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Abstract The computation of the Discrete Fourier Trans-
form for a general lattice in R

d can be reduced to the
computation of the standard 1-dimensional Discrete Fourier
Transform. We provide a mathematically rigorous but sim-
ple treatment of this procedure and apply it to the DFT on
the hexagonal lattice.
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1 Introduction

Traditional image processing algorithms are usually carried
out on rectangular arrays, but there is a growing research
literature on image processing using other sampling grids
[1, 4, 10, 12, 13]. Of particular interest is sampling on a
hexagonal grid. Hexagonal grids provide for higher pack-
ing density, give a more accurate approximation of circu-
lar regions, and exhibit symmetric neighbor adjacency (i.e.
the distance from the center of any hexagon to the center
of any adjacent hexagon is the same). An extensive list of
references can be found in [11]. One of the fundamental
tools in image processing is the discrete Fourier transform
(DFT) [14]. It is the intention of this paper to present a
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straightforward approach to the DFT for a general lattice L

in R
d , an approach perhaps more direct than previous treat-

ments. The spatial domain of the DFT in this context is a
set of coset representatives of the quotient of L by a sub-
lattice of L. The computation of the DFT, even in this gen-
eral case, can efficiently and easily be reduced to the com-
putation of the standard 1-dimensional DFT. This result is
then applied to hexagonal arrays, in particular to multires-
olution arrays that allow for fast “zooming in” to view fine
image detail or “zooming out” to view global image fea-
tures.

Previous approaches to the DFT on a hexagonal grid in-
clude [3, 7], in which the DFT is converted to a square grid,
and [15] in which the GBT (generalized balanced ternary)
system for indexing a hexagonal grid is used. Our approach
to the DFT uses the Smith normal form of a square inte-
ger matrix. As pointed out by one of the referees, the use
of this normalized form appeared previously in Problem 20,
Chap. 2, of [1] and in [6]. This paper contributes a mathe-
matically rigorous yet simple approach before applying it to
the hexagonal lattice.

This introductory section contains general background on
the DFT. Section 2 concerns the spatial and frequency do-
mains of the DFT for a general lattice. The result on reduc-
ing the computation of the lattice DFT to the standard DFT
appears in Sect. 3. Section 4 applies the results to the hexag-
onal grid.

In dimension 1, grid cells are unit intervals centered say,
at the points 0,±1,±2, . . . . An image can be thought of as
a complex valued function defined on a finite subset, say
{0,1,2, . . . ,N −1}, of these points. Let C

[N ] denote the vec-
tor space of all such functions. The discrete Fourier trans-
form is the linear transformation F : C[N ] → C

[N ] defined
by
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(Fa)(k) =
N−1∑

j=0

a(j)e−2πi
jk
N .

The general mathematical setting for the DFT is a fi-
nite Abelian group G of order, say N . The group opera-
tion will be denoted +. Let Ĝ denote the character group
Hom(G,TN) of G, i.e., the group of all homomorphisms of
G into the multiplicative group TN of all N th roots of unity.
The addition on Ĝ is defined by (χ + ψ)(g) = χ(g)ψ(g)

for all χ,ψ ∈ Hom(G,TN). In signal processing terminol-
ogy, G is the spatial domain and Ĝ the frequency domain.
Any signal can be fully described in either of these domains.
The Fourier transform is the tool that allows us to go back
and forth between the two. Depending on what we want to
do with the signal, one domain tends to be more useful, or
mathematically simpler, than the other. It is a standard re-
sult that Ĝ ∼= G, so the spatial and frequency domains are
algebraically the same. In particular N = |G| = |Ĝ|. In the
context of this paper, as developed in Sect. 2, the situation is
more concrete. Both the spatial domain G and the frequency
domain Ĝ will consist of a finite set of cells of some grid in
Euclidean space R

n.
Let C

G and C
Ĝ denote the vector spaces of complex-

valued functions on G and Ĝ, respectively. From an image
processing point of view, a function in C

G is merely an im-
age. Both C

G and C
Ĝ are inner product spaces, the inner

product on C
G being

〈a, b〉 =
∑

g∈G

a(g)b(g),

and associated norm

‖a‖ = √〈a, a〉 =
( ∑

g∈G

|a(g)|2
)1/2

.

The inner product and norm on C
Ĝ are similarly defined.

The Discrete Fourier Transform (DFT) is the linear trans-
formation

F : C
G → C

Ĝ

a �→ â

defined by

â(χ) = 1√
N

∑

g∈G

a(g)χ(g) (1)

for all χ ∈ Ĝ. Moreover, F is an isometry, that is, ‖F(a)‖ =
‖a‖ for all a ∈ C

G. The inverse Fourier transform

F−1: C
Ĝ → C

G

â �→ a

is defined by

a(g) = 1√
N

∑

χ∈Ĝ

â(χ)χ(g) (2)

for all g ∈ G, the basic result being that F−1 ◦F =
F ◦F−1 = id.

2 Spatial and Frequency Domains for a Lattice

Practical considerations dictate that the cells of a sampling
grid should be translates of a single cell to the points of a
lattice L in R

d . In dimension 2, the most commonly utilized
lattices are the square lattice and the hexagonal lattice. A d-
dimensional lattice is an integer linear combination of d lin-
early independent vectors in R

d . These d vectors are called
a set of generators of the lattice. The matrix whose rows are
the generators of L is called the generator matrix of L. Let
L0 < L denote that L0 is a d-dimensional sublattice of d-
dimensional lattice L. In this case the quotient L/L0 of the
Abelian groups L and L0 is a finite Abelian group.

An image is a function defined on a finite subset D of L.
In order to be amenable to the DFT, the set D should have
a natural Abelian group structure, natural in the sense that
the group operation be compatible with the vector addition
on L. This is the case when there exists a sublattice L0 of
L such that D is a set of coset representative of the quo-
tient L/L0. Given L and D there is an efficient algorithm
[8] for deciding whether or not there is such a sublattice L0

for which D is a set of coset representatives of L/L0 and,
if so, for finding generators for the lattice L0. In all that fol-
lows we will assume that our domain D is such a set. The
group L/L0 will serve as the spatial domain of the DFT.

Note that, in the 1-dimensional case, L = Z and L0 =
{Ni : i ∈ Z} for some integer N . The group L/L0 is the
group of integers modulo N , and its character group L̂/L0

consists of the homomorphisms

j �→ e2πi
jk
N

for k = 0,1, . . . ,N − 1. So the DFT in this case is just the
standard DFT.

Given a d-dimensional lattice L and sublattice L0, call a
set {v1,v2, . . . ,vd} of generators of L an elementary set of
generators for L with respect to sublattice L0 if, for some
integers N1,N2, . . . ,Nd ,

S = {j1v1 + j2v2 + · · · + jdvd : 0 ≤ ji < Ni,0 ≤ i ≤ d} (3)

is a set of coset representatives of L/L0. In this case call the
integers N1,N2, . . . ,Nd divisors of L/L0.

Lemma 1 If L0 < L, then L has an elementary set of gen-
erators with respect to L0.
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The proof of Lemma 1 is subsumed in the Algorithm be-
low, whose output is an elementary set of generators for L

with respect to L0 and the corresponding set of divisors of
L/L0. It is well known [2] that any square matrix A with
integer entries can be put in diagonal form (Smith Normal
Form) using a sequence of the following row and column
operations.

Interchange two rows (columns)
Multiply a row (column) by ±1
Add an integer multiple of one row (column) to another

row (column)

There is a standard algorithm, which we omit, for accom-
plishing this. Any such row operation is given by left multi-
plication of A by an elementary matrix U on the left and any
column operation by multiplication of A by an elementary
matrix on the right.

Algorithm Input: lattices L0 < L and any generator matrix
M of L.

Output: a matrix ML whose rows comprise an elementary
set of generators of L with respect to L0, and a diagonal
matrix E whose diagonal entries are a corresponding set of
divisors of L/L0.

Since generators of L0 are integer linear combinations
of the generators of L, there is an easily computed integer
matrix A such that AM is a generator matrix of L0.

Let V1,V2, . . . , Vs and U1,U2, . . . ,Ut be elementary ma-
trices (from the Smith Normal form) used to diagonalize A.
Thus the following matrix E is diagonal:

E = Vs · · ·V2V1AU1U2 · · ·Ut .

Let

ML = (U1U2 · · ·Ut)
−1M.

Proof (of the validity of the Algorithm) Let U =U1U2 · · ·Ut

and V = Vs · · ·V2V1. Since the rows of AM are the gener-
ators of L0 and since V is unimodular, the rows of ML0 =
V (AM) are again a set of generators of L0. (By a unimodu-
lar matrix, we mean a square matrix with integer entries and
determinant +1 or −1.) Likewise the rows of ML = U−1M

are a set of generators of L. Therefore

EML = (V AU)(U−1M) = V (AM) = ML0 , (4)

which says that the rows of ML comprise an elementary set
of generators of L with respect to L0 with corresponding
divisors on the diagonal of E. �

It follows immediately from Lemma 1 and the Algorithm,
in particular the formula for matrix E, that, if M is a gener-
ator matrix of L and AM a generator matrix of L0, then

|L/L0| = N1N2 · · ·Nd = |detA|. (5)

Note also that the divisors N1,N2, . . . ,Nd are not neces-
sarily unique, but according to the theory of finite Abelian
groups, can be made unique up to order under the additional
divisibility condition N1|N2| · · · |Nd . In this case the divisors
are called elementary divisors.

Example As a simple example, let L be the square lattice in
R

2 generated by (1,0) and (0,1), and let L0 be the sublattice
generated by (2,4) and (6,16). Then

A =
(

2 4
6 16

)
,

E =
(

1 0
−3 1

)
A

(
1 −2
0 1

)
=

(
2 0
0 4

)
,

ML =
(

1 −2
0 1

)−1 (
1 0
0 1

)
=

(
1 2
0 1

)
.

Then an elementary set of generators for L with respect to
L0 is {(1,2), (0,1)} with corresponding set {2,4} of divi-
sors. Therefore

{(0,0), (0,1), (0,2), (0,3), (1,2), (1,3), (1,4), (1,5)}

is a set of coset representatives of L/L0.

For a lattice L, the geometric dual (or reciprocal lattice)
of L is defined by

L∗ = {y ∈ R
d : 〈x,y〉 is an integer for all x ∈ L},

where 〈x,y〉 is the standard Euclidean inner product. If L0

is a sublattice of L, then the first two of the following prop-
erties are well known, and the third is easy to check. Here ∼=
denotes group isomorphism and M−T the transpose of the
inverse of M .

1. L∗ < L∗
0

2. L̂/L0 ∼= L∗
0/L

∗
3. If M is a generator matrix of L, then M−T is a generator

matrix of L∗

Since the quotient L/L0 serves as the spatial domain of the
DFT, the quotient L∗

0/L
∗, in view of property (2), serves as

the frequency domain. Consider the 1-dimensional example
where, for some integer N , we take L = Z,L0 = NZ, and
{0,1, . . . ,N − 1} is a set of coset representatives of L/L0.
Then L∗ = Z,L∗

0 = ( 1
N

)Z, and {0, 1
N

, 2
N

, . . . , N−1
N

} is a set
of coset representatives of L∗

0/L
∗. Another example appears

below, and the situation for the 2-dimensional hexagonal lat-
tice appears in Sect. 4.

Concerning the situation in the frequency domain, (4) and
property (3) above imply that ML∗ := M−T

L is a generator
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matrix of L∗, ML∗
0
:= M−T

L0
is a generator matrix of L∗

0, and,
taking the inverse transpose of each side of equation (4),

EML∗
0
= ML∗ .

This implies that the rows of ML∗
0

comprise an elementary
set of generators for L∗

0 with respect to L∗. Moreover, the
corresponding divisors are the same as for L with respect
to L0.

Example This is a continuation of the example that appears
earlier in this section in which L is the square lattice. In this
case L∗ is again the square lattice and, as stated above,

ML∗
0
:= M−T

L0
= (EML)−T =

[(
2 0
0 4

)(
1 2
0 1

)]−T

=
(

1
2 0

− 1
2

1
4

)

Then an elementary set of generators for L∗
0 with respect

to L∗ is {( 1
2 ,0), (− 1

2 , 1
4 )} with corresponding set {2,4} of

divisors. Therefore
{
(0,0),

(
−1

2
,

1

4

)
,

(
−1,

1

2

)
,

(
−3

2
,

3

4

)
,

(
1

2
,0

)
,

(
0,

1

4

)
,

(
−1

2
,

1

2

)
,

(
−1,

3

4

)}

is a set of coset representatives of L/L0.

3 The DFT on a Lattice

Given L0 < L and g ∈ L, let g denote the coset of g in
L/L0, and likewise given h ∈ L∗

0, let h denote the coset of
h in L∗

0/L
∗. The isomorphism

φ: L∗
0/L

∗ → L̂/L0

h �→ χh

in property (2) in Sect. 2 is given by

χh(g) = e2πi〈g,h〉

for g ∈ L/L0, the right hand side in the equation being in-
dependent of the choice of the particular coset representa-
tives g and h. In light of this and the DFT formula (1),
the DFT with spatial domain G = L/L0, frequency domain
G∗ = L∗

0/L
∗, and order N = |G| = |G∗|, is the linear trans-

formation

F : CG → C
G∗

given by

(Fa)(h) = 1√
N

∑

g∈G

a(g)e−2πi〈g,h〉 (6)

for all a ∈ C
G and all h ∈ G∗. The inverse Fourier transform

is given by

(F−1a∗)( g ) = 1√
N

∑

h∈G∗
a∗(h)e2πi〈g,h〉 (7)

for all a∗ ∈ C
G∗

and all g ∈ G. The following theorem
and its proof give a method for reducing the calculation
of the DFT (6) and inverse DFT (7) to the calculation of
1-dimensional DFTs.

Theorem 2 If the quotient L/L0 has divisors N1,N2,

. . . ,Nd , then the general DFT or inverse DFT of formu-
las (6) and (7) can be reduced to computing 1-dimensional
DFTs of the form

â(k) =
M−1∑

j=0

a(j)e−2πi
jk
M .

The precise form of the DFT is given in (9) and (10) below.
Using a fast Fourier transform on each 1-dimensional DFT,
the above result provides a run time of

O

(
N

d∑

i=1

logNi

N1N2 · · ·Ni−1

)
.

Proof We prove the result for the DFT; a similar proof holds
for the inverse DFT. Since the sum on the right hand side of
(6) is independent of the particular set of representatives,
we take a set S of representatives of the form (3) associated
with an elementary set {v1,v2, . . . ,vd} of generators for L

with respect to L0. If these vectors form the rows of gen-
erator matrix M , then by property (3) in Sect. 2, the rows
{v∗

1,v∗
2, . . . ,v∗

d} of (EM)−T comprise an elementary set of
generators for L∗

0 with respect to L∗, where E is the diag-
onal matrix in the Algorithm of Sect. 2, with diagonal el-
ements N1,N2, . . . ,Nd . Note that, for the matrix of inner
products, we have

(〈vj ,v∗
k〉) = (EM)−T MT = E−1.

Hence

〈vj ,v∗
k〉 =

{
1

Nj
, if j = k,

0, otherwise.

So
〈

d∑

i=1

jivi ,

d∑

i=1

kiv∗
i

〉
=

d∑

i=1

1

Ni

jiki . (8)
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For ease of notation use J = (j1, j2, . . . , jd) for j1v1 +
j2v2 +· · ·+jdvd and K = (k1, k2, . . . , kd) for k1v∗

1 +k2v∗
2 +

· · · + kdv∗
d . Then using formula (8) the DFT in formula (6)

becomes

(Fa)(K)

= 1√
N

∑
a(J )e

−2πi
j1k1
N1 e

−2πi
j2k2
N2 · · · e−2πi

jd kd
Nd

= 1√
N

Nd−1∑

jd=0

e
−2πi

jd kd
Nd

×
(

· · ·
(

N2−1∑

j2=0

e
−2πi

j2k2
N2

(
N1−1∑

j1=0

a(J )e
−2πi

j1k1
N1

)))
, (9)

where the summation in the first line is 0 ≤ j1 < N1, . . . ,0 ≤
jd < Nd . Thus the DFT can be reduced to computing the fol-
lowing 1-dimensional DFTs, the first done N/N1 times, the
second N/(N1N2) times, . . . , the last computed just once.

b1(k1, j2, . . . , jd) =
N1−1∑

j1=0

a(j1, j2, . . . , jd)e
−2πi

j1k1
N1 ,

b2(k1, k2, j3, . . . , jd) =
N2−1∑

j2=0

b1(k1, j2, . . . , jd)e
−2πi

j2k2
N2 ,

· · ·
(Fa)(K) = bd(k1, k2, . . . , kd)

=
Nd−1∑

jd = 0

bd−1(k1, k2, . . . , kd−1, jd)e
−2πi

jd kd
Nd .

(10)

Since a fast Fourier transform running time on a 1-dimen-
sional DFT of size Ni is O(Ni logNi), the total running time
is as given in the statement of the theorem. �

Example This is a continuation of the example that appears
twice in the previous section, where L is the square lattice
in R

2 generated by (1,0) and (0,1) and L0 is the sublattice
generated by (2,4) and (6,16). Let a be a function defined

on L/L0. As an example we compute â(( 1
2 , 1

2 )). Note that
( 1

2 , 1
2 ) and (− 1

2 , 1
2 ) = ( 1

2 ,0) + 2(− 1
2 , 1

4 ) represent the same
coset in L∗

0/L
∗ and, in the notation of Theorem 2, this is

coset K = (1,2). Then by (9) and (10) above

â(K) =
3∑

j2=0

b(k1, j2)e
−πij2 ,

where

b(k1,0) = a(0,0) − a(1,0),

b(k1,1) = a(0,1) − a(1,1),

b(k1,2) = a(0,2) − a(1,2),

b(k1,3) = a(0,3) − a(1,3).

In terms of actual coordinates in R
2,

â

(
1

2
,

1

2

)
= a(0,0) + a(1,3) + a(0,2) + a(1,5)

− a(1,2) − a(0,1) − a(1,4) − a(0,3).

4 Hexagonal Grids

The standard hexagonal lattice H is the lattice in R
2 with

generators

v1 = (1,0), v2 =
(

−1

2
,

√
3

2

)
.

Any scaled and/or rotated copy of H is also called hexago-
nal. The dual lattice H ∗ is again hexagonal, with generators

v∗
1 =

(
1,

1√
3
,

)
, v∗

2 =
(

0,
2√
3

)
.

4.1 Hexagonal Domains

A particularly nice sampling method is to take a hexagonal
shaped spatial domain D. Figure 1 shows representatives of
two (of the many) such families. In general, it is not hard
to show that there exists such a hexagonal shaped set D of
coset representatives of H/H0 in the case that H0 is also a
hexagonal lattice. Call H/H0 a hexagonal domain if both H

and H0 are hexagonal lattices. If M is the generator matrix
of H with v1,v2 as the rows, then it is easy to show that a
matrix is the generator matrix of a hexagonal sublattice of
H if and only if it has the form AM , where

A =
(

r s

−s r − s

)

for some integers r, s. This is because, if (r, s)M is an arbi-
trary point of H , then (−s, r − s)M is just (r, s)M rotated
2π/3. Let Hr,s be the sublattice of H with generator matrix
AM . According to formula (5) the order N of H/Hr,s is

N = |H/Hr,s | = |detA| = |r2 − rs + s2|.

Fig. 1 Hexagonal domains
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Since H and Hr,s are both hexagonal, so are H ∗ and H ∗
r,s .

Hence both the spatial domain Gr,s = H/Hr,s and fre-
quency domain G∗

r,s = H ∗
r,s/H

∗ are hexagonal in this case.
The next result shows that the DFT often reduces to a single
1-dimensional DFT.

Theorem 3 If r and s are relatively prime, then there are
isomorphisms Gr,s

∼= Z/NZ and G∗
r,s

∼= Z/NZ for both the
spatial and frequency domains, and with respect to these
isomorphisms, the discrete Fourier transform F : CZ/NZ →
C

Z/NZ is given by

(Fa)(k) = 1√
N

N−1∑

j=0

a(j)e−2πi
jk
N .

Moreover, v1 = (1,0) is a generator of the cycle group Gr,s

that corresponds to the generator 1 ∈ Z/NZ under the iso-
morphism Gr,s

∼= Z/NZ.

Proof It is first shown, for some w ∈ H , that {v1,w} is an
elementary generating set for H with respect to Hr,s , with
corresponding elementary divisors N and 1. The order of
the group Gr,s is N = |r2 − rs + s2|. Therefore Nv1 ∈
Hr,s . Since r and s are relatively prime, there exist integers
x, y such that sx + (r − s)y = 1. Let c = rx − sy. Then
cv1 +v2 = (c,1)M = (x, y)AM ∈ Hr,s . With w = cv1 +v2,
clearly {v1,w} generates H . In fact, this is an elementary
generating set with corresponding elementary divisors N

and 1 because, first, |S| = |{jv1 + w : 0 ≤ j < N}| = N =
|Gr,s | and, second, both Nv1 ∈ Hr,s and w ∈ Hr,s . We have
thus shown that Gr,s is a cycle group of order N with gen-
erator v1.

Now {0,v1,2v1, . . . , (N − 1)v1} is a set of coset repre-
sentatives of Gr,s . According to the discussion at the end of
Sect. 2, there is an elementary set {v∗,w∗} of generators of
G∗

r,s with respect to G∗, so that Nv∗,w∗ ∈ H ∗, and hence
{0,v∗,2v∗, . . . , (N − 1)v∗} is a set of coset representatives
of G∗

r,s . Hence G∗
r,s is also a cycle group of order N . More-

over, by formula (9) we have

(Fa)(k) = 1√
N

N−1∑

j=0

a(j)e−2πi
jk
N .

�

4.2 A Particular Hexagonal Domain

It is instructive to consider how Theorem 3 applies in the
case of the family of domains, one member of which is
shown in the left diagram of Fig. 1. In general this family
of domains is given by

Dn = {jv1 + kv2 : |j | ≤ n, |k| ≤ n, |j − k| ≤ n}.
It is not hard to count the number of lattice points in Dn:

N = |Dn| = 3n2 + 3n + 1.

The next result states that Dn is, indeed, a set of coset
representatives of the hexagonal quotient H/Hr,s where
r = 2n + 1 and s = n + 1. Since 2n + 1 and n + 1 are rel-
atively prime, the DFT on Dn, according to Theorem 3,
can be reduced to the computation of a single, ordinary
1-dimensional DFT. What is required to make this prac-
tical, however, is an effective correspondence between
the set Dn points of the spatial domain and the integers
{0,1,2, . . . ,3n2 + 3n} in Z/NZ. This is also provided in
the next result.

Theorem 4 The set Dn is a set of coset representatives of
H/H2n+1,n+1. Moreover, the isomorphism φ :Dn → Z/NZ

of Theorem 3 is given by

φ(jv1 + kv2) ≡ j + k(n + 1) (mod N).

Proof Concerning the first statement, since |H/H2n+1,n+1|
= |detA| = 3n2 + 3n + 1 = |Dn|, to show that Dn is a set
of coset representatives, it suffices to show that no two ele-
ments of Dn represent the same coset. Let H ′ = H2n+1,n+1

and suppose that d, d ′ ∈ Dn represent the same coset, i.e.
d − d ′ ∈ H ′. It is easy to verify that d − d ′ ∈ D2n. Hence
d − d ′ ∈ H ′ ∩D2n. The six closest points to the origin in H ′
are all at a distance

√
N ; they are

±((2n + 1)v1 + nv2),

±((n + 1)v1 + (2n + 1)v2),

±((n + 1)v1 − nv2).

According to the definition, none of these points lie in D2n.
The next smallest distance from the origin to a point in H ′ is√

3N . But the furthest distance from the origin to a point in
D2n is 2n <

√
3N . Therefore H ′ ∩D2n = {0}, which implies

that d − d ′ = 0 and d = d ′.
Concerning the bijection φ, let φ(jv1 + kv2) = c ∈

Z/NZ. Since φ(v1) = 1 by Theorem 3, in the notation of
Sect. 2, (j, k)M − (c,0)M ∈ H ′. This is true if and only if
(j − c, k)M = xAM for some x ∈ Z

2 where, by definition,

A =
(

2n + 1 n + 1
−(n + 1) n

)
.

This is equivalent to (j − c, k) = xA = xV −1EU−1 for
some x ∈ Z

2, or equivalently

(j − c, k)U = (p, q)

(
N 0
0 1

)
= (pN,q)

for some (p, q) ∈ Z
2. Since the unimodular matrix U is

computed to be

U =
(

n −1
n + 1 −1

)
,
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(j − c, k)U = (j − c)n + k(n + 1),∗). Hence there exists
such a pair (p, q) if and only if N | (j − c)n + k(n + 1),
which is the case when c = j + k(n + 1) (mod N). �

By the same methods, a result similar to that of Theo-
rem 4 can be proved for the frequency domain. The vectors

u∗
1 = n

N
v∗

1 + n + 1

N
v∗

2 ,

u∗
2 = −n + 1

N
v∗

1 + 2n + 1

N
v∗

2

generate the dual lattice H ∗
2n+1,n+1 and

D∗
n = {ju∗

1 + ku∗
2 : |j | ≤ n, |k| ≤ n, |j + k| ≤ n}

is a set of coset representatives of (H/H2n+1,n+1)
∗. More-

over, the isomorphism φ :D∗
n → Z/NZ of Theorem 3 is

given by

φ(ju∗
1 + ku∗

2) ≡ j + k(3n + 2) (mod N).

Example Consider the simple case n = 1 where N = 7. The
isomorphisms of D1 and D∗

1 with Z/7Z are shown in Fig. 2.
Note that the scale in the figure is not accurate; the distance
between neighboring points in the left diagram is 1 whereas
in the right diagram it is 2/

√
21. Suppose that the DFT of

a function a defined on H/H3,2 is to be computed at the
element of (H/H3,2)

∗ represented by, say, the point h∗ =
(−3/7,−1/7

√
2), which corresponds to 4 in D∗

1 of Fig. 2.
According to Theorems 3 and 4

(Fa)(h∗) = (Fa)(4) = 1√
7

6∑

j=0

a(j)e−8πij/7.

We note that the 1-dimensional DFT for the family of
hexagonal domains discussed in this section is not necessar-
ily amenable to a Cooley-Tukey type fast Fourier transform
because N = 3n2 + 3n + 1 does not necessarily factor into
small primes. In fact, 263 of the first 1000 integers of this
form are themselves prime.

Fig. 2 Coset representatives of H/H3,2 and of (H/H3,2)
∗

4.3 Generalized Balanced Ternary

This example comes from applications of the DFT in
the processing of multiresolution images on hexagonal
grids [11]. For multiresolution image processing, a nested
sequence of sampling domains is required, each domain the
non-overlapping union of domains one level down in the se-
quence. If H0 is a sublattice of the hexagonal lattice H , then
such a nested sequence of domains is a sequence of coset
representatives of quotients Gn = H/Hn, n = 0,1,2, . . . ,
where Hn = H0A

n = {xAn : x ∈ H0} for some matrix A

with |detA| > 1. If Sn denotes a set of coset representa-
tives of Gn, to see the nesting of |detA| disjoint translated
copies of Sn−1 in Sn, note that

Sn = {s + tAn : s ∈ Sn−1, t ∈ S0} =
⋃

t∈S0

(tAn + Sn−1).

The cases of practical interest occur when H/Hn is
hexagonal and |Gn|/|Gn−1| = |detA| is small (the ratio in
zooming in from one level to the next is small). Perhaps the
most studied example, because of the elegant method of in-
dexing its cells (lattice points) [9], is the Generalized Bal-
anced Ternary (GBT) system [5, 9, 11]. The first two levels
of the 2-dimensional GBT are shown in Fig. 3. Note that
the second level is the non-overlapping union of 7 translated
copies of the first level. We now consider the DFT for the
2-dimensional GBT, a topic dealt with in a more compli-
cated way in [15].

Since it is notationally simpler, we will use complex

numbers to denote lattice points. Let ω = − 1
2 +

√
3

2 i. Then
the hexagonal lattice H is generated by 1 and ω. Note that

1 + ω + ω2 = 0.

The 2-dimensional GBT (generalized balanced ternary)
hexagonal sublattices are defined by

Hn = βnH = {βnx : x ∈ H }, where β = 2 − ω.

The standard set D of coset representatives of H/H1 con-
sists of the origin and its six neighboring points in the hexag-
onal lattice H :

D = {ε0 + ε1ω + ε2ω
2 : εi = 0 or 1}.

Fig. 3 GBT aggregates
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It is more common in the literature to see the elements of
D denoted {0,1,2,3,4,5,6}. The correspondence is ε0 +
ε1ω + ε2ω

2 �→ ε0 + ε12 + ε222 (the rationale being that ω ≡
2 (mod β)). For example, 3 and 1+ω denote the same lattice
point. The standard set of coset representatives of H/Hn,
n ≥ 1, is

Dn =
{

n−1∑

k=0

dkβ
k :dk ∈ D

}
.

The order N of the group GBTn = H/Hn is

N = |GBTn| = 7n.

The following theorem reduces the computation of the DFT
for the GBT at any resolution n to a single 1-dimensional
DFT. Since N is a power of 7, the DFT is highly amenable
to a fast Fourier transform via the Cooley-Tukey algorithm.

Corollary 5 There are isomorphisms GBTn
∼= Z/NZ and

GBT∗
n

∼= Z/NZ for both the spatial and frequency domains,
and with respect to these isomorphisms, the discrete Fourier
transform F : CZ/NZ → C

Z/NZ is given by

(Fa)(k) = 1√
N

N−1∑

j=0

a(j)e−2πi
jk
N .

Proof If M is the usual generator matrix for H , then BnM

is the generator matrix of Hn, where

B =
(

2 −1
1 3

)
.

Let

Bn =
(

pn qn

−qn pn − qn

)
.

By Theorem 3 it suffices to show that pn and qn are rela-
tively prime. This is proved by induction. It is clearly true
for n = 1. Assume that pn and qn are relatively prime, and
by way of contradiction that pn+1 and qn+1 have a common
prime factor d �= 1. The pair (pn, qn) satisfies the recurrence

(pn+1, qn+1) = (pn, qn)

(
2 −1
1 3

)
.

Solving the above linear system for pn and qn we obtain

7pn = 3pn+1 − qn+1,

7qn = pn+1 + 2qn+1.

Thus both 7pn and 7qn are divisible by d , which shows that
either both pn and qn are divisible by d , contradicting that
they are relatively prime, or d = 7. But for no n does 7

divide both pn and qn for the following reason. From the
Cayley-Hamilton Theorem, B2 = 5B − 7 ≡ 5B (mod 7),
from which it readily follows that B7 = B (mod 7). Now
we merely check that for the matrices B , B2, B3, B4, B5,
B6 the entries in the first row are not both congruent to 0
modulo 7. �

Again, to make practical use of Corollary 5, it is helpful
to have the bijection φ :Dn → Z/7n

Z between the standard
set Dn of coset representatives for GBTn and Z/7n

Z. With
respect to complex addition and multiplication, GBTn is a
ring. Corollary 5 shows that GBTn is an (additive) cyclic
group of order 7n generated by 1. So there is a group iso-
morphism which readily extends to a ring isomorphism

φ : GBTn → Z/7n
Z

induced by taking 1 ∈ GBTn to 1 ∈ Z/7n
Z. This pro-

vides the required bijection. To apply φ to an arbitrary
d = ∑n−1

k=0 dkβ
k ∈ Dn use the ring isomorphism:

φ(d) =
n−1∑

k=0

φ(dk)(φβ)k

=
n−1∑

k=0

[ε0k + ε1kφω + ε2k(φω)2](2 − φω)k,

where dk = ε0k + ε1kω + ε2kω
2. So φ is completely deter-

mined by φω.
The number φω can be computed recursively with re-

spect to n using only the identities ω ≡ 2 (mod β) and
1 + ω + ω2 = 0. Computing φω for n = 1,2,3 should make
the general method clear. Since ω ≡ 2 (mod β) we have
φω ≡ 2 (mod 7). Therefore

φω = 2 if n = 1.

(Note that the isomorphism in this case is exactly the same
as given in Fig. 2.) Proceeding to the case n = 2, the above
implies that φω ≡ 2+7x (mod 72) for some integer x. Since
1 + ω + ω2 = 0 we have 1 + φω + (φω)2 ≡ 0 (mod 72).
Therefore

0 ≡ 1 + (2 + 7x) + (2 + 7x)2 ≡ 7 + 35x (mod 72),

which implies that 1 + 5x ≡ 0 (mod 7) or x ≡ 4 (mod 7).
Therefore

φω = 2 + 7 · 4 = 30 if n = 2.

Proceeding to the case n = 3, since φω ≡ 30 (mod 72) we
have φω ≡ 30 + 72x (mod 73) for some integer x. Since
1 + ω + ω2 = 0 we have 1 + φω + (φω)2 ≡ 0 (mod 73).
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Therefore

0 ≡ 1 + (30 + 72x) + (30 + 72x)2

≡ 931 + 61 · 72x (mod 73),

which implies that 19 + 61x ≡ 0 (mod 7) or x ≡ 6 (mod 7).
Therefore

φω = 30 + 72 · 6 = 324 if n = 3.
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