 We use rx ≈ −0.004 and ry ≈ −0.0005. There is no special significance of these constants apart from
that they are small and arbitrary.
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Fig. 3 Subdivision complexity
is O

(
nα

)
, where

α = − log 4/ log τ and
0 < τ ≤ 1 measures the
reduction in polynomial degree
after subdivision. When τ < 1/2
polynomial evaluation is the
dominating computational cost
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ing at a solution since problems arising in practice often have zeros at special points
like (0, 0). Usually, a piecewise polynomial interpolant can be of lower degree than a
global polynomial approximation, but not always. For subdivision to be computation-
ally worthwhile we require that, on average, each subdivision reduces the polynomial
degree (in the x or y direction) by at least 79 %. The estimate 79 % is derived from
the fact that 2(.79)3 ≈ 1, and each subdivision in the x-direction splits a problem into
two, and the complexity of the algorithm depends cubically on the degree in x . Let
n = max(m p, n p, mq , nq) be the maximal degree of p and q, and let d = 16 be the
terminating degree for subdivsion. We define K to be the smallest integer such that
n(.79)K ≤ d, and we stop subdividing when either the degree is < d, or subdivision
has been performed K times. After each subdivision we eliminate subdomains with
2|P00| >

∑
i, j |Pi j | or 2|Q00| >

∑
i, j |Qi j |, which certainly do not contain a solution.

Suppose for the moment that all the degrees of p and q are equal to n in both
x and y and that each subdivision leads to a reduction in the degree by a factor
0 < τ ≤ 1. Subdividing is done k times in both x and y until nτ k ≤ d = 16, so
k ≈ (log d − log n)/ log τ and we have at most 4k subdomains, each requiring O(d6)

operations to solve the local polynomial system. Therefore, the overall complexity is

O

(
4k

)
= O

(
4

log d−log n
log τ

)
= O

(
4− log n

log τ

)
= O

(
n

− log 4
log τ

)
.

Figure 3 shows the exponent − log 4/ log τ as a function of τ . When τ � 0.5,
the overall complexity is as low as O(n2) and dominated by the cost of subdivision.
When τ ≈ 0.79 the complexity is as high as O(n6), the same as without subdivision,
but as long as τ < 1 subdivision is useful as it reduces the storage cost from O(n4),
for storing the linearization matrix pencil, to O(n2) for storing the matrix of function
samples.

The average degree reduction τ can take any value between 0 and 1 as the following
examples show:
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Fig. 4 A log–log plot of
polynomial degree vs. execution
time for computing the solutions
to sin(ω(x + y)) =
cos(ω(x − y)) = 0, where
1 ≤ ω ≤ 50. Here, subdivision
has reduced the complexity from
O(n6) to O(n4)
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1. Suppose that f (x, y) = f1(x) f2(y), where f1(x) and f2(y) are entire oscillatory
functions. Then by Nyquist’s sampling theorem [35] the functions f1 and f2 must
be sampled at, at least, 2 points per wavelength to be resolved in the x and y

direction. Since subdividing halves the number of oscillations in the x and y

direction, the number of points required for resolution is halved in the x and y

direction and therefore, τ 2 ≈ 1/4 and τ ≈ 0.5.
2. Suppose that f (x, y) = h(x − y), where h is an entire oscillatory function, then

by Nyquist’s sampling theorem f must be sampled at 2 points per wavelength
along the diagonal, i.e., y = x . Subdivision in both x and y reduces the length of
the diagonal by 2, and hence τ 2 ≈ 1/2 and τ ≈ 0.707.

3. Take the very contrived function f (x, y) = |x − rx ||y − ry |, which is of very high
numerical degree on [−1, 1] × [−1, 1]. However, on subdivision the degree of f

on each subdomain is just 1 and therefore, τ ≈ 0.
4. Suppose that f (x, y) = | sin(c(x − y))| with c ≫ 1, then f is of very high

numerical degree with a discontinuous first derivative along many diagonals. In
this example, subdivision barely reduces the numerical degree, and hence for all
practical purposes τ ≈ 1.

Two-dimensional subdivision is also beneficial for accuracy of the computed solu-
tions to (1) because it reduces the norms of the coefficient matrices Ai , which has
desirable consequences (see Sect. 5). In addition, subdivision reduces the size of the
Bézout matrix, and this increases the distance from singularity of the matrix polyno-
mial B(y) as defined in (7).

Typically, we observe that τ ≈
√

2/2 ≈ 0.707, and hence subdivision leads to a
complexity of O(n4). Figure 4 shows the computational time for solving sin(ω(x +
y)) = cos(ω(x − y)) = 0, 1 ≤ ω ≤ 50, with and without subdivision.

5 Conditioning of the Bézout polynomial eigenvalue problem

Suppose that (x∗, y∗) is a simple common zero of p and q, and let (x̂, ŷ) = (x∗ +
δx, y∗ + δy) be a common zero of the perturbed polynomials p̂ = p + δp and
q̂ = q + δp. Then we have, to first order,
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0 =
[

p̂(x̂, ŷ)

q̂(x̂, ŷ)

]
=

[
∂x p(x∗, y∗) ∂y p(x∗, y∗)
∂x q(x∗, y∗) ∂yq(x∗, y∗)

] [
δx

δy

]
+

[
δp(x̂, ŷ)

δq(x̂, ŷ)

]
. (10)

Our implementation initially scales p and q so that ‖p‖∞ = ‖q‖∞ = 1, where
‖p‖∞ = maxx,y∈[−1,1] |p(x, y)|. Below we assume ‖p‖∞ = ‖q‖∞ = 1.

A stable numerical method computes a solution with an error of size O(κ∗u), where
u is the unit roundoff and κ∗ is the absolute condition number [25, Ch. 1] of (x∗, y∗)
defined as

κ∗ = lim
ǫ→0+

sup

{
1

ǫ
min

∥∥∥∥
[
δx

δy

]∥∥∥∥
2

: p̂(x̂, ŷ) = q̂(x̂, ŷ) = 0

}
, (11)

where the supremum is taken over the set {( p̂, q̂) :
∥∥[ ‖δp‖∞

‖δq‖∞

]∥∥
2 ≤ ǫ}. Here and below

‖ · ‖2 denotes either the Euclidean 2-norm of a column vector or the operator 2-norm
of a square matrix, i.e., the largest singular value. Thus, by (10) the condition number
(11) of the rootfinding problem is κ∗ = ‖J−1‖2, where J denotes the Jacobian matrix
of p and q at (x∗, y∗).

To analyze the error in a computed solution, we examine the conditioning of the
polynomial eigenvalue problem B(y), which we use to find the y-values of the solu-
tion. To first order, the error in the computed eigenvalues of B(y) is bounded by
(conditioning)·(backward error), where κ(y∗, B) denotes the conditioning of y∗ as an
eigenvalue of B(y). It is defined by

κ(y∗, B) = lim
ǫ→0+

sup

{
1

ǫ
min |ŷ − y∗| : det B̂(ŷ) = 0

}
, (12)

where the supremum is taken over the set of matrix polynomials B̂(y) such that
maxy∈[−1,1] ‖B̂(y)− B(y)‖2 ≤ ǫ. The backward error is the ∆B(y) with the smallest
value of maxy∈[−1,1] ‖∆B(y)‖2 such that the computed solution is an exact solution
of B(y) + ∆B(y).

The special structure of Bézout matrix polynomials allows us analyze κ(y∗, B).

Theorem 1 Let B(y) be the Bézout matrix polynomial in (7) with ‖p‖∞ = ‖q‖∞ = 1,

and suppose (x∗, y∗) ∈ [−1, 1]×[−1, 1] is a simple common zero of p and q yielding

a simple eigenvalue y∗ of B(y). Then the absolute condition number of the eigenvalues

of B(y), as defined in (12), is

κ(y∗, B) = ‖v‖2
2

| det J | , (13)

where J =
[ ∂x p ∂y p

∂x q ∂yq

]
is the Jacobian and v =

[
T0(x∗), . . . , TN−1(x∗)

]T
. Further-

more, κ(y∗, B) satisfies

1

2

κ2
∗

κ2(J )
≤ κ(y∗, B) ≤ 2N

κ2
∗

κ2(J )
, (14)

1

2

κ∗
‖J‖2

≤ κ(y∗, B) ≤ 2N
κ∗

‖J‖2
, (15)
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where κ2(J ) = ‖J‖2‖J−1‖2.

Proof Since B(y) is a Bézout matrix polynomial, the eigenvector corresponding to y∗
is of the form v =

[
T0(x∗), . . . , TN−1(x∗)

]T
(see Sect. 3.1). The first-order perturba-

tion expansion of y∗ when B(y) is perturbed to B(y) + ∆B(y) is [47, Thm. 5]

ŷ = y∗ − vT ∆B(y∗)v

vT B ′(y∗)v
, (16)

where the derivative in B ′(y∗) is taken with respect to y.
From (12) and (16) we have κ(y∗, B) ≤ ‖v‖2

2/|vT B ′(y∗)v|, and to show that this
upper bound is always attained we take ∆B(y) = ǫvvT t (y), where t (y) is a scalar
polynomial such that maxy∈[−1,1] |t (y)| = |t (y∗)| = 1

‖v‖2
.

To bound the numerator of ‖v‖2
2/|vT B ′(y∗)v|, we use 1 ≤ ‖v‖2 ≤

√
N , which

follows from |Tk(y∗)| ≤ 1. To bound the denominator, we note that from (6) and
(7) the term vT B(y)v can be interpreted as evaluation at s = t = x∗ of the Bézout
function

B(p, q) = p(s, y)q(t, y) − q(s, y)p(t, y)

s − t
. (17)

A convenient way to work out vT B ′(y)v is by differentiating the Bézoutian (17)
with respect to y and take the limit

vT B ′(y)v = lim
(s,t)→(x∗,x∗)

B(∂y p, q) + B(p, ∂yq),

which can be evaluated by L’Hôspital’s rule. Finally, since p(x∗, y∗) = q(x∗, y∗) = 0
we conclude that

|vT B ′(y∗)v| = |∂x p∂yq − ∂y p∂x q| = | det J |;

hence, κ(y∗, B) = ‖v‖2
2

| det J | , yielding (13).

The Jacobian is a 2 × 2 matrix so 1
| det J | = ‖J−T ‖1

‖J‖1
, in which ‖ · ‖1 denotes the

operator 1-norm of a matrix. Moreover, using 1
2

‖J−1‖2
‖J‖2

≤ ‖J−T ‖1
‖J‖1

≤ 2 ‖J−1‖2
‖J‖2

and

‖J−1‖2
‖J‖2

= ‖J−1‖2
2

‖J−1‖2‖J‖2
= κ2

∗
κ2(J )

we obtain (14), and (15) follows from κ2(J ) = κ∗‖J‖2.
⊓⊔

The condition analysis and estimates in Theorem 1 appear to be the first in the liter-
ature for the Bézout polynomial eigenproblem B(y). Importantly, it reveals situations
when the Bézout resultant method worsens the conditioning. If ‖J‖2 ≥ 1, then the
eigenvalues of B(y) can be computed accurately; Theorem 1 warns that this may not
be the case when ‖J‖2 ≪ 1, i.e., if the derivatives of p and q are small at (x∗, y∗).
Specifically, the inequalities (15) show that in this case κ(y∗, B) ≫ κ∗ if ‖J‖2 ≪ 1.
In particular, inequalities (14) show that κ(y∗, B) can be as large as the square of the
original conditioning κ∗, and the Bézout approach may result in solutions with errors
as large as O(κ2

∗u) and may miss solutions with κ∗ > O(u−1/2).
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It is worth noting that the quantity | det J | = |∂x p∂yq − ∂y p∂x q| in (13) does not
change if we swap the roles of x and y and consider B(x) instead of B(y). Thus the
conditioning of the Bézout matrix polynomial cannot be improved by swapping x and
y, and the decision to solve for x or y first can be based solely on the size of the
generalized eigenvalue problems (see Table 1).

5.1 Improving accuracy to O(‖J−1‖2u)

The preceding discussion suggests that the Bézout resultant approach can worsen the
conditioning of the problem and, hence, may give inaccurate or miss solutions. We
overcome this by a local refinement and detecting ill-conditioned regions.

Local Bézoutian refinement: After the initial computation, we employ a local
Bézoutian refinement, which reruns our algorithm in a small region containing (x∗, y∗),
where the polynomials are both small.

Suppose that we work in a rectangular domain Ω = [xmin, xmax]×[ymin, ymax]. For
simplicity assume that xmax − xmin ≈ ymax − ymin with |Ω| = (xmax − xmin)(ymax −
ymin) ≪ 1. Since p and q are polynomials, Ω can be taken to be sufficiently small so
that ‖p‖Ω‖q‖Ω = O(|Ω|‖∇ p‖2‖∇q‖2), where ‖p‖Ω = max(x,y)∈Ω |p(x, y)| and

‖∇ p‖2 = ‖
[ ∂x p(x∗,y∗)

∂y p(x∗,y∗)

]
‖2. In our codes, and for simplicity of analysis, we map Ω to

[−1, 1] × [−1, 1] via the linear transformations

x ← �

x − 1
2 (xmax + xmin)

1
2 (xmax − xmin)

, y ← �

y − 1
2 (ymax + ymin)

1
2 (ymax − ymin)

. (18)

A normwise backward stable algorithm for the polynomial eigenvalue problem
B(y) gives solutions with backward error O(u maxi ‖Ai‖2), where Ai are the coef-
ficient matrices of B(y) in (7). Then ‖Ai‖2 are of size O(‖p‖Ω‖q‖Ω ), and hence
O(|Ω|‖∇ p‖2‖∇q‖2). Therefore, the backward error resulting from solving B(y) is
of size O(u|Ω|‖∇ p‖2‖∇q‖2).

The mapping (18) results in modified gradients such that‖∇ p‖Ω = O(|Ω| 1
2 ‖∇ p‖2)

and ‖∇q‖Ω = O(|Ω| 1
2 ‖∇q‖2). Thus, by (13), assuming that J is not too ill-

conditioned, the conditioning is κΩ(y∗, B) = O((|Ω|‖∇ p‖2‖∇q‖2)
−1). The crux of

the discussion is that globally the conditioning (13) of the eigenvalues of the Bézout
matrix polynomial can be worse than the original conditioning, but after local refine-
ment the condition number significantly improves.

We conclude that the error resulting from solving the polynomial eigenvalue prob-
lem B(y) is

O(κΩ(y∗, B)u|Ω|2‖∇ p‖2‖∇q‖2) = O(u).

This corresponds to an error of size O(u|Ω|) when we map x and y back to [−1, 1]×
[−1, 1] by (18).
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In addition, approximating p and q in Ω results in forward errors O(u‖p‖∞)

and O(u‖q‖∞), respectively. So by (10) the overall error is O(u‖J−1‖2), reflect-
ing the conditioning of the original problem, and the solutions are computed sta-
bly. The condition on Ω can be relaxed to the weaker requirement ‖p‖Ω‖q‖Ω =
O(|Ω|‖J−1‖2‖∇ p‖2‖∇q‖2) to arrive at the same conclusion.

Detecting ill-conditioned region and rerunning: Solutions can be missed ifκ(y∗, B) >

O(u−1), and this is unacceptable if the original conditioning is κ∗ ≪ O(u−1). The
estimate (15) shows that κ(y∗, B) ≫ κ∗ if and only if ‖J‖2 is small, and since
p(x∗, y∗) = q(x∗, y∗) = 0, this implies that p and q are small near (x∗, y∗). To
detect ill-conditioned regions in which solutions might have been missed by the initial
Bézoutian method, we sample p, q, and J on an equispaced grid in [−1, 1] × [−1, 1]
of size (2 max(n p, nq))2 and find locations in which |p|, |q| ≤ O(u1/2) and | det J | ≤
O(u). If such points exist, we identify the rectangular subdomain(s) that contain these
points and rerun the Bézoutian method there. In each subdomain the polynomials
are small with |p|, |q| ≤ O(u1/2), and hence, by the argument above, solutions with
κ∗ ≪ O(u−1) are not missed and are computed with accuracy O(u‖J−1‖2).

We note that it is easy to construct low degree polynomials p and q so that‖J−1‖2 ≫
u−1 at a solution (x∗, y∗), and such an ill-conditioned example cannot be solved
accurately in double precision.

If f and g vary widely in magnitude in the domain of interest, then their
global interpolants have poor relative accuracy in regions where | f | ≪ ‖ f ‖∞
and |g| ≪ ‖g‖∞, affecting the accuracy of the computed solutions. This issue
is related to the dynamic range as discussed in [14,16] for univariate rootfind-
ing, and also arises in bivariate rootfinding. A common solution is to resample
the original functions f, g instead of the polynomial interpolants p, q when work-
ing in a subdomain. Provided that f, g can always be computed with relative
accuracy, the accuracy in a subdomain can significantly improve, leading to accu-
rate solutions. The Chebfun2 roots command does not implement this, because
its primary goal is to achieve performance by working exclusively with poly-
nomials, and its functionality is much broader than bivariate rootfinding. How-
ever, the implementation on the Matlab Central File Exchange [38] does resam-
ple f and g after subdivision working with functions independently of Cheb-
fun2.

A typical case where the dynamic range becomes an issue is when f, g are moderate
degree polynomials represented in the monomial basis. In such cases our scheme
can give inaccurate results without resampling the original functions, which is the
same as any other scheme based on Chebyshev polynomials. This is reflected in the
comparisons in [45] and resampling the original functions f and g is required, as it
happens in our code [38].

Sylvester resultant matrix: The Sylvester resultant matrix could be used to replace
the Bézout resultant, and our experiments suggest that the Sylvester resultant can be
better conditioned when κ(y∗, B) ≫ κ∗ and J is well-conditioned. However, through
experiments we observe that the Sylvester resultant can have numerical difficulties
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when many solutions align along one coordinate direction, whereas the Bézout resul-
tant does not. Since the Sylvester matrix polynomial is not symmetric the form of its
left eigenvectors are nontrivial and so its conditioning is more difficult to analyze.

We also note that once subdivision is employed to yield systems of low-degree
polynomials, we can employ other methods to compute their common zeros, includ-
ing those discussed in Sect. 2. We have chosen the Bézout resultant because it is the
only method whose conditioning is fully understood. The conditioning of other resul-
tants have been analyzed, but less deterministically: for example, Jónsson and Vavasis
analyze the conditioning of the Macaulay resultant using probabilistic arguments [28].
A detailed comparison with other approaches is beyond the scope of this paper.

6 Bézoutian regularization

The resultant, det(B(y)), is zero in exact arithmetic at precisely the y-values of the
common zeros of p and q.

However, problematically, B(y) can be numerically singular, i.e., ‖B(y)‖2‖B(y)−1

‖2 ≥ 1015, for many values of y. A backward stable eigensolver, such as the QZ
algorithm applied to a linearization of B(y), can give spurious eigenvalues of B(y)

anywhere in C [4, Sec 8.7.4], and they can cause catastrophic ill-conditioning of the
other eigenvalues [40, Ch. 13].

Consequently the computed solutions can be inaccurate or spurious, and as a remedy
we apply a regularization step to B(y).

6.1 Numerical singularity of Bézout matrices

The functions f and g are assumed to be smooth, and therefore, their polynomial
interpolants p and q, typically, have tensor Chebyshev expansions as in (2) with
coefficient matrices P and Q with rapidly decaying entries. Hence, the polynomi-
als py(x) and qy(x) have rapidly decaying Chebyshev coefficients, and the Bézout
matrix B(y0), for any y0 ∈ [−1, 1], inherits a similar decay as P and Q through
its definition (6). In this Sect. B(y) always denotes the matrix polynomial, whereas
B(y0) is its evaluation (a symmetric matrix) at y0, which is any fixed value in
[−1, 1].

The decaying entries of B(y0) mean its entries in the last column are O(u)

or smaller in magnitude. Hence eN = [0, . . . , 0, 1]T is numerically an eigen-
vector with zero eigenvalue. Similar reasoning indicates that all the canonical
vectors eN , eN−1, . . . , eN−k+1 for some 1 ≤ k < N are also numerically
nearly an eigenvector with zero eigenvalue. Hence, an approximate null space
of B(y) is approximately S, where S =

[
eN−k+1|eN−k+2| . . . |eN

]
, 1 ≤ k <

N . This argument makes no reference to y0, and so we have ‖B(y0)S‖2 ≪
‖B(y0)‖2 for any y0 ∈ [−1, 1]. Thus the matrix polynomial B(y) is close
to singular. Note that such approximate eigenpairs of B(y0) are an artifact of
finite precision arithmetic, and have nothing to do with the true eigenpairs of
the matrix polynomial B(y). By contrast, at the eigenvalues y∗ ∈ [−1, 1] of
B(y), B(y∗) has a nontrivial null space with a null vector in Vandermonde form
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[
T0(x∗), . . . , TN−1(x∗)

]T
, which coincides with the eigenvector of the matrix poly-

nomial B(y) at the eigenvalue y∗. Consequently, B(y∗) has a null vector far from
span(S), which the numerical null space of B(y0) does not contain for other values of
y0.

6.2 Regularization details

First we partition B(y) into four parts,

B(y) =
[

B1(y) E(y)T

E(y) B0(y)

]
, (19)

where B0(y) and E(y) are k × k and k × (N − k), respectively. We choose k to be the
largest integer so that the matrix polynomial B1(y) is numerically nonsingular for at
least one y0 ∈ [−1, 1]:

‖B0(y0)‖2 = O(u), ‖E(y0)‖2 = O(u1/2).

Note that although the bottom-right part of B(y) is of norm O(u), E(y) is typically
not of that size; but we can still justify working with B1(y) by showing the eigenvalues
of B1(y) in y ∈ [−1, 1] are close to the eigenvalues of B(y). For our analysis the
symmetry of B(y) is crucial, and this is another reason we use Bézoutians instead of
the Sylvester matrix.

Recall that the eigenvalues of a regular matrix polynomial B(y) are the values y∗
for which the matrix B(y∗) is singular. We show that for any eigenvalue y∗ ∈ [−1, 1]
of B(y), the matrix B1(y∗) with k chosen as above is nearly singular, that is, B1(y∗)
has an eigenvalue of size O(u). Numerically, this means that y∗ can be computed
stably via the regularized polynomial eigenvalue problem B1(y).

First, we argue that for any given y0 ∈ [−1, 1], the matrix B(y0) has at least k

eigenvalues of size O(u). One way to see this is to introduce

B̃(y) =
[

B1(y) ET (y)

E(y) 0

]
, (20)

and note that by Weyl’s theorem, the matrix B̃(y0) has eigenvalues within ‖B0(y0)‖2 =
O(u) of those of B(y0). Moreover, by [32, Thm. 3.1], B̃(y) has at least k eigenvalues
that match those of −E(y0)

T B1(y0)
−1 E(y0) up to O(‖E(y0)‖4

2) = O(u2). Hence, it
suffices to show that ‖E(y0)

T B1(y0)
−1 E(y0)‖2 = O(u).

To see why we might expect ‖E(y0)
T B1(y0)

−1 E(y0)‖2 = O(u), consider the
L DLT factorization B1(y0) = L DLT , where L is unit lower triangular. For notational
simplicity, we write L and D instead of L(y0) and D(y0). We expect that the L factor
has decaying off-diagonal elements, and D has decaying diagonals.4 To see why,

4 Strictly speaking, D needs to be allowed to have 2 × 2 blocks, since an L DLT factorization with D

diagonal may not exist, as the example
[ 0 1

1 0

]
illustrates. It is possible to extend the argument to such cases,
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consider the first step in the L DLT factorization. The first column of L is parallel
to that of B1(y0), which has decaying coefficients. The Schur complement is the
(n − 1) × (n − 1) matrix B1,1(y0) − ℓd1ℓ

T , where B1,1(y0) is the lower-right part of
B1(y0), and ℓ ∈ R

n−1 is the bottom part of L’s first column. Now since ℓ has decaying
coefficients, so does the matrix ℓd1ℓ

T , and hence the decay property is inherited by
B1,1(y0) − ℓd1ℓ

T . The rest of the L DLT factorization performs the same operation
on B1,1(y0) − ℓd1ℓ

T , so the claim follows by repeating the argument, observing that
the diagonals of D become smaller as the factorization proceeds.

We have B−1
1 = L−T D−1L−1 so ET B−1

1 E = ET L−T D−1L−1 E , and since the
elements of E decay towards the bottom-right corner, so do those of L−1 E . Meanwhile,
the diagonals of D−1 grow towards the bottom-right, and the large elements of D−1

are multiplied by the small elements of E , so that ‖ET B−1
1 E‖2 ≪ ‖E‖2‖B−1

1 ‖2.
Indeed, in practice, we generally observe that ‖ET B−1

1 E‖2 = O(‖E‖2
2) = O(u).

The remaining task is to show that B1(y∗) has an eigenvalue of size O(u) if the
numerical null space of B(y∗) has dimension k + 1.

To show that B1(y∗) has an eigenvalue of size O(u), we invoke the Cauchy inter-
lacing theorem [40, Ch. 10]: arranging the eigenvalues of B1(y0) and B(y0) in non-
decreasing order,

λi (B1(y0)) ≥ λi (B(y0)).

Hence λi (B(y0)) is at least as small as λi (B1(y0)). An analogous identity also holds
for the largest eigenvalues: the i th largest eigenvalue of B(y0) is at least as large as
that of B1(y0). Consequently, an eigenvalue λi of B1(y0) with |λi | > ‖B0(y0)‖2 can
only increase in absolute value since E can be seen as a perturbation in B̃(y0) in (20).
Since ‖B0(y0)‖2 = O(u), this means that if B(y∗) has an additional null space relative
to B(y0) at other values of y0 ∈ [−1, 1], then B1(y∗) must have an eigenvalue of size
O(u). This shows that the y-values for which B(y) has an extra null space can be
reliably detected via solving the smaller problem B1(y).

The argument above holds when the coefficients of B(y) decay, a property inherited
from p and q. Otherwise, ‖B0(y)‖2 and ‖E(y)‖2 are not negilible and we solve the
polynomial eigenvalue problem for B(y) without regularization. Typically, in this
scenario B(y) is not numerically singular.

Note that our regularization is not equivalent to cutting off the high-degree terms in
p(x, y) and q(x, y); instead, it cuts off high-degree terms in the Bézoutian (6). We also
note that although the initial motivation for regularizing B(y) was for stability, it also
results in improved efficiency because the polynomial eigenvalue problem becomes
smaller in size and lower in degree.

Footnote 4 continued
but most symmetric matrices do permit D to be diagonal, and our purpose is to explain the behavior observed
in practice.
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7 Further implementation details

Some further details remain and we discuss them in this section.

7.1 Construction of Bézout matrices

Our construction of (Chebyshev) Bézout matrices is based on the Matlab code given
in [39], which exploits a connection between Bézout matrices and the block symmetric
linearization of scalar and matrix polynomials. We have improved the efficiency of that
code by restricting it to only construct Chebyshev Bézout matrices. More specifically,
in [39] it was shown that if u(x) is of degree d and v(x) is of degree at most d −1, then
in the family of linearizations introduced in [33] there is a d × d symmetric pencil of
the form λX + Y such that X is the Bézout matrix of u and v. Therefore, the Bézout
matrix B(y0) can be obtained from py0(x) and qy0(x) in (5), providing the ability to
compute B(y0) for any y0 ∈ [−1, 1].

Let m ps and mqs be the degrees of p and q in y in the subdivided domain. Then, the

coefficient matrices Ai in B(y) =
∑m ps +mqs

i=0 Ai Ti (y) can be obtained by sampling
B(y) at m ps + mqs + 1 Chebyshev points in the subdivided y-interval and converting
them to Chebyshev coefficients using the fast Fourier transform.

7.2 Finding the eigenvalues of B(y) via linearization

Once the Chebyshev coefficients are obtained, we solve the polynomial eigenvalue
problem via the standard approach of linearization. As in Chebfun, we use the col-
league matrix pencil [50, Ch. 18] for matrix polynomials, the standard companion-like
linearization for the Chebyshev basis.

After forming the coefficient matrices of B(y), we remove the leading coefficients
with Frobenius norms smaller than u maxi ‖Ai‖F , where Ai are as in (7). An analogous
technique is used in the 1D Chebfun, and since this can be regarded as a small normwise
perturbation, it can be done without causing instability issues. The size of the pencil is
(dimension of B1(y))·(degree of B1(y)) as summarized in Table 1, but regularization
and truncation can reduce the size.

The colleague matrix pencil for a matrix polynomial
∑M

i=0 Ai Ti (λ), Ai ∈ R
N×N

is [50]

λX + Y = λ

⎡
⎢⎢⎢⎣

AM

IN

. . .

IN

⎤
⎥⎥⎥⎦ − 1

2

⎡
⎢⎢⎢⎢⎢⎣

−AM−1 IN − AM−2 −AM−3 · · · −A0
IN 0 IN

. . .
. . .

. . .

IN 0 IN

2IN 0

⎤
⎥⎥⎥⎥⎥⎦

.

The eigenvalues of the matrix polynomial P(λ) match those of the matrix pencil
λX + Y , which can be computed by the QZ algorithm [23, Ch. 7].
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7.3 Univariate rootfinding

Once we have found the y-values of the solutions, then we find the x-values by a
univariate rootfinding algorithm based on computing the eigenvalues of the colleague
matrix [50], and using the eig command in Matlab. Due to subdivision, the poly-
nomials are of degree ≤ 16 on each subregion, and computing their roots is negligible
in cost.

We compute the roots of both p(x, y∗) and q(x, y∗) on the subdivided x-interval
separately and numerically verify that the absolute values of p and q are less than a
certain tolerance at these solutions, discarding those that are not. The exact tolerance
we take depends on whether we are seeking an initial estimate or performing a local
refinement (see Subsect. 7.4). Afterwards, we merge any x-values that are closer than
a distance of O(u) apart by averaging to prevent double-counting a solution due to
rounding errors.

7.4 Local Bézoutian refinement

This component is crucial to the success of the algorithm. After computing the approxi-
mate solutions via the initial Bézoutians we further employ highly localized Bézoutians
near the solutions for improved stability and accuracy. Specifically, we do the follow-
ing:

1. Group the computed zeros into clusters, each of whose members are withinO(u1/4)

in Hausdorff distance; and
2. For each cluster, execute another Bézout-based rootfinder in a small domain of

width O(u1/4) that contains the cluster.

The distance u1/4 was chosen so as to be small enough not to contain too many solu-
tions, and large enough to accommodate the errors in the initially computed solutions.
The local Bézoutian refinement is beneficial to prevent the conditioning worsening
(see Sect. 5), spurious, multiply-counted, and inaccurate solutions. The task of the
initial global Bézoutian is to obtain an estimate of the solutions that are allowed to
have error larger than O(u), but must not be missed. Hence, at first we accept x-values
with | f (x̂∗, ŷ∗)|, |g(x̂∗, ŷ∗)| ≤ O(u1/2), which does not remove those corresponding
to near-multiple or ill-conditioned solutions, and then during the local refinement we
do a more stringent test requiring | f | and |g| to be O(u).

Since at the local level the domain is much smaller than the original, the polynomial
interpolants of f and g are of very low degree, and hence the overhead in cost is
marginal.

Sometimes the local domain is so small that one of the polynomials, say p, is
numerically constant in one (or both) variable, say x . In such cases we trivially find
the roots y∗ of p(y) and compute the roots of q(x, y∗) on the local interval.

Local refinement usually results in a significant improvement in accuracy as dis-
cussed in Sect. 5. Moreover, the low-degree polynomials result in a Bézout matrix
polynomial B(y) that is far from singular, and so its numerical solution can be carried
out stably.
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The refinement is vital when many solutions exist with nearly the same value in the
first coordinate y. For example, suppose that (xi , y0 + δi ) for i = 1, . . . , k are simple
zeros of f and g, where |δi | are small. Then the computed eigenvalues of the Bézout
matrix polynomial take many (at least k) values close to y0. The algorithm then finds
the corresponding x-values via a univariate rootfinder, but this process faces difficulty,
as for each computed y0 + δi , the two functions f (x, y0 + δi ) and g(x, y0 + δi ) have
k nearly multiple zeros, and this can result in counting the same zero multiple times.
The local Bézout refinement resolves this by regarding such multiply counted zeros
as a cluster and working in a subdomain that contains very few common zeros.

7.5 Solutions off the domain, but numerically close

Some care is required to avoid missing solutions that lie on or near the boundary of the
domain [−1, 1] × [−1, 1], as a small backward perturbation can move them outside.
This is the same reason we do not exactly bisect in the subdivision (see Sect. 4).
We must also be careful not to miss real solutions that are numerically perturbed to
complex ones with negligible imaginary parts.

To ensure that we do not miss the solutions near the boundary, we initially look
for solutions in the slightly enlarged domain [−1 − δ, 1 + δ] × [−1 − δ, 1 + δ],
where δ = 10−10. Then we disregard solutions outside [−1, 1] × [−1, 1]. Solutions
off the domain within a distance of 10−15 are regarded as solutions on the boundary
by perturbing them.

To capture solutions that have been numerically perturbed to have negligible imag-
inary parts we check for the eigenvalues of B(y) with real parts in [−1, 1] × [−1, 1]
and the imaginary parts of size O(u1/2), or smaller. The tolerance of size O(u1/2)

is reasonable since two numerically close common zeros can be perturbed into the
complex plane by this amount.

7.6 Spurious zeros and their removal

One difficulty with resultant-based bivariate rootfinders is spurious zeros, which are
y-values for which the resultant is numerically singular, but p and q do not have a
common zero in the domain of interest.

There are several ways spurious zeros can arise: (i) A shared zero at infinity, for
example, if deg p > deg q in x then there is a spurious zero at values of y for which
the leading coefficient of p is zero; (ii) An exact nonreal common zero or an exact real
common zero lying outside the domain; and (iii) Numerical artifacts that arise due to
the ill-conditioning of B(y).

Fortunately, a computed spurious zero arising before local refinement will reveal
itself when we refine. There are two reasons why refinement removes spurious zeros.
First, refinement reduces the degree of the polynomial approximants, meaning it is
less likely to encounter shared zeros at infinity. Second, the matrix polynomial B(y)

is smaller in both size and degree and typically has a greatly improved condition
number. In the unlikely event that a spurious zero is present in the final stage, univariate
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rootfinding performs an additional control to check that we have the common zeros
of the original bivariate functions.

The above qualitative arguments suggest, and experiments corroborate, that local
refinement is an effective approach for the removal of spurious zeros, a well-known
challenge for resultant-based methods. Although in theory spurious zeros can still
arise, we are not aware of an example where local refinement fails to remove them.

8 Numerical examples

In this section we present six examples to illustrate the accuracy and robustness of
our algorithm and its ability to solve problems with very high polynomial degree.
Throughout, the zero contours of f and g in (1) are drawn as blue and red curves,
respectively, computed by the command roots(f) in Chebfun2 [48]. The black dots
are the solutions computed by our algorithm described in this paper as realized by the
command roots(f,g) in Chebfun2.

Example 1 (Coordinate alignment) This example is of small degree, with the
functions f and g being approximated by polynomial interpolants of degrees
(m p, n p, mq , nq) = (20, 20, 24, 30):

(
T7(x)T7(y) cos(xy)

T10(x)T10(y) cos(x2 y)

)
= 0, (x, y) ∈ [−1, 1] × [−1, 1]. (21)

The common simple zeros align along both coordinate directions, but this does not
reduce the accuracy of the resultant method, despite B(y) having multiple eigenvalues
(see Sect. 3). The solutions to (21) are known exactly and the maximum absolute error
in the computed solutions is 8.88 × 10−16. In Fig. 5 we show the zero contours and

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−2 −1 0 1 2

−1

0

1

2

3

4

Fig. 5 The zero contours of f (red) and g (blue), and the common zeros (black dots) computed with our
algorithm. Left Coordinate alignment (21). Simple common zeros are aligned with the coordinate directions,
but this causes no numerical difficulties (see Sect. 3). Right Face and apple. Even though the polynomials
are small near the origin we can detect this and use a local Bézout refinement to obtain accurate solutions
(see Sect. 7)
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common zeros for (21). The zero contour lines quadratically cluster near the edge of
the domain following the distribution of the roots of Chebyshev polynomials.

Example 2 (Face and apple) Here, we select functions f and g that are exactly poly-
nomials, i.e., f = p and g = q, with zero contours suggesting a face and an apple,
respectively. These bivariate polynomials were taken from [42], and the degrees are
(m p, n p, mq , nq) = (10, 18, 8, 8). Note that in this example we have taken the domain
[−2, 2] × [−1.5, 4].

This example is of mathematical interest because both polynomials are relatively
small ≤ 10−5 near the origin where the Bézout resultant can severely worsen the
condition number of the solutions. Such solutions can be initially missed, and to
recover them the code detects ill-conditioned subdomains and reruns the Bézoutian
there (see Sect. 5.1).

Example 3 (Devil’s example) A particularly ill-conditioned problem is the following:

⎛
⎝

10∏
i=0

(
y2(4y2 − i

10 ) − x2(4x2 − 1)
)

256(x2 + y2)2 + 288(x2 + y2) − 512(x3 − 3xy2) − 27

⎞
⎠ = 0 (22)

on (x, y) ∈ [−1, 1] × [−1, 1]. Again f = p and g = q, with degrees
(m p, n p, mq , nq) = (44, 44, 4, 4). For this example it is extremely difficult without
resampling the original functions to obtain accurate solutions because the functions
vary widely in magnitude. However, this is easily overcome by resampling the original
functions f and g during subdivision as in [38].

Example 4 (Hadamard) Chebfun2 allows us to construct polynomials from interpola-
tion data at a tensor Chebyshev grid [48], even when a function handle is not specified.
For this example we take the interpolation data to be the Hadamard matrices H32 and
H64 of size 32 × 32 and 64 × 64, i.e., we solve (1), where p(xi , x j ) = H32(i, j),
q(xi , x j ) = H64(i, j), and xi are Chebyshev points. The Hadamard matrices contain
±1 entries and therefore, p and q (of degrees (m p, n p, mq , nq) = (31, 31, 63, 63))
have many zero contours and simple common zeros. Our algorithm requires 89 s and
the maximum of |p(x∗, y∗)| and |q(x∗, y∗)| over all computed solutions (x∗, y∗) is
3.98 × 10−13 (Fig. 6).

In this example function handles f and g are not available so during subdivision
the global polynomial must be resampled. Furthermore, subdivision does not lead to
an efficient reduction in the degree, and τ , as defined in Sect. 4, is estimated to be 0.82
for p and 0.75 for q. We obtained the estimates for τ by subdividing the domain into
25 × 25 subdomains and taking the average degree reduction.

Example 5 (Airy and Bessel functions) In this example we choose the following prob-
lem: (

Ai(−13(x2 y + y2))))

J0(500x)y + x J1(500y)

)
= 0, (23)
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Fig. 6 Left Devil’s example (22). By resampling f, g during subdivision accurate solutions are obtained
despite the dynamical range issue. Right Hadamard example, polynomials obtained by data values. For this
example significant subdivision is required as subdividing does not reduce the degree very effectively

where Ai is the Airy function and J0 and J1 are Bessel functions of the first kind. We
have selected these functions because they require very high degree polynomial inter-
polants, (m p, n p, mq , nq) = (171, 120, 569, 568), to be approximated to machine
precision. Our code computed the 5,932 common zeros in 501 s, and we indepen-
dently verified that our algorithm found all the solutions to (23) by using a method
based on a contouring algorithm with significant domain subdivision.

In this example the τ estimates are both 0.59 in f and g, and hence, the estimated
exponent is − log 4/ log τ = 2.6.

Example 6 (SIAM 100-Digit Challenge problem) An article in SIAM News in 2002
set a challenge to solve ten problems, each to ten digits (the solution to each problem
was a single real number) [49]. One of these problems was to find the global minimum
of the following complicated and highly oscillatory function:

f (x, y) =
(

x2

4
+ esin(50x) + sin(70 sin(x))

)
+

(
y2

4
+ sin(60ey) + sin(sin(80y))

)

− cos(10x) sin(10y) − sin(10x) cos(10y).

(24)
Since all the local extrema of (24) satisfy ∂ f

∂x
= ∂ f

∂y
= 0 we can solve this problem by

finding all the local extrema before selecting the global minimum from them. A simple
argument shows that the global minimum occurs in the domain [−1, 1]×[−1, 1] [12].
We approximate f on [−1, 1] × [−1, 1] and note that the partial derivatives of f are
of numerical degrees 625 and 901 in x and y, respectively, i.e., (m p, n p, mq , nq) =
(901, 625, 901, 625), and we currently consider this of very high degree. Nevertheless,
our algorithm computes all 2,720 local extrema of (24) in 257 s and obtains the global
minimum to an accuracy of 1.12×10−15. The function (24) does have some structure
because it is a low rank function [48], but this structure is not directly exploited in
the rootfinding algorithm. In Fig. 7 we show the location of the 2,720 local extrema
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Fig. 7 Le f t Solutions to (23). The number of isolated solutions is 5,932; there are so many that they
appear as lines rather than dots. Right SIAM digit problem (24). The zeros of fx and fy are shown as
black dots and the location of the minimum is a red dot. We consider these examples as of very high degree,
and present them as an indication of the robustness of our algorithm

and plot the one corresponding to the location of the global minimum as a red dot. In
this example the τ estimates are both about 0.53 in f and g and hence, the estimated
exponent of the complexity is − log 4/ log τ = 2.2.

Finally, to test the code with examples of even higher degree, we doubled
all the coefficients inside the trigonometric functions in (24), e.g., esin(50x) ←
esin(100x), sin(70 sin(x)) ← sin(140 sin(x)), etc., and ran the same experiment.
The partial derivatives of this f are now of numerical degrees (m p, n p, mq , nq) =
(1, 781, 1, 204, 1, 781, 1, 204). Our code computed 9,318 local extrema in 1,300 s,
and the estimated complexity exponent is 2.1. For this problem, the dominant part of
the runtime is taken by the subdivision step.
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