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ABSTRACT

The confluent hypergeometric function, M(a,b,z), arises naturally in both statistics and
physics. Although analytically well-behaved, extreme but practically useful combinations of
parameters create extreme computational difficulties. A brief review of known analytic and
computational results highlights some difficult regions, including b > a > 0, with  much larger
than b. Existing power series and integral representations may fail to converge numerically,
while asymptotic series representations may diverge before achieving the accuracy desired.
Continued fraction representations help somewhat. Variable precision can circumvent the

problem, but with reductions in speed and convenience.

In some cases, known analytic properties allow transforming a difficult computation into an
easier one. The combination of existing computational forms and transformations still leaves
gaps. For b>a >0, two new power series, in terms of Gamma and Beta cumulative
distribution functions respectively, help in some cases. Numerical evaluations highlight the
abilities and limitations of existing and new methods. Overall, a rational approximation due to

Luke and the new Gamma-based series provide the best performance.
1. INTRODUCTION
1.1 Motivation

A very simple and practical need drove the work presented here. In general, only
approximations are available for the power of a test of the general linear hypothesis in the
general linear multivariate model (12). A method of moments approach holds the promise of
improved approximations. In some cases, the expected value of the Pillai-Bartlett trace statistic
(6) may be represented as a double infinite series. Accurate numerical evaluation of the series
proves difficult, especially for small sample sizes with high power, conditions often of practical
importance. One escape route was opened by the observation that the inner series may be
expressed as a weighted sum of two confluent hypergeometric functions. However, in a wide
range of important cases, the strategy merely replaced one computational difficulty with a
similar one. A method for computing the confluent hypergeometric function was needed. To be
conveniently useful, the method would 1) achieve accuracy to fixed machine precision of the
computer software in use, 2) be robust to extreme combinations of inputs, and 3) use fixed
precision. Computing speed would be less important than accuracy. Progressively more
thorough searches of the literature and manipulations of published forms failed to find any
collection of methods that succeeded.

The confluent hypergeometric function arises naturally in the study of certain random
variables. For example, the density and characteristic function of the noncentral F' have simple
forms in terms of the function (5, Chapter 30). The function also contains other functions as
special cases, including many that are widely used in mathematical physics (6, 8). Special cases
include the Bessel functions, the incomplete gamma (and hence further special cases including,
error functions and Fresnel integrals), Laguerre polynomials, Hermite polynomials, Coulomb
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wave functions, and parabolic cylinder functions. The confluent hypergeometric function
represents a limiting special case of Gauss' hypergeometric function (1, Chapter 13; 8; 11, §5.2).
In turn, mathematicians have considered generalized hypergeometric functions. The attention
given to the function has helped create a wealth of information about its analytic properties,

including power series representations, integral representations, and asymptotic approximations.

Less attention has been given to computing the function. With fixed precision arithmetic,
computations with even reasonably sophisticated implementations of power series and integral
representations fail completely for input ranges of practical importance. For the same inputs,
asymptotic approximations sometimes diverge before achieving the desired accuracy.

1.2 Literature Review

Many authors discuss the confluent hypergeometric function briefly, while a few devote
substantial coverage to it. Two sources stand out from the rest. Chapter 13 in (1) contains a
very succinct and extensive summary of analytic properties. Slater's monograph (17) provides a
thorough and very well-written treatment of the analytic properties of the function. Both include
extensive bibliographies. More general functions, with vector or matrix rather than scalar inputs,

have also attracted serious attention (10).

Dingle (3) provided an extensive treatment of asymptotic approximations in general. The
index includes nineteen references to the confluent hypergeometric function. Following Dingle
(page v), “the designation 'asymptotic' will be reserved for those series in which for large values
of the variable at all phases the terms first progressively decrease in magnitude, then reach a
minimum and thereafter increase.” Hence such series ultimately diverge. Wider, and sometimes
conflicting, interpretations occur elsewhere in statistics, mathematics, and physics. In contrast,
for the purposes of this paper, a finite or infinite series will be considered analytically “exact” if|
with variable precision arithmetic, the sum may be computed to any desired level of accuracy.

In principle, the confluent hypergeometric function may be computed as a power series, an
integral of a function, or a solution to a differential equation. Only the first approach has
received any significant attention for computations. Relph (15) described how to implement a
simple power series representation. Luke (9) devoted a chapter to rational approximations of the
function. Luke's approach involves a recurrence relation, based on polynomials involving third
powers of the parameter. Brent (2) discussed using variable precision to achieve any desired
level of accuracy in computing special functions. See van der Laan and Temme (20) for a
general introduction to the calculation of special functions (especially Chapter I, an annotated
bibliography, and Chapter II, a review of general aspects). Temme (18) discussed computing an
independent solution to the differential equation, often indicated at U(a, b, z). Thompson (19)
provided a very appealing and contemporary treatment of the general area of computing special

functions, including specific coverage of the confluent hypergeometric.



2. SOME KNOWN RESULTS AND IMPLICATIONS
2.1 Notation

For v > 0, write the Gamma function as

o0

I'(v) = / e it ldt, (2.1)

0
and the incomplete Gamma function as
T

v(z;v) = / e it dt. (2.2)

0

Write the cumulative distribution function (CDF) of a Gamma random variable as
Fy(;v) = A(@;v)/T(w).
Define the factorial function for a positive integer, n, as

k (2.3)
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Define the ascending factorial, also referred to as Pochhammer's symbol, as

3—1
(a); = [J(a + k) 2.4)
k=0

T'(a+1)
I'(a) ’

with (a), = 1. If a a negative integer and i > —a, then (a); = 0. Also (1),, = nl

For the vectors @ (p x 1) and b (¢ x 1), define the generalized hypergeometric function as
p

pFylasbio) =Y 2. 2.5)
=0 (qu)i

—

=

jq=1

Write one solution to Kummer's equation (1) as:

M(a,b,z) = ; EZ;% (2.6)

=1Fi(a;b; ).

Many different notations have been used. Various authors refer to either M (a,b,z) or the
independent solution U (a, b, =) as the confluent hypergeometric function.




2.2 Some Properties of M (a,b, x)

Only real a, b, and z will be considered. The analytic and associated computational behavior
of M(a,b, x) splits into a number of distinct regions (1, §13.1.2, p504; 17, pl13-116). Ifa =0
or z = 0 then M(a,b,z) = 1. If neither a nor b are negative integers, then the series converges
for all finite z. If a is a negative integer while b is not, the series terminates as a finite
polynomial of order |a| in z. The same result holds if b —a is a negative integer while b is not,
except for a factor of exp(x). Abramowitz and Stegun (1) listed twenty special cases that allow
writing M(a,b,z) in terms of other functions. For example, M(a,a, z) = exp(z) and
M(a,a+1,—z) = az~*y(z;a). One of the recurrence relations or differential properties may

allow converting to one of the special cases.

One of Kummer's transformations has particular promise for computations:

M(a,b,z) = exp(z)M (b —a,b, —x). 2.7

However, for positive a and b, introducing the alternating sign may decrease numerical stability.
The change represents what Lauwerier (7, p106) called “eulerization,” the transformation of a

power series to increase speed of convergence.

Abramowitz and Stegun (1, equation 13.2.1) give a useful integral form for b > a > 0:

1
M(a,b,z) = F(W?((II)))———J/O exp(zt)t® (1 — ) de. (2.8)

A number of exact (infinite) series representations can be written in terms of various Bessel
functions. For the cases examined here, such series give no advantage for computation.
2.3 Continued Fractions
For sequences {a;} and {b;}, write a continued fraction as
ai

C=b+ . (2.9
b1 + !

as

by +

a
bs + 4

b4+'.'

Jones and Thron (4) provided a comprehensive treatment from an analytic perspective. They
described methods for creating continued fraction and Padé approximations. Press, Teukolsky,
Vetterling, and Flannery (14, §5.1-5.2) discussed computing with continued fractions.

Direct evaluation of C involves backwards recursion, and hence complete recalculation to
change the number of terms. For a three-term forward recurrence algorithm let A_; =1,
Ag = by, B_i =0, and By = 1. Then for i > 1 write the i approximant as M; = A; / B;, with

A =bjAi1 +aiAi (2.10)
B, =b;B;_1 +a;B;—2. (2.11)



Jones and Thron (4, p37) described Euler's (1748) method for converting an infinite series into

a continued fraction. Consider the special case of a power series,

00
S=Y ac, (2.12)
=0
with ¢; # 0. Let aj=ciz and by =1. For ¢>1 define r, = Ci/Ci—l, a; = —r;x and

bi=1+mrx. Alsolet A 1=1, Ay=cy, B_1 =0, and Bg=1. In turn 4; = ¢y + ¢z,
Bi=1,and M1 =cg+ciz. Fori > 1
A= (1 + riw)Ai_1 —rixA;_o (2.13)
= A1 +rizAi —rizAi
- Ai—l + ria:(A,'_l - Ai_g) .

A power series has B; = 1 for i > 0. Therefore, for ¢ > 1, write M; = A;, with the last form
having the most appeal for the application of interest.

Jones and Thron (4, pl1, p26, and elsewhere) discussed algorithms for evaluating continued
fractions, including the forward (FR) and backward (BR) recurrence algorithms. In their chapter
on the analysis of the numerical stability of the BR algorithm they cited research “...which seems
to indicate that the backward recurrence algorithm (BR algorithm) is numerically more stable
than the FR algorithm.” They followed this faint praise with similarly hedged discussions. The
BR algorithm requires complete recalculation to change the number of terms used.

2.4 Computational Forms for M (a, b, x)

Method 1; Defining Power Series in «z. Relph's (15) code for computing M (a, b, ) uses the
following steps. Define

I .
(a); &'
M; = L. (2.14)
; (b); 4!
LetTy = 1 and, fori > 0,
T=1. 0D 2 2.15)

b+ G+1)

Then My = 1 and, for < > 0, use the recurrence relationship to compute

Miyy=M;+ Ty . (2.16)

The process stops with sufficiently small |T;11/M;41| or, if | M| = 0, sufficiently small |T;,].
In some cases T; increases in size before beginning to decrease. Thompson (19, §16.2, p463)
also provided code for the method. He recommended using it if |z| < 50, and otherwise

switching to an asymptotic approximation.

Method 1C; Continued Fraction for Defining Power Series in . Write A_; = Ay =1
and A; =1+ za/b. Also define, for ¢>1, ri=(a+¢—1)/[i(b+:—1) and



Ai=Ai—1+ (A1 — Aj—2)riz. Let My=1. For i>1 compute the i approximant to
M(a,b,z) as M; = A;.

Method 2; Asymptotic Series in z—!. When applicable, asymptotic approximations may be
numerically robust. Thompson (19, p466) wrote, for b > a > 0 and |z| > 0,

22" I\ (b —a),(1 - a),
M(a,b, z) xexp(x)F(Ib,)(a) Z(b Z)b(cl )l, (2.17)

7=l

M(a,b, —z) < (2.18)

Convergence factors are available for these forms. For some combinations of (a,b,z) the
approximations diverge before achieving the accuracy desired. @~ Two examples are
M (100, 102, 10) and M (4000, 4001, 4000). See Table 3 and the discussion surrounding Table 4
for more detail about these and other examples.

Method 2C; Continued Fraction for Asymptotic Series in z7!. Let A_; = Ag=1. If
z>0letAi=1+(b—-a)(l—a)/zandr;=(b—a+i—-1)(i—a)/ifori>1 Ifz <O0let
Al=1+(1+a—-b)a/z and r; = (a —b—i)(a —i—1)/i. In either case: i) A; = A;—1+
(Ai_y — Aj_o)ri/z, ii) My = 1, and iii) for i > 1 compute the i™ approximant as M; = A;.

Method 3; A Rational Approximation (9, p182-183). If z > 0 let § = (b—a), Qo = 1,
Q1 = 1+2(6+1)/(2b), Qo = 14+z(6+2)/[2(b+1)] + z2(6+1)(6+2)/[12b(b+1)], Py=1,
P, = Q1—26/b,and Py = Q2—(x6/b){14+x(6+2)/[2(b+2)]}+x26(6+1)/[2b(b+1)]. Also
(i1—6—2)

fu= 2(2i —3)(i+b—1) 219)
40+ -1)(i-8-2)
fir = 420 -1)(2i - 3)(i+b—2)(i +b—1)
P (G+6—2)(i+6—1)(Gi+6—2)
B 82— 3)2(2i—5)(i+b—3) (i +b—-2)(i+b—1)
o (i+6—1)(G—b—1)
fiu = 22 —3)(i+b—2)Gi+b—1)"
For: >3
P, = (1+ faz)Aio1 + (fia + fiozx)Aica + fi32®Ais (2.20)
and
Qi = (1 + faz)Bi—1 + (fuu + foz)Bi—o + fisz®Bis. (2.21)

Write the i approximant as M; = P;/Q; ~ exp(—z)M(a,b,z) = M (b — a,b, —x).



3. SOME NUMERICAL EVALUATIONS
3.1 Methods

The problem that stimulated this work required computing M (n/2 + j,n/2 + 2j + 1, x) for
£>0,ne{3,4,5,...} and j € {0,1,2...}. Both z (a function of a noncentrality parameter)
and n (a function of an error degrees of freedom) could be 1000 or larger. In such cases
computing exp(z)M (j + 1,n/2 + 2j + 1, —x) seems preferable. Apparently the problem does
not reduce to any convenient special case. All numerical examples were chosen to represent
combinations of this nature. For the computations in this section attention was restricted to
0<x<5000, 0<;j<100 and 3<n<5000. Both M(n/2+j,n/2+2j+ 1,z) and
exp(z)M(j +1,n/2 + 25 + 1, —z) were always computed.

All of the numerical work reported in this paper was conducted in SAS IML®(16), in SAS
Version 6.12, running under OS/2®. The environment provides precision comparable to double
precision in Fortran, with roughly 15 decimal digits of accuracy available. [Each function
declared convergence if the relative change was less than 10719 in absolute value. Results were
printed to five digits. In this first set of studies, all series were limited to 150 terms. Go to the
web site http://www.bios.unc.edu/~muller to get free IML code and documentation.

3.2 Enumeration Results

Some enumerations for Methods 1-3 led to a number of conclusions. Computation with the
power series (Method 1) worked well for small |za/b|. Accuracy disappeared as || increased
(for a and b fixed). A continued fraction extended the range. At least for the examples
discussed here, with fixed precision arithmetic, a forwards algorithm (Method 1C) allowed
accurate calculation with the power series for somewhat larger values of |za/b| than did a
backwards algorithm. The rational approximation (Method 3) extended the range much more.
However, all formulations eventually failed for sufficiently large |za/b|. The asymptotic
expansions (Method 2) were numerically stable. However, as |b| and |z| both increase, not
necessarily at the same rate, as may happen in the application of interest, then Method 2
sometimes diverged before achieving the accuracy desired. Numerical quadrature of the integral
form was also tried. The approach was much slower than any other. Furthermore, both of two
different and reasonably sophisticated quadrature methods failed to converge as |za/b| became
large. See §5 for a more detailed analysis of the numerical performance of the various methods.

Slater (17) noted that if a~b then M(a,b,x)~ exp(z). Method 5 implies that
M(a, b, z) ~ exp(za/b) provides a first-order approximation, which implies that, as a rough
approximation, the numerical behavior of M(a,b,z) depends on |za/b|. Examination of the
results in this section led to the conclusion that large values of the ¢ = 1 term predicts difficulty
with any of the algorithms. Hence for Methods 1, 1C, and perhaps Method 3, examine |za/b.
For Methods 2 and 2C, examine |(b — a)(1 — a)/z| if z > O and |(1 + @ — b)a/(—=)| if z < 0.



4. NEW METHODS FOR COMPUTING M (a, b, z)
4.1 A New Expansion in Terms of the Incomplete Gamma Function

Method 4; Exact Power Series in ! and Gamma's. Ifb > a > 0 and z > 0, then write
M(a,b, — — )21 —¢)> 7 de. 4.1
(@6,~2) = prril— [ (st -0 @)

With f(t) =(1— t)b—a"l, use the (generalized) binomial theorem to write a Taylor's series
expansion for f(t) about the point ¢y = 0 as

flt) = Z . o) 0t (“2)
i=0

Substituting this expansion into the integral form yields (for b > a > 0, and = > 0)

I'(b 1 = -
M(a,b,—x) = %/0 exp(—wt);(a —-b+ 1)i%t’+“_1dt (4.3)

NG

= Li(a —-b+ 1)-1/1exp(—xt)ti+a_ldt.
(b —a)l'(a) “il Jo

The validity of the exchange of integration and summation reduces to two cases. For integer

(b — a) (positive by assumption) the sum terminates finitely at i = (b — a). Otherwise let n

indicate the largest integer with n > |a — b + 1|. Then

- b $2i [(a —b+1) + (20)]
Z(a_b'*'l)iﬂ_Z(a_b+1)2i@{l_ (2¢+1) t}

=0 : =0

& t% a—b+1)+ (2
_Z b+1)Zz ol {1_ [( (2':'+)1) ( )]t}—l-

o0 21— 2 7 —(a —
s(a—b+1) ZH[a—b+1)+k](;)!{1+(2 +(2+§) b)t}.

i=n k=n

Inspection of the infinite sum reveals all positive terms. Consequently Fubini's theorem applies.

Transforming the integral creates a weighted sum of incomplete gamma functions:

Miab =) = W(—b%;@;(a b+ i /Oze"p(‘“)“”““du (4.4)

o0

b)x‘ G)Z -b+1), 'lz'y(:v i+a).
=0



A second transformation leads to a weighted sum of Gamma random variable CDF's:

I'(b)z™" i (a— b.+ l)l(a)’ F.(z;i+a). 4.5)

M _
(a,5,~2) = ['(b—a)& ilat

The results also apply to z > 0 (with b > a > 0). Use the Kummer transformation to write

(b—a) —a).
M(a,b,z) = exp(x)rlzil;)r(b py ; (1i!:1;i )"y(x; i+b—a), (4.6)
or
a—b 00 _
M(a,b,z) = exp(z F(b T(a) Z az)w )iFA,(x;i +b—a). 4.7
=0

If z > v then F,(z;v) =~ 1. The substitution reduces the new (exact) series representations in
terms of F,(z;v) into the asymptotic approximations described earlier. The relationship
suggests when the asymptotic approximations will diverge before achieving the accuracy
desired.

Method 4C; Continued Fraction for Exact Power Series in 7! and Gamma's. For
> 0 write A_; = Ag=1. For M(a,b,z) let Ay =1+ (b—a)(1—a)F,(z;b—a)/z and
ri=[b—a+i—-1)(i—a)/i] x [Fy(z;i+b—a)/Fy(z;i+b—a—1)] for i>1. For
M(a,b,—x) let Aj =1+ (1+a-b)aF,(z;a)/z and r;=[(a—b—14)(a—i—-1)/i]x
[Fy(z;i+ a)/F,(z;i+a—1)]. Ineither case: i) A; = A;_1 + (Ai-1 — As_2)Ti/7, i) Mp = 1,
and iii) for ¢ > 1 compute the i™ approximant of the sum as M; = A;.

4.2 A New Series for M (a, b, ) as the Expected Value of a Function of a Beta

Method 5; Power Series in  and Betas. A Beta random variable with parameters o > 0
and § > 0 has £6(a, §) = o/(a + 6) and moment generating function ¢(z) = M (o, a + 6, )
(5, Chapter 25). Define p,, = €[B(a, 8) — EB(a, §)]™, with uo = 1 and pg = 0. For a positive
integer m, write equation 25.16 in Johnson, ef al. (5)

a Efm (a—i—&)_j[l - a(a—|—6)_1]jj! oMy
=— ) ; m—f — 4.8)
(a+6);( ) j B 1 Hm=j (a+6)(a+ 6+ m)
IL[O[1+(m k)(a+6)7]

— azm: Hm—j ﬁ 6(m k) _ aMmi, )
= (a+6+m—j)islat+é)até+m—k) (a+6)(a+6+m)
Note that in Johnson, et al. the term amu,,/[(a + §)(a + § + m)] lacks a required factor of
a/(c + 6) (see the original, equation 8, p176, 13). Hence uz = a8/ [(a + 6)* (e + 6 + 1)] and
p3 = 206(6 — a)/[(a+68)*(a+6+1)(a+65+2)].

If b > a > 0 (for any x) then the integral form mentioned earlier allows writing M (a, b, z) in
terms of the moment generating function of B = 3(a,b — a):
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1
M(a,b,z) = F_(ZT?((%)——a) /0 exp(zt)t (1 — )91t 4.9)
= E[exp(zB)].

Taking the expected value of a Taylor's series expansion of exp(zB) about £B = a/b implies

M(a,b,z) = exp(%)Zum—fg (4.10)

—exp(2 )[1+x22 e

The last form allows writing a continued fraction with r; = (pio/pit1)x/ (i +2) fori > 1.
For B note that ps = a(b — a)/[b2(b + 1)], u3 = 2a(b — a)(b — 2a) /[b*(b 4 1)(b + 2)], and

—ai = ﬁ(b—a)(m—k)_ amyim @10
Il =02 o m— )L b +m—k)  b(b+m) '
ml m
Wi (b—a)k amMphmy,
=a - — .
;(bﬂ)kglb(ﬂm b(b+ m)

The terms in the infinite series have alternating sign if b < 2a and z > 0, orif b > 2a and z < 0.
Other combinations yield all positive terms.

Method 5C; Continued Fraction for Power Series in = and Betas. Write A1=4A=1
and A; = 1. For i > 1 compute r; = u;/(ipi—1) and A; = Aj1 + (A1 — A;_9)riz. Then
M, = 1, and for i > 1 compute the ;™ approximant of the sum as M; = A;.

4.3 A Monte Carlo Method

The relationship to a Beta random variable for b > a > 0 allows using a simple simulation to
approximate M (a,b,z). First draw a random sample of realizations of B = B(a,b — a).
Second, compute Y = exp(zB)/exp(za/b) = exp[z(B — a/b)] for each. Third, (carefully)
tabulate the mean of Y. Finally, multiply the mean of Y by exp(za/b). Large values of

= |za/b| lead to computational difficulties.

5. NUMERICAL EVALUATIONS OF THE NEW METHODS
5.1 Methods and Design

A large number of enumerations of M (a, b, x) helped evaluate the numerical accuracy of the
three existing methods and the two new methods. Most of the same techniques as described in
§3.1 were used here. The most important change was increasing the maximum number of terms
to 300. In addition, a number of overflow checks were added to allow the modules to fail
gracefully. Only the forwards algorithm was used for continued fractions. Each of the nine
modules reported the value of the function, the number of terms evaluated, an error flag to
indicate that divergence was detected by the module, and the vector of intermediate values. For
Method 3 the module returned both numerator and denominator intermediate terms. In all cases
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both In[M(100,102,10)] and Infexp(z)M (b — a,b, —z)| were tabulated separately. Hence a
total of 9 - 2 = 18 function evaluations were computed for each choice of (a,b,z). A factorial
design was used for each set of enumerations. Tables 1 and 2 contain lists of the values

examined in the sets of enumerations reported in this paper.

Table 1
Sets of a and x, With b = a + 2, Tested for M (a, b, x)
All Combinations of a, b, and = Tested Within Each Set

Set a T

1.1 1,10,100 1, 10, 100

1.2 2.1,8.1,50.1, 100.1, 1000.1 10, 100, 1000, 2000, 4000, 8000
13 1 1000, 2000, 4000, 8000, 16000
1.4 1,10, 100, 1000 8000

1.5 1,10,100 1, 10, 100

1.6 2.1,8.1,50.1, 100.1, 1000.1 10, 100, 1000

Table 2
Sets of j, n and z Tested for M (n/2 + j,n/2+2j+1,x)
All Combinations of j, n, and = Tested Within Each Set

Set J n x
21 0,5 3, 100, 1000 10, 100, 1000, 2000, 8000, 16000
22 0,520 2000,4000,8000, 16000 2000, 4000, 8000, 16000

Computational speed was examined for a small number of cases from sets 1.1-1.3 that
required a large number of terms. This led to removing Methods 5 and 5C from sets 1.4-1.6 and
2.1-2.2. Subsequently a number of cases in those sets were computed with Methods S and 5C,

but with the maximum number of terms reduced to 250, and then to 100.

Table 3
Performance of Nine Methods for Computing
M(a,b,x) = exp(z)M (b — a,b, —x),
With In[M (100, 102, 10)] = 9.8127

Method
1 2 3 4 5 1IC 2C 4C 5C
T # Terms 37 4 8 98 11 37 4 98 13
log(max|term;|) 3.4 3.6 -08 247 -2.0 34 25 247 00
Error" 1 2 1 2
—xz  #Terms 12 4 8 98 11 12 4 98 13
log(max|term;|) -0.7 3.6 -08 247 -20 07 25 247 0.0
Error” 1 2 1 2

*Error = 1 if diverged, while error = 2 if diverged undetected by the module.
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5.2 Results and Conclusions

Table 3 illustrates, for one combination of (a, b, z), the behavior of the various algorithms as
they computed, or failed to compute, M(a, b, z). Although not reported for the sake of brevity,
the performance measures in Table 3 were tabulated and studied for all enumerations in this
paper. In addition, the actual values reported by the algorithms were printed and studied.
Values of M(a,b,z) which did not approximately correspond to those predicted by simple
interpolation from neighboring results allowed tracking down the serious error of divergence not
detected by the module. Clear patterns arose from the many enumerations.

Table 4 contains all 17 “silent” failures that occurred, which involved a module incorrectly
reporting convergence. Many less extreme values led to divergence detected by the modules.
For example, with a = 4000, b = 4001, and = = 4000, only Method 3 converged. With
Ry = |za/b| and Ry = |a(b — a)/z|, here Ry ~ 3999, Ry ~1. A few terms from Method 5
produces a good approximation, with the first one being exp(za/b) = exp(Ry).

Table 4
Silent Errors for Nine Methods of Computing
M(a,b,z) = exp(z)M (b — a,b, —x),
With + If Error for M(a,b,x) and — If Error for M (b — a,b, —x)

Method

a b x Ri Ry~ 1 2 3 4 5 1C 2C 4C 5C
100.0 1.5 2.5 60.0 0.02 - —

6.5 12.5 100 520 039 - —

1.0 3.0 100 33.0 0.02 - —

2.1 4.1 100 51.0 0.04 - —

100 120 100 88.0 020 -— + — +

8.1 10.1 100 80.0 0.16 - + - +

1.0 3.0 1 0.3 2.00 + +

1.0 3.0 10 3.0 0.20 + +
1020.0 1041.0 8000 7839.0 2.70 +
1020.0 1041.0 16000 15677.0  1.30 +

50.1 52.1 10 10.0 10.00 + +
100.1 102.1 10 10.0  20.00 + +
100.0 102.0 1 1.0 200.00 + +
100.0 102.0 10 10.0 20.00 + +
55.0 61.0 10 9.0 33.00 + +
505.0 511.0 10 10.0 303.00 +

1.0 2.0 8000 4000.0 1074 +

Conclusion 1. Except perhaps for some cases with Method 3, checks for overflow appear to

always signal situations in which the module has failed.

Conclusion 2. The i = 1 term in the series predicts numerical performance of the methods.

For Methods 1, 1C, 5, 5C, and, apparently 3, examine
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a
Ry = |x3 . (5.1)

For Methods 2, 2C, 4 and 4C, if z > 0 examine Ry, = |[(1 — a)(b — a)/z|, while if z <0
examine Ry = |a(1 + a — b)/z|. More loosely, define
a(b—a)

T

Ry = (5.2)

Except for the asymptotic series (Method 2), all series terms eventually vanish. Computational
difficulty arises from intermediate terms with roughly the same number of significant digits as
the precision of the software in use. For i > 1, the i™" terms behaves roughly like the first term
to the i power. For example, if the software allows d digits of accuracy and |za/ b|' ~ 10¢,
then Methods 1 and 5 are likely to lose accuracy.

Conclusion 3. As many as 250 terms may be needed to achieve a relative precision of 10710
for the implementations used here. However, a smaller limit would lose only a few valid results.
Some failed computations will continue to the maximum number.

Conclusion 4. Using continued fractions occasionally extended the range of accuracy. More
importantly, continued fractions rarely reduced accuracy, and then only slightly.

Conclusion 5. Method 1 seems accurate if Ry < 30.
Conclusion 6. Method 2 seems accurate if Ry < 1 and x > 50.

Conclusion 7. Method 3 works over the largest range of conditions, with R; < 4000. It
continues to work accurately but increasingly slowly as R; increases.

Conclusion 8. Method 4, as a generalization of Method 2, extends the range of Method 2, at
the cost of some computational speed.

Conclusion 9. Method 5 provides accuracy roughly like Method 1, except that a few terms
from Method 5 provide an excellent approximation.

Conclusion 10. Method 5 may take roughly 100 times longer than any other, at least for large
R;. The speed difference increases exponentially in the number of terms required. The
slowness arises from the need to completely recalculate each higher moment.

6. DISCUSSION
6.1 A General Strategy for Computing M (a, b, x)

With fixed precision, no single form allows computing M (a,b,z) reliably to a specified
accuracy for all inputs. The following steps provide a general strategy for real inputs. First,
verify that the function is finite and well-defined. Finite (a,b, x) and b not zero or a negative
integer suffices. Second, determine whether the calculation represents a special case, such as
a = b, or a a negative integer. Use Kummer transformations and recurrence relations to reduce
the calculation to a special case. For example, check if b — a equals a negative integer. Third,

failure to find a special case requires direct calculation.
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The magnitudes of z, R; and R, should guide the choice of method. Use the Kummer
transformation and compute R; and R, for both forms. Method 3 provides the best default
choice. If z > 50 and Ry < 1 then Method 4 will likely work well. Otherwise use Method 3 for
the form with the smallest R;. If both fail, then a few terms from Method 5 may work well.

6.2 Generalizations and Future Research

Computing M (a, b, x) for extreme parameter values requires extreme care in implementing
any algorithm as a computer program. Hence the focus here has been on accuracy first.
Obviously computing speed and implementation efficiency merit attention. Note that in most
cases at least two methods work well.

The results could be extended to complex variables in a straightforward way. Methods 1, 2
and 3 were all originally stated in terms of complex variables. The derivations for Methods 4
and 5 could be extended. Note that the software used here assumes real values.
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