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Abstract The detour and spanning ratio of a graph G embedded in E
d measure how

well G approximates Euclidean space and the complete Euclidean graph, respec-
tively. In this paper we describe O(n logn) time algorithms for computing the detour
and spanning ratio of a planar polygonal path. By generalizing these algorithms, we
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obtain O(n log2 n)-time algorithms for computing the detour or spanning ratio of pla-
nar trees and cycles. Finally, we develop subquadratic algorithms for computing the
detour and spanning ratio for paths, cycles, and trees embedded in E

3, and show that
computing the detour in E

3 is at least as hard as Hopcroft’s problem.

1 Introduction

Suppose we are given an embedded connected graph G = (V ,E) in E
d . Specifically,

V consists of points in E
d and E consists of closed straight line segments whose

endpoints are in V . For any two points p and q in
⋃

e∈E e, let dG(p,q) be the shortest
path between p and q along the edges of G. The detour between p and q in G is
defined as

δG(p,q) = dG(p,q)

‖pq‖
where ‖pq‖ denotes the Euclidean distance between p and q . The detour of G is
defined as the maximum detour over all pairs of points in

⋃
e∈E e, i.e.,

δ(G) = sup
p �=q

δG(p,q).

The challenge is in computing the detour quickly. Several cases of this generic
problem have been studied in the last few years. One variant results from restricting
the points p,q in the above definition to a smaller set. For example, the spanning
ratio or stretch factor of G is defined as the maximum detour over all pairs of vertices
of G, i.e.,

σ(G) = sup
p �=q

p,q∈V

δG(p,q).

Such restrictions influence the nature of the problem considerably. In this paper we
study both, detour and spanning ratio.

The case of G being a planar polygonal chain is of particular interest. Alt et al. [6]
proved that if the detour of two planar curves is at most κ , then their Fréchet distance
is at most κ + 1 times their Hausdorff distance. The Fréchet and Hausdorff distances
are two commonly used similarity measures for geometric shapes [5]. Although the
Hausdorff distance works well for planar regions, the Fréchet distance is more suit-
able to measure the similarity of two curves [5]. However, the Fréchet distance is
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much harder to compute [6]. A relationship between the two measures suggests that
one could use the Hausdorff distance when the detours of the two given curves are
bounded and small. This is the only known condition (apart from convexity) under
which a linear relationship between the two measures is known.

Analyzing on-line navigation strategies also often involves estimating the detour
of curves [8, 17]. Sometimes the geometric properties of curves allow us to infer
upper bounds on their detour [4, 18, 24], but these results do not lead to efficient
computation of the detour of the curve.

Related Work Recently, researchers have become interested in computing the de-
tour and spanning ratio of embedded graphs. The spanning ratio of a graph G em-
bedded in E

d can be obtained by computing the shortest paths between all pairs of
vertices of G. Similarly, the detour of G can be determined by computing the detour
between every pair of edges e1 = (u1, v1) and e2 = (u2, v2). Although this seems to
involve infinitely many pairs of points, this problem is of constant size: For each pair
of points (p, q) in e1 × e2, the type of the shortest connecting path dG(p,q) is deter-
mined by the two endpoints of e1 and e2 contained in this path. In the 2-dimensional
rectangular parameter space of all positions of p and q on e1 and e2, classification
by type induces at most four regions that are bounded by a constant number of line
segments. For each region, the maximization problem can be solved in time O(1),
after having computed the shortest paths between all pairs of vertices of G. This ap-
proach, however, requires Ω(n2) and Ω(m2) time for computing the spanning ratio
and detour, respectively, where n denotes the number of vertices and m is the number
of edges. Surprisingly, these are the best known results for these problems for arbi-
trary crossing-free graphs in E

2. Even if the input graph G is a simple path in E
2, no

subquadratic-time algorithm has previously been known for computing its detour or
spanning ratio.

Narasimhan and Smid [23] study the problem of approximating the spanning ratio
of an arbitrary geometric graph in E

d . They give an O(n logn)-time algorithm that
computes an (1 − ε)-approximate value of the spanning ratio of a path, cycle, or tree
embedded in E

d . More generally, they show that the problem of approximating the
spanning ratio can be reduced to answering O(n) approximate shortest-path queries
after O(n logn) preprocessing.

Ebbers-Baumann et al. [10] have studied the problem of computing the detour of
a planar polygonal chain G with n vertices. They have established several geometric
properties, the most significant of which (restated in Lemma 2.1) is that the detour
of G is always attained by two mutually visible points p,q , one of which is a vertex
of G. Using these properties, they develop an ε-approximation algorithm that runs
in O((n/ε) logn) time. However, the existence of a subquadratic exact algorithm has
remained elusive.

New Results In this paper we present randomized algorithms with O(n logn) ex-
pected running time that compute the exact spanning ratio or detour of a polygonal
path with n vertices embedded in E

2. These are the first subquadratic-time algo-
rithms for finding the exact spanning ratio or detour, and they solve open problems
posed in at least two papers [10, 23]. Our algorithm for the spanning ratio is worst-
case optimal, as shown in [23], and we suspect that the algorithm for the detour is
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also optimal, although we are not aware of a published Ω(n logn) lower bound. By
extending these algorithms, we present O(n log2 n) expected time randomized algo-
rithms for computing the detour and spanning ratio of planar cycles and trees. We can
also obtain deterministic versions of our algorithms. They are more complicated and
a bit slower—they run in O(n logc n) time, for some constant c.

We also consider the problem of computing the detour and spanning ratio of 3-
dimensional polygonal chains, and show that the first problem can be solved in ran-
domized expected time O(n16/9+ε), for any ε > 0 (where the constant of proportion-
ality depends on ε), and the second problem can be solved in randomized expected
time O(n4/3+ε), for any ε > 0. Using the same extensions as in the planar case, this
leads to subquadratic time algorithms for 3-dimensional trees and cycles. We also
show that it is unlikely that an o(n4/3)-time algorithm exists for computing the de-
tour of 3-dimensional chains, since this problem is at least as hard as Hopcroft’s
problem, for which a lower bound of Ω(n4/3), in a special model of computation, is
given in [12].

Preliminary versions of this work appeared in [2, 20]; the 2-dimensional algorithm
described in [20] is significantly different from the one presented here.

2 Polygonal Chains in the Plane

Let the graph P = (V ,E) be a simple polygonal chain in the plane with n vertices.
That is, V = {p0, . . . , pn−1} is a set of n points in E

2, and E = {[pi−1,pi] | i =
1, . . . , n − 1}. Throughout the paper, we write P when referring to the set

⋃
e∈E e.

We extend the definition of the detour from points to any two subsets A and B of P ,
by putting

δP (A,B) = sup
a∈A,b∈B

a �=b

δP (a, b),

which we call the P -detour between A and B . We also write δP (A) = δP (A,A).
Thus, δ(P ) = δP (P ) = δP (P,P ) and σ(P ) = δP (V,V ). Since P will be fixed
throughout this section, we will omit the subscript P from δ.

2.1 Overall Approach

Since computing the detour is more involved than computing the spanning ratio, we
present below the algorithm for solving the detour problem. Certain modifications
and simplifications, noted on the fly, turn the algorithm into one that computes the
spanning ratio.

We first describe an algorithm for the decision problem for the detour: “Given a
parameter κ ≥ 1, determine whether δ(P ) ≤ κ .” Our algorithm makes crucial use of
the following properties established in [10]. The proof of property (iii) is straightfor-
ward. It implies that the maximum detour is attained by a pair of co-visible points.
Property (ii) ensures that one of them can be assumed to be a vertex. Together, (ii)
and (iii) imply property (i).
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Fig. 1 Transforming P into a
3-dimensional chain

Lemma 2.1 (Ebbers-Baumann et al. [10])

(i) Let V be the set of vertices in the polygonal chain P , and let κ ≥ 1. There is a
pair (p, q) ∈ P × P so that δ(p, q) > κ if and only if there is a pair (p′, q ′) ∈
P × V so that δ(p′, q ′) > κ and p′ is visible from q ′.

(ii) Assume that the detour attains a local maximum at two points, q , q ′ that are
interior points of edges e, e′ of P , correspondingly. Then the line segment qq ′
forms the same angle with e and e′, and the detour of q, q ′ does not change as
both points move, at the same speed, along their corresponding edges.

(iii) Let q , q ′ be two points on P , and assume that the line segment connecting them
contains a third point, r , of P . Then max{δ(q, r), δ(r, q ′)} ≥ δ(q, q ′). Moreover,
if the equality holds, then δ(q, r) = δ(r, q ′) = δ(q, q ′).

We observe that a claim analogous to property (i) does not hold for the spanning ratio:
while it is always attained by two vertices, by definition, these vertices need not be co-
visible. As an immediate corollary of Lemma 2.1, we always have δ(P ) = δ(P,V ).
It thus suffices to describe an algorithm for the decision problem: Given a parameter
κ ≥ 1, determine whether δ(P,V ) ≤ κ . We will then use a randomized technique by
Chan [9] to compute the actual value of δ(P ) = δ(P,V ).

2.2 Decision Algorithm

We orient P from p0 to pn−1. For a given parameter κ ≥ 1, we describe an algorithm
that determines whether for all pairs (p, q) ∈ V × P , so that p lies before q , the
inequality δ(p, q) ≤ κ holds. By reversing the orientation of P and repeating the
same algorithm once more, we can also determine whether for all pairs (p,w) ∈
V × P so that p lies after q the property δ(q,p) ≤ κ is fulfilled.

For a point p ∈ P , we define the weight of p to be

ω(p) = dP (p0,p)/κ.

Let C denote the cone z = √
x2 + y2 in E

3. We map each point p = (px,py) ∈ V to
the cone Cp = C+(px,py,ω(p)). That is, we translate the apex of C (i.e., the origin)
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to the point p̂ = (px,py,ω(p)). If we regard Cp as the graph of a bivariate function,
which we also denote by Cp , then for any point q ∈ E

2, Cp(q) = ‖qp‖ + ω(p)

holds. Let C = {Cp | p ∈ V }. We map a point q = (qx, qy) ∈ P to the point q̂ =
(qx, qy,ω(q)) in E

3. For any subchain π of P , we define π̂ = {q̂ | q ∈ π}.

Lemma 2.2 For any point q ∈ P and a vertex p ∈ V that lies before q on P ,
δ(p, q) ≤ κ if and only if q̂ lies below the cone Cp .

Proof

δ(p, q) ≤ κ ⇐⇒ dP (p,q)

‖qp‖ ≤ κ

⇐⇒ dP (p0, q) − dP (p0,p)

‖qp‖ ≤ κ

⇐⇒ dP (p0, q)

κ
≤ ‖qp‖ + dP (p0,p)

κ

⇐⇒ ω(q) ≤ ‖qp‖ + ω(p)

⇐⇒ ω(q) ≤ Cp(q).

That is, δ(p, q) ≤ κ if and only if q̂ lies below the cone Cp . �

Since the cones Cp are erected on the chain P̂ , the point q̂ , for any q ∈ P , always
lies below all the cones erected on vertices appearing after q on P . Therefore, if we
denote by Vq the set of all vertices p ∈ V that precede q along P , Lemma 2.2 implies
that δ({q},Vq) ≤ κ if and only if q̂ lies on or below each of the cones in C, i.e., if and
only if q̂ lies on or below the lower envelope of C.

The minimization diagram of C, the projection of the lower envelope of C onto the
xy-plane, is the additive-weight Voronoi diagram Vorω(V ) of V , under the weight
function ω. For a point p ∈ V , let Vorω(p) denote the Voronoi cell of p in Vorω(V ).
Vorω(V ) can be computed in O(n logn) time [13].

We first test whether Vorω(p) is nonempty for every vertex p ∈ V . If not, we
obtain a pair of vertices that attain a detour larger than κ , namely a vertex p that has
an empty Voronoi cell, and a vertex q whose cone Cq passes below p̂.

Note that if Vorω(p) is empty for some vertex p ∈ V , then we also know that the
spanning ratio of P is larger than κ . Conversely, if the spanning ratio is larger than κ ,
then some Voronoi cell Vorω(p) must be empty. Thus, the decision procedure for the
spanning ratio terminates after completing this step.

We can therefore assume, for the case of detour, that Vorω(p) is nonempty for
every vertex p ∈ V . To check whether P̂ lies below the lower envelope of C, we
proceed as follows. We partition P into a family E of maximal connected subchains
so that each subchain lies within a single Voronoi cell of Vorω(V ). Since Vorω(p)

is nonempty for every vertex p ∈ V, p is the only vertex of P that lies in Vorω(p).
Therefore every subchain in E is either a segment or consists of two connected seg-
ments with p as their common endpoint. For each such segment e ∈ E, if e lies in
Vorω(p), we can determine in O(1) time whether ê lies fully below Cp . If this is true
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for all segments, then P̂ lies below C. The total time spent is O(n) plus the number
of segments. Unfortunately, the number of segments may be quadratic in the worst
case, so we cannot afford to test them all.

We circumvent the problem of having to test all segments by using the observa-
tion (i) from Lemma 2.1 that it is sufficient to test all q ∈ P that are visible from p.
More precisely, let A denote the planar subdivision obtained by overlaying Vorω(V )

with P . Each edge of A is a portion of an edge of P or of Vorω(V ). For a vertex
p ∈ V , let fp denote the set of (at most two) faces of A containing p, and let Ep

denote the set of edges of A that are portions of P and that bound the faces in fp .
The discussion so far implies the following lemma.

Lemma 2.3 P̂ lies below all the cones of C if and only if
⋃{ê | e ∈ Ep} lies below

all the cones of C.

The algorithm thus proceeds as follows: We compute the Voronoi diagram Vorω(V )

in O(n logn) time [7]. By using the red-blue-merge algorithm of Guibas et al. [15]
(see also [11, 25]), we compute the sets of faces fp for all p ∈ V , which in turn
gives us the sets Ep for all p ∈ V . By the Combination Lemma of Guibas et al. [15],∑

p∈V |Ep| = O(n), and the set {Ep | p ∈ V } can be computed in O(n logn) time.
Finally, for each edge e ∈ Ep , we determine whether ê lies below Cp in O(1) time.
The overall running time of the algorithm is O(n logn).

As mentioned in the beginning, we next reverse the orientation of P and repeat
the algorithm to determine whether for each vertex p ∈ V lying after a point q ∈
P the inequality δ(p, q) ≤ κ holds. (Note that this reversal is not required in the
decision procedure for the spanning ratio.) Putting everything together, we obtain the
following.

Lemma 2.4 Let P be as polygonal chain with n vertices embedded in E
2, and let κ ≥

1 be a parameter. We can decide in O(n logn) time whether δ(P ) ≤ κ or σ(P ) ≤ κ .

Let W ⊆ V be a subset of vertices of P , and let Q be a subchain of P ; set
m = |W | + |Q|. Assuming that the weights of all vertices in W have been com-
puted, the decision algorithm described above can be used to detect in O(m logm)

time whether σ(W,Q) ≤ κ . However, unlike δ(V,P ), the detour of the entire chain
P , δ(W,Q) need not be realized by a co-visible pair of points in W × Q, so it is not
clear how to detect in O(m logm) time whether δ(W,Q) ≤ κ . Instead we can make a
weaker claim. Let δ∗(W,Q) = sup(p,q)∈W×Q δ(p,q), where the supremum is taken
over all pairs of points such that the interior of the segment pq does not intersect the
interior of an edge of Q. Obviously, δ∗(W,Q) ≤ δ(W,Q). Clearly, the above deci-
sion algorithm can detect in O(m logm) time whether δ∗(W,Q) ≤ κ . Lemma 2.1(iii)
implies that if δ(W,Q) = δ(P ), then δ∗(W,Q) = δ(W,Q), and in this special case
we can detect in O(m logm) time whether δ(W,Q) ≤ κ . Hence, we obtain the fol-
lowing.

Corollary 2.5 Let P be a polygonal chain with n vertices in E
2. After O(n) pre-

processing, for a given subset W of vertices of P , a subchain Q of P , and a given
parameter κ ≥ 1, we can decide, in O(m logm) time, whether δ∗(W,Q) ≤ κ or
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σ(W,Q) ≤ κ , where m = |W | + |Q|. Moreover, if δ(W,Q) = δ(P ), then we can
also detect in O(m logm) time whether δ(W,Q) ≤ κ .

2.3 Computing δ(P ) and σ(P )

So far we have shown how to solve the decision problems associated with finding
the detour and spanning ratio of a path. Now we apply a randomized technique of
Chan [9], which does not affect the asymptotic running time of our decision algo-
rithms, to compute the actual detour δ(P ) or spanning ratio σ(P ). Suppose we have
precomputed the weights of all vertices in P . Let W be a subset of vertices of P , and
let Q be a subchain of P ; set m = |W |+|Q|. We describe an algorithm that computes
a pair (ξ, η) ∈ W × Q so that δ∗(W,Q) ≤ δ(ξ, η) ≤ δ(W,Q).

If |W | or |Q| is less than a prespecified constant, then we compute δ(W,Q) using
a naive approach and report a pair (ξ, η) that attains it. Otherwise, we partition W

into two subsets W1,W2 of roughly the same size, and partition Q into two subchains
Q1,Q2 of roughly the same size. We have four subproblems (Wi,Qj ), 1 ≤ i, j ≤ 2,
at our hand. Note that

δ(W,Q) = max{δ(W1,Q1), δ(W2,Q1), δ(W1,Q2), δ(W2,Q2)}, (1)

δ∗(W,Q) ≤ max{δ∗(W1,Q1), δ
∗(W2,Q1), δ

∗(W1,Q2), δ
∗(W2,Q2)}, (2)

where (2) is an easy consequence of the visibility constraints in the definition of δ∗.
Following Chan’s approach [9], we process the four subproblems in a random

order and maintain a pair of points (ξ, η) ∈ W × Q. Initially, we set (ξ, η) to be
an arbitrary pair of points in W × Q. While processing a subproblem (Wi,Qj ), for
1 ≤ i, j ≤ 2, we first check in O(m logm) time whether δ∗(Wi,Qj ) > δ(ξ, η), using
Corollary 2.5. If the answer is yes, we solve the subproblem (Wi,Qj ) recursively and
update the pair (ξ, η); otherwise, we ignore this subproblem. By (1), (2), and induc-
tion hypothesis, the algorithm returns a pair (ξ, η) such that δ∗(W,Q) ≤ δ(ξ, η) ≤
δ(W,Q). Moreover, if δ(W,Q) = δ(P ), then δ∗(W,Q) = δ(W,Q), so the algorithm
returns the value of δ(W,Q). Chan’s analysis [9] (cf. proof of Lemma 2.1) shows
that the expected running time of the algorithm on an input of size m is O(m logm).
Hence, by invoking this algorithm on the pair (V ,P ), δ(V,P ) = δ(P ) can be com-
puted in O(n logn) expected time.

The case of the spanning ratio is handled in a similar and simpler manner, replac-
ing (1) and (2) by

σ(W,Q) = max{σ(W1,Q1), σ (W2,Q1), σ (W1,Q2), σ (W2,Q2)} (3)

and applying Chan’s technique using this relationship. Hence, we obtain the follow-
ing main result of this section.

Theorem 2.6 The detour or spanning ratio of a polygonal chain P with n vertices
embedded in E

2 can be computed in O(n logn) randomized expected time.

Remark One can obtain an alternative deterministic solution that uses parametric
search [22], and runs in time O(n logc n), for some constant c. However, the resulting
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Fig. 2 Dotted lines indicate
(the only two) pairs of points
that attain the maximum detour

algorithm is considerably more involved on top of being slightly less efficient. We
therefore omit its description.

We extend the definition of δ∗(·, ·) to two disjoint subchains L and R of P as
follows. Let VL (resp. VR) be the set of vertices in L (resp. R). Define δ∗(L,R) =
max{δ∗(VL,R), δ(VR,L)}. Using the same argument as in the proof of Lemma 2.1,
we can argue that if δ(L,R) = δ(P ), then δ(L,R) = δ∗(L,R). The following corol-
lary, which will be useful in the next section, is an obvious generalization of the above
algorithm.

Corollary 2.7 Let L and R be two disjoint subsets of a polygonal chain P in E
2, with

a total of n vertices, preprocessed to report weights in O(1) time. Then σ(L,R) can
be computed in O(n logn) randomized expected time. We can also compute within the
same time a pair (p, q) ∈ L × R such that δ∗(L,R) ≤ δ(p, q) ≤ δ(L,R). Moreover,
if δ(L,R) = δ(P ), then δ(p, q) = δ(L,R).

As to lower bounds, it was shown by Narasimhan and Smid [23] that comput-
ing the spanning ratio of a planar polygonal chain requires Ω(n logn) time if self-
overlapping chains are allowed as input. Grüne [14] has shown that the same lower
bound holds if the input is restricted to polygonal chains that are monotonic, hence
simple. It is unknown whether the Ω(n logn) lower bound also holds for computing
the detour of a polygonal curve.

3 Planar Cycles and Trees

In this section we show that the tools developed for planar paths can be used for solv-
ing the detour and spanning ratio problems on more complicated graphs. Again, we
consider only the problem of computing the detour, because the resulting algorithms
can easily be adapted (and simplified) so as to compute the spanning ratio.

3.1 Polygonal Cycles in the Plane

Let us now consider the case in which P = (V ,E) is a closed (simple) polygonal
curve. This case is more difficult because there are two paths along P between any
two points of P . As a result, the detour of P might occur at a pair of points neither



26 Discrete Comput Geom (2008) 39: 17–37

of which is a vertex of P . For example, the detour in a unit square occurs at the
midpoints of two opposite edges; in this case the lengths of the two paths between
the points must be equal.

For two points p,q ∈ P , let P [p,q] denote the subsets of P from p to q in coun-
terclockwise direction. We use here the notation dP (p,q) to denote the length of
P [p,q]; thus, in general, dP (p,q) �= dP (q,p) and dP (p,q)+ dP (q,p) is the length
|P | of the entire curve P . For a point p ∈ P , let π(p) denote the point on P such
that dP (p,π(p)) = dP (π(p),p) = |P |/2; obviously, π(π(p)) = p. Let Pp denote
the polygonal chain P [p,π(p)].

Lemma 3.1 Let p be a point on P , and let A,B be two portions of Pp , then
δP (A,B) = δPp (A,B).

This follows from the fact that the shortest path along P between any two points
a, b ∈ A × B is contained in the polygonal chain Pp .

Now the P -detour between two points p,q ∈ P is defined as

δP (p, q) = min{dP (p,q), dP (q,p)}
‖pq‖ ,

and the detour of the whole of P is defined as

δ(P ) = max
p,q∈P
p �=q

δP (p, q).

Lemma 3.2 The detour δ(P ) of P is attained by a pair of points p,q ∈ P , such that
either one of them is a vertex of P , or q = π(p).

Proof Suppose δ(P ) = δP (p, q), where neither p nor q is a vertex, and q �= π(p).
Suppose |P |/2 − dP (p,q) = a > 0. We extend, on either end, P [p,q] by subpaths
P [p′,p] and P [q, q ′] of P , each of length a/2, and thereby obtain a polygonal sub-
chain P ′ = P [p′, q ′] ⊂ P of length |P |/2. Since a shortest path in P between any
two points of P ′ is contained in P ′, we have

δ(P ) = δP (p, q) ≤ δ(P ′) ≤ δ(P ).

Thus, the maximum detour of P ′ is attained at p and q . By Lemma 2.1(ii), the detour
does not change as we simultaneously move p toward p′ and q toward q ′ at equal
speed, along their edges in P ′. This motion continues until one of the two points
reaches a vertex of P ′—which must be a vertex of P , too—or both endpoints p′, q ′ =
π(p′) of P ′ are reached. �

By using a rotating-caliper approach, we can compute maxp∈P δP (p,π(p)) in
O(n) time, so we focus on the case in which one of the points attaining the detour is
a vertex of P . We present a different divide-and-conquer algorithm, which will use
the algorithm described in Sect. 2.2 repeatedly. We can preprocess P in O(n) time,
so that, for any two points p,q ∈ P , dP (p,q) can be computed in O(1) time.
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Fig. 3 An instance of the
recursive problem;
dP (t1, t2) = dP (b1, b2) = l,
dP (t2, b1) = dP (b2, t1) = h,
|P | = 2(l + h),
dP (t1, t) = dP (b1, b) = w

Let t1, t2, b1, b2 be four points of P appearing in this counterclockwise order
along P , so that the following condition is satisfied.

b1 = π(t1) and b2 = π(t2). (4)

We observe that condition (4) implies dP (t1, t2) = dP (b1, b2) and dP (t2, b1) =
dP (b2, t1). Let m,m′ be the number of edges in P [b1, b2] and P [t1, t2], respectively.
Define

ρ(t1, t2, b1, b2) = δP (P [t1, t2],P [b1, b2]).
We describe a recursive algorithm that computes a pair of points (p, q) ∈

P [b1, b2]×P [t1, t2] such that δ(p, q) = ρ(t1, t2, b1, b2) if ρ(t1, t2, b1, b2) = δ(P ). If
ρ(t1, t2, b1, b2) < δ(P ), it returns an arbitrary pair of points in P [b1, b2] × P [t1, t2].

If min{m,m′} = 1, then we can compute ρ(t1, t2, b1, b2) in O(m + m′) time. Oth-
erwise, suppose, without loss of generality, that m′ ≥ m, and let t be the middle vertex
of P [t1, t2] (i.e., the vertex for which each of P [t1, t], P [t, t2] has m′/2 edges), and
let b = π(t). It is easily seen that b ∈ P [b1, b2] (by condition (4)). Clearly,

ρ(t1, t2, b1, b2) = max{ρ(t1, t, b, b2), ρ(t, t2, b1, b), ρ(t1, t, b1, b), ρ(t, t2, b, b2)}.

Since P [t1, t] and P [b, b2] lie in P [b, t] = P [π(t), t], using Corollary 2.7, we can
compute in O((m′ + m) log(m′ + m)) randomized expected time a pair (p, q) ∈
P [t1, t] × P [b, b2] so that δ(p, q) = ρ(t1, t, b, b2) if ρ(t1, t, b, b2) = δ(P ). We can
compute a similar pair in P [t, t2] × P [b1, b] within the same time bound. Each of
the two 4-tuples (t1, t, b1, b) and (t, t2, b, b2) satisfies condition (4), and we solve
the problem recursively for them. Among the pairs computed by the four subprob-
lems, we return the one with the largest detour. The correctness of the algorithm is
straightforward.

Let m1 be the number of edges in P [b1, b]. Then P [b, b2] contains at most
m − m1 + 1 edges. Let T (m′,m) denote the maximum expected time of computing
ρ(t1, t2, b1, b2), with the relevant parameters m′ and m. Then we obtain the following
recurrence:

T (m′,m) ≤ T

(
m′

2
,m1

)

+ T

(
m′

2
,m − m1 + 1

)

+ O((m′ + m) log(m′ + m)),

for m′ ≥ m,
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with a symmetric inequality for m ≥ m′, and T (m′,1) = O(m′), T (1,m) = O(m).
The solution to the above recurrence is easily seen to be

T (m′,m) = O((m′ + m) log2(m′ + m)).

Returning to the problem of computing δ(P ), we choose a vertex v ∈ P . Let P1 =
P [v,π(v)] and P2 = P [π(v), v]. Then

δ(P ) = max
{

max
x,y∈P1

δP (x, y), max
x,y∈P2

δP (x, y), δP (P1,P2)
}

= max{δ(P1), δ(P2), ρ(v,π(v),π(v), v)}.
The last equality follows from the fact that the 4-tuple (v,π(v),π(v), v) satisfies (4).
We can compute δ(P1), δ(P2) in O(n logn) randomized expected time, using Theo-
rem 2.6. Next we invoke the above algorithm on the 4-tuple (v,π(v),π(v), v). We
return the maximum of these values. If ρ(v,π(v),π(v), v) = δ(P ), then the above re-
cursive algorithm computes ρ(v,π(v),π(v), v). Hence, the total expected time spent
in computing δ(P ) is O(n log2 n).

The same method also applies to the computation of the spanning ratio of P , and
we thus obtain:

Theorem 3.3 The detour or spanning ratio of a polygonal cycle P with n edges in
E

2 can be computed in O(n log2 n) randomized expected time.

3.2 Planar Trees

Let T = (V ,E) be a tree embedded in E
2. With a slight abuse of notation, we will use

T to denote the embedding of the tree as well. We describe a randomized algorithm
for computing δ(T ). Without loss of generality, assume T is rooted at a vertex v0 so
that if we remove v0 and the edges incident upon v0, each component in the resulting
forest has at most n/2 vertices; v0 can be computed in linear time; refer to Fig. 4. We
partition the children of v0 into two sets A and B . Let TA (resp., TB ), denote the tree
induced by v0 and all vertices having ancestors in A (resp., B). The partition A, B is
chosen so that

1

4
n ≤ ‖TA‖,‖TB‖ ≤ 3

4
n.

Since no descendent of v0 is the root of a subtree with size more than n/2, such a
partition can be found with a linear-time greedy algorithm.

We recursively compute δ(TA) and δ(TB). Let κ∗ = max{δ(TA), δ(TB)}. If
δ(TA,TB) > κ∗, then we need to compute δ(TA,TB). The following lemma, whose
proof is identical to that of Lemma 2.1 given in [10], will be useful.

Lemma 3.4 Let TA and TB be two subtrees of T , and let VA (resp. VB ) be the set of
vertices in TA (resp. TB ). There exists a pair of points (p, q) ∈ (VA ×TB)∪(VB ×TA)

such that δ(p, q) = δ(TA,TB). Moreover, if δ(TA,TB) = δ(T ) then p is visible from
q with respect to TA ∪ TB .
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Fig. 4 Partitioning T into
subtrees TA and TB

By Lemma 3.4, it suffices to compute δ(VA,TB) and δ(VB,TA), where VA and VB

are the sets of vertices in TA and TB , respectively. As in Sect. 2, we first describe a de-
cision algorithm that determines whether δ(TA,TB) ≤ κ for some parameter κ ≥ κ∗.
We define the weight ω(p) of a point p ∈ T to be

ω(p) = dT (p, v0)

κ
.

Let C be the cone z = √
x2 + y2. To determine whether δ(VA,TB) ≤ κ , we map

each point u = (ux,uy) ∈ VA to the cone Cu = C + (ux,uy,−ω(u)), and map each
point v = (vx, vy) ∈ TB to the point v̂ = (vx, vy,ω(v)). Let T̂B = {v̂ | v ∈ TB} be the
resulting tree embedded in E

3. Following the same argument as in Lemma 2.2, we
can argue that, for any (u, v) ∈ VA × TB , δ(u, v) ≤ κ if and only if v̂ lies below the
cone Cu. If δ(TA,TB) > κ ≥ κ∗, then δ(TA,TB) = δ(T ) and, by Lemma 3.4, there is a
co-visible pair of points in VA ×TB whose detour is greater than κ . So we can restrict
our attention to co-visible pairs in VA × TB . Using this observation and Lemma 3.4,
we can determine whether δ(VA,TB) ≤ κ , in O(n logn) time, by the same approach
as in Sect. 2. Similarly, we can determine whether δ(VB,TA) ≤ κ in O(n logn) time.

Finally, returning to the problem of computing δ(T ), we first use the decision
algorithm to determine whether δ(TA,TB) > κ∗. If the answer is no, we return κ∗
and a pair of points, both from TA or both from TB , realizing this detour. Otherwise,
δ(T ) = δ(TA,TB). Since each of TA,TB can be decomposed into two subtrees, each
of size at most 3/4 the size of TA or TB , respectively, we can plug this decision algo-
rithm into Chan’s technique, with the same twist as in Sect. 2, to obtain an algorithm
that computes δ(VA,TB) in O(n logn) randomized expected time.

Putting everything together, the expected running time of the above algorithm is
given by the recurrence

T (n) = T (n − k + 1) + T (k) + O(n logn),

with n/4 ≤ k ≤ 3n/4. The recurrence solves to O(n log2 n). (As in the case of chains,
we need one preliminary global pass that computes the distances along T from v0 to
each of the vertices.)
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The algorithm for computing the spanning ratio proceeds in a similar but simpler
manner, as in the case of chains, and has the same randomized expected running time
bound. We thus conclude the following.

Theorem 3.5 The detour or spanning ratio of a planar tree with n vertices can be
computed in O(n log2 n) randomized expected time.

4 Polygonal Chains, Cycles, and Trees in E
3

Let P be a polygonal chain with n vertices embedded in E
3. We describe subquadratic

algorithms for computing the detour and spanning ratio of P , and a reduction showing
that the problem of computing the detour is at least as hard as Hopcroft’s problem.

4.1 Computing the Spanning Ratio

We begin with the simpler problem of computing the spanning ratio σ(P ) of P . We
solve this problem by adapting the technique for computing spanning ratios in the
plane, as described in Sect. 2. Specifically, consider the decision problem, where we
want to determine whether σ(P ) ≤ κ . We take the set V of vertices of P , and map
each p ∈ V to the point p̂ = (p,ω(p)) ∈ R

4, where ω(p) = dP (p0,p)/κ and p0 is
the starting point of P . We take the cone

C : x4 =
√

x2
1 + x2

2 + x2
3 ,

and define, for each p ∈ V , the cone Cp to be p̂ +C. As in the planar case, σ(P ) ≤ κ

if and only if each point p̂, for p ∈ V , lies on the lower envelope of C = {Cq | q ∈ V }.
Let p = (a1, a2, a3) be a point in V , and let ω(p) = a4. A point ξ = (ξ1, ξ2, ξ3, ξ4)

lies below the cone

Cp : x4 − a4 =
√

(x1 − a1)2 + (x2 − a2)2 + (x3 − a3)2

if and only if the point

ϕ(ξ) = (ξ1, ξ2, ξ3, ξ4, ξ
2
4 − ξ2

1 − ξ2
2 − ξ2

3 )

in E
5 lies in the halfspace

hp : x5 ≤ −2a1x1 − 2a2x2 − 2a3x3 + 2a4x4 + (a2
1 + a2

2 + a2
3 − a2

4).

Therefore a point ξ ∈ E
4 lies in the lower envelope of C if and only if ϕ(ξ) lies in the

convex polyhedron
⋂

p∈V hp . Hence, the problem of determining whether σ(P ) ≤ κ

reduces to locating n points in a 5-dimensional convex polyhedron defined by the
intersection of n halfspaces. This problem can be solved in O(n4/3+ε) time using
a data structure for halfspace-emptiness queries [1]. Using Chan’s technique, as in
the planar case, we can compute σ(P ) itself within the same asymptotic time bound.
Finally, as for the planar case, the algorithm can be extended to compute the spanning
ratio of a polygonal cycle or tree embedded in E

3. That is, we have shown:
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Theorem 4.1 The spanning ratio of a polygonal chain, cycle, or tree with n vertices
embedded in E

3 can be computed in randomized expected time O(n4/3+ε), for any
ε > 0.

4.2 Computing the Detour

We next consider the problem of computing the detour δ(P ) of P . Here the algorithm
becomes considerably more involved and less efficient, albeit still subquadratic. As
in some of the preceding algorithms, we use a divide-and-conquer approach to com-
pute δ(P ). That is, we partition P into two connected portions, P1, P2, each consist-
ing of n/2 edges, recursively compute δ(P1) and δ(P2), and then compute explicitly
the detour between P1 and P2, as follows. Let o be the common endpoint of P1
and P2. For any point x in P , let ω(x) = dP (o, x) be the arc length of P (that is,
either of P1 or of P2) between o and x. For any x ∈ P1, y ∈ P2, we have

δP (x, y) = ω(x) + ω(y)

‖xy‖ .

For a pair of edges e ∈ P1 and e′ ∈ P2, define, as above,

δ(e, e′) = δP (e, e′) = max
x∈e,x′∈e′ δP (x, x′);

as in Sect. 2, we drop the subscript P in the function δ. Then

δ(P ) = max
{
δ(P1), δ(P2), max

e∈P1,e
′∈P2

δ(e, e′)
}
.

Let A, B denote the set of edges of P1 and P2, respectively. It suffices to compute the
third term,

δ(A,B) = max
a∈A,b∈B

δ(a, b).

Unlike the planar case, the detour of P is not necessarily attained at a vertex of P (for
example, there P might contain two long edges that orthogonally pass near each other
at a very small distance, and the detour could then be obtained between the two points
that realize the distance between the segments). This makes the 3-dimensional algo-
rithm considerably more complicated, and less efficient, than its 2-dimensional coun-
terpart. Consider first the decision problem, in which we wish to determine whether
δ(A,B) ≤ κ , for some given κ ≥ 1.

For an edge e ∈ A ∪ B , let e+ denote the ray that emanates from the endpoint, z+,
of e closer to o along P and that contains e; see Fig. 5. Similarly, let e− denote the
ray emanating from the point z− of e farther from o and containing e. We extend
the definition of ω(·) for points on the rays e+, e− even though these points might
not lie on P . For a point x ∈ e+ (resp., x ∈ e−), we define ω(x) = ω(z+) + ‖z+x‖
(resp., ω(x) = ω(z−) − ‖xz−‖). Note that these definitions of ω are consistent with
the earlier definition, in the sense that all of them assume the same value for the points
on e. We can now define δ(·, ·) for points lying on the rays supporting the edges of
P1 and P2. Namely, for a given pair a, b, where a, b are either edges of P or the rays
supporting the edges, δ(a, b) = maxx∈a,y∈b(ω(x) + ω(y))/‖xy‖.
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Fig. 5 Decomposition of P and
rays e+ , e−

Lemma 4.2 Let a ∈ A and b ∈ B be a pair of edges. The following four conditions
are equivalent:

(i) δ(a, b) > κ ;
(ii) δ(a+, b) > κ and δ(a−, b) > κ ;

(iii) δ(a, b+) > κ and δ(a, b−) > κ ;
(iv) δ(a+, b+) > κ , δ(a+, b−) > κ , δ(a−, b+) > κ , and δ(a−, b−) > κ .

Proof Let a∗ (resp., b∗) be the line supporting the edge a (resp., b) oriented in the
direction of the ray a+ (resp., b+). Parametrize the lines a∗ and b∗ by the signed
distances along these lines from appropriate respective initial points ξ ∈ a,η ∈ b, and
denote these distances by t and s, respectively. Regard a∗ × b∗ as the parametric
ts-plane. Let u,v denote the positively oriented unit vectors along a∗ and b∗, respec-
tively. For x = ξ + tu ∈ a∗ and y = η + sv ∈ b∗, the condition δ(x, y) > κ can be
written as:

δ(x, y) = ω(ξ) + ω(η) + t + s

‖(ξ − η) + tu − sv‖ > κ,

or

κ‖(ξ − η) + tu − sv‖ − ω(ξ) − ω(η) − t − s < 0. (5)

The left-hand side of (5) is a convex function on the st-parametric plane, being the
difference of a convex function and a linear function. The lemma is then an easy con-
sequence of this convexity property. Indeed (i) implies (ii)–(iv) because a = a+ ∩ a−
and b = b+ ∩ b−. For the converse implications, consider the implication (ii) ⇒ (i).
Suppose that δ(x+, y+) > κ for x+ ∈ a+, y+ ∈ b and δ(x−, y−) > κ for x− ∈ a−,
y− ∈ b. By construction, x+x− ∩ a �= ∅. Moreover, by convexity of (5), δ(x′, y′) > κ

for all x′ ∈ x+x−, y′ ∈ y+y−, thereby implying that δ(a, b) > κ . Similar arguments
imply that (iii) or (iv) implies (i). �

Using Lemma 4.2(iv) and the standard random-sampling technique [16], we
construct a four-level data structure to decide whether δ(A,B) > κ . The first
level constructs a complete bipartite decomposition for the set {(a, b) ∈ A × B |
δ(a+, b+) > κ}. The second level processes each bipartite clique Ai × Bi in the de-
composition, and represents the set {(a, b) ∈ Ai × Bi | δ(a−, b+) > κ} as the union
of complete bipartite subgraphs. The third level then refines further this decomposi-
tion, to collect pairs that also satisfy δ(a+, b−) > κ , and the fourth level finally tests
whether δ(a−, b−) > κ for any of the surviving pairs.
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We compute the first-level decomposition of {(a, b) ∈ A × B | δ(a+, b+) > κ},
as follows. (Similar procedures are then applied at each of the three other levels of
the data structure.) For each edge a ∈ A, we map the ray a+ to a point ζ(a+) =
(ζ1, . . . , ζ6) in R

6, where (ζ1, ζ2, ζ3) are the coordinates of the endpoint z+ of a+,
(ζ4, ζ5) is an appropriate parametrization of the orientation of a+, and ζ6 = ω(z+).
A similar parametrization will be used for the rays a−. Next, we map each edge b ∈ B

to a surface γ (b+) that represents the locus of all rays a+ for which δ(a+, b+) = κ .
Since δ increases as the parameter ζ6 increases and each 5-tuple (ζ1, . . . , ζ5) defines
a unique ray in E

3, it follows that γ (b+) is the graph of a totally defined 5-variate
function and δ(a+, b+) > κ (resp., δ(a+, b+) < κ) if and only if ζ(a+) lies above
(resp., below) γ (b+). We can thus regard the problem at hand as that of collecting, in
compact form, all pairs (ζ(a+), γ (b+)) for which ζ(a+) lies above γ (b+). Abusing
the notation slightly, set |A| = n and |B| = m.

We fix a sufficiently large constant r , draw a random sample R of cr log r edges
of B , where c is a sufficiently large constant independent of r , and compute the
vertical decomposition A‖ of the arrangement A of the surfaces {γ (b+) | b ∈ R}.
It is easily verified that these surfaces are all semi-algebraic of constant description
complexity. Hence, we can apply the result of Koltun [19], to conclude that A‖ has
O(r8+ε) cells, for any ε > 0. For each cell τ ∈ A‖, let Aτ = {e ∈ A | ζ(e+) ∈ τ },
let Bτ ⊆ B be the set of edges b for which the surface γ (b+) crosses τ , and let
B∗

τ ⊆ B be the set of edges b for which the surface γ (b+) lies completely below τ .
The sets Aτ ,Bτ can be computed in O(m + n) time under an appropriate model of
computation, in which we assume that the roots of a constant degree polynomial can
be computed in O(1) time; see [25].

Set nτ = |Aτ | and mτ = |Bτ |. Obviously,
∑

τ nτ = n and |B∗
τ | ≤ m. By the theory

of random sampling [16, 25] (where we use the fact that the VC-dimension of the
underlying range space is finite), mτ ≤ m/r for all τ , with probability at least 1 − η,
where η = η(r) is a constant that can be made arbitrarily small by choosing the value
of r sufficiently large. If mτ > m/r for a cell, we choose another random sample
and restart the above step. Since the probability of this event is a sufficiently small
constant, it does not affect the asymptotic expected running time of the algorithm and
we can ignore this step. Moreover, by splitting the cells into subcells, if needed, we
may also assume that nτ ≤ n/r8 for each τ ; the number of cells remains O(r8+ε).
By construction, δ(a+, b+) > κ for any pair e ∈ Aτ and b ∈ B∗

τ . We use the second-
level data structure, sketched below, to determine whether δ(Aτ ,B

∗
τ ) > κ . If mτ or

nτ is less than a prespecified constant, then we use a naive procedure to determine
whether δ(Aτ ,Bτ ) > κ . Otherwise, we recursively determine (using the first-level
data structure) whether δ(Aτ ,Bτ ) > κ . For an edge a ∈ Aτ and for an edge b ∈ B

such that γ (b+) lies above τ , δ(a+, b+) < κ , so there is no need to compare Aτ with
such edges.

To exploit the symmetry in the condition δ(a+, b+) > κ between A and B , we
next switch the roles of Aτ and Bτ , by mapping the rays b+, for b ∈ Bτ , to points
in R

6, and the rays a+, for a ∈ Aτ , to surfaces γ (a+), as above. We take a random
sample of cr log r of these surfaces, and construct the vertical decomposition of their
arrangement, as above. Repeating this for each cell τ , we end up with O(r16+ε)

subproblems, each involving at most n/r9 segments of A and at most m/r9 segments
of B , which we proceed to solve recursively, using the first-level data structure. In



34 Discrete Comput Geom (2008) 39: 17–37

addition, we have subproblems involving pairs of sets of the form Aτ , B∗
τ , or Bτ ′ , A∗

τ ′ ,
which we pass to the second level of the structure.

The second-level structure is constructed in an analogous manner, with the only
difference that we use the rays a− instead of the rays a+. Thus, starting with a pair
of subsets Aτ , Bτ , we obtain a decomposition into O(r16+ε) subproblems, each in-
volving at most |Aτ |/r9 segments of Aτ and at most |Bτ |/r9 segments of Bτ , which
we process recursively using the second-level structure, and a collection of other
subproblems that we pass to the third level. The third level is again constructed in
complete analogy, using the rays a+ for the segments in A and the rays b− for the
segments in B . The fourth-level structure is constructed for the rays a−, b−, and is
a little simpler than the preceding levels, in the sense that whenever we detect a cell
that lies fully below a surface (γ (a−) or γ (b−)), we stop and report that δ(A,B) > κ .
Otherwise, we continue the processing recursively, as in the preceding levels.

For i = 1, . . . ,4 and for integers m,n > 0, let T (i)(n,m) denote the maximum
running time of the ith level data structure on a set of n edges of P1 and a set of m

edges of P2. Then

T (4)(n,m) = O(r16+ε) · T (4)

(
n

r9
,
m

r9

)

+ O(m + n),

and

T (i)(n,m) = O(r16+ε) ·
[

T (i)

(
n

r9
,
m

r9

)

+ T (i+1)(n,m)

]

+ O(m + n),

for i ≤ 3. The solutions to the above recurrences are easily seen to be T (i)(n,m) =
O((mn)8/9+ε), for any ε > 0 and for each i.

Hence, we obtain the following.

Lemma 4.3 Given a polygonal chain in E
3, two disjoint subchains A and B of P

with a total of m vertices, and a parameter κ ≥ 1, we can determine, in O(n16/9+ε)

randomized expected time, whether δ(A,B) > κ .

As in the planar case, we can use the randomized technique of Chan [9] to compute
the actual δ(A,B) within the same asymptotic expected running time bound. The
algorithm extends to polygonal cycles and trees in E

3.
In conclusion, we obtain the following.

Theorem 4.4 The detour of a polygonal chain, cycle, or tree with n edges in E
3 can

be computed in randomized expected time O(n16/9+ε), for any ε > 0.

Remark We remark that it is also possible to use the parametric search technique [22],
as in [3], to obtain a deterministic alternative solution. This however (a) results in a
considerably more involved algorithm, and (b) requires us to derandomize the deci-
sion algorithm, i.e., its vertical decomposition step. This too is doable, but is consid-
erably more complicated.
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Fig. 6 Reducing Hopcrofts’s problem to computing the detour of a 3-dimensional path. (i) An instance of
Hopcroft’s problem. (ii) Construction of the polygonal chain Π

4.3 Lower Bound

Finally, we show that computing the detour of a 3-dimensional path is as hard as
Hopcroft’s problem: Given a set L = {�1, . . . , �n} of n lines in R

2 and a set P =
{p1, . . . , pn} of n points in R

2, determine whether any line of L contains any point
of P . There is an abundance of evidence to suggest that Hopcroft’s problem has an
Ω(n4/3) lower bound [12]. The best known upper bound in any reasonable model of
computation is O(n4/32O(log∗ n)) [21].

To reduce an instance of Hopcroft’s problem to that of computing the detour of a 3-
dimensional path, we will first build a 3-dimensional path Π that is self-intersecting,
i.e., has infinite detour, if and only if the answer to Hopcroft’s problem is affirmative.
Then we show how the proof can be modified to cover the case where we know
a priori that the polygonal chains we are given as input do not self-intersect. The
construction uses techniques presented in Erickson [12].

Without loss of generality, we may assume that none of the given lines is y-
vertical. We begin by sorting the lines in L in increasing order of their slopes and
the points in P in increasing lexicographic order. Let 〈�1, . . . , �n〉 be the resulting
sequence of lines, and let 〈p1, . . . , pn〉 be the resulting sequence of points. We com-
pute a bounding rectangle R so that each line of L intersects the two y-vertical edges
of R, and all the points of P , as well as all the intersection points of lines in L, lie
inside R. These steps require O(n logn) time.

By construction, the ordering of L along the left edge of R in −y-direction is
�1, . . . , �n, and its ordering along the right edge of R is �n, . . . , �1. For each 1 ≤ i ≤ n,
we lift the segment R ∩ �i orthogonally to the plane z = i, to obtain a line segment li .
Next, we transform each input point pj ∈ P to a line segment ej that is parallel to
the z-axis, whose endpoints are (pj ,0) and (pj , n + 1); see Fig. 6.

This gives us a set of line segments so that the answer to Hopcroft’s problem for
the original lines and points is “yes” if and only if some segment li intersects some
segment ej . It remains to construct a polygonal chain that contains all these segments
without introducing any additional crossings. To do this, we first form a chain con-
taining all segments lj . It starts at the left endpoint of l1. The right endpoint of l1 is
connected to the right endpoint of l2. This connection consists of two segments; the
first one is parallel to the z-axis and leads from the plane z = 1 to the plane z = 2,
and the second one, contained in z = 2, is parallel to the y-axis. Next, l2 is traversed,
and its left endpoint is connected to the left endpoint of l3 in an analogous way. We
continue until the last endpoint of ln is reached. Clearly, the resulting chain is simple.
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Next, we connect the segments e1, . . . , en into a simple polygonal chain by con-
necting the upper endpoints of ei to ei+1 if i is odd and the lower endpoints if i is
even. This chain is clearly not self-intersecting since its xy-projection is monotone
in the lexicographic order. Finally, we connect the left endpoint of l1 in z = 1 to the
free endpoint of e1 in z = 0 by two additional segments. The resulting concatenation
of the two chains has the desired property. See Fig. 6.

One might state the problem of computing the detour of a 3-dimensional chain in
such a way that the input chains are known apriori not to have self-intersections. The
above lower bound proof can be adapted to this situation in the following way. First,
we move each of the original lines �i a distance of ε to the right, where ε is a formal
infinitesimal, i. e., ε is positive, but smaller than any real number. Then we construct
the polygonal chain in the same way as before. It will always be non-intersecting, but
its detour is bigger than c/ε, for some appropriate constant c > 0, if and only if there
was a point-line incidence in the original instance of Hopcroft’s problem. Reductions
using infinitesimals were formally shown to be correct, in the algebraic decision tree
model, by Erickson [12].

In conclusion, we have shown:

Theorem 4.5 An algorithm with running time f (n) for computing the detour of 3-
dimensional polygonal chains with n vertices implies an O(n logn + f (n)) time al-
gorithm for Hopcroft’s problem.

Remark It is interesting to note that we have almost matched this lower bound with
the algorithm in Theorem 4.1 for computing the spanning ratio of P . We do not know
whether the preceding construction can be extended to yield a lower bound argument
for computing spanning ratios.

5 Conclusions

We have given O(n logn)-time randomized algorithms for computing the detour and
spanning ratio of planar polygonal chains. These algorithms lead to an O(n log2 n)-
time algorithms for computing the detour and spanning ratio of planar trees and
cycles. In three dimensions, we have given subquadratic algorithms for computing
the detour and spanning ratio of polygonal chains, cycles, and trees. Previously, no
subquadratic-time (exact) algorithms were known for any of these problems.

There are many open problems in this new area. The most obvious is: Which other
classes of graphs admit subquadratic-time algorithms for computing their detour or
spanning ratio? Also, it remains open to prove an Ω(n logn) lower bound for com-
puting the detour of a simple planar polygonal chain of n vertices; at present, such a
bound is only known for computing the spanning ratio. Finally, it seems likely that
the algorithm for computing the detour in E

3 can be improved.
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