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1. INTHODUCTION

In this paper exact and approximate methods are given for computing the distribution of
quadratic forms in normal variables. In statistical applications the interest centres in
general, for a quadratic form Q and a given value x, around the probability P{Q > x).
Methods of computation have previously been given e.g. by Box (1954), Gurland (1955) and
by Grad & Solomon (1955). None of these methods is very easily applicable except, when it
can be used, the finite series of Box. Furthermore, all the methods are valid only for quadratic
forms in central variables. Situations occur where quadratic forms in non-central variables
must be considered as well. Let x = (xlt ...,xn)' be a column random vector which follows
a multidimensional normal law with mean vector O and covariance matrix Z. Let
(i = (/*!, ...,/fn)' be a constant vector, and consider the quadratic form Q = (x + fi)'A(x + n).
If S is non-singular, one can by means of a non-singular linear transformation (Scheffe (1959),
p. 418) express Q in the form m

Q= ZK&;£- (1-1)
r-1

The A,, are the distinct non-zero characteristic roots of AZ, the hr their respective orders of
multiplicity, the 8T are certain linear combinations of /ilt ...,fin and the Xhr; a« are independent
^-variables with hr d.f. (degrees of freedom) and non-centrality parameter 6*. The variable

A
XHI* is defined here by the relation Xhi' — (xi + <?)3 + 2 *?. where xvx2, ...,xh are inde-

2

pendent unit normal deviates. In case Z is singular but A is not, a similar decomposition can
be obtained except that an additive constant might figure in the right-hand member of (1 • 1).
This is the case for instance if Q = (xx -I- x2)

2 + x\, where the linear constraint xx + xt — c is
imposed.

We illustrate the reduction of a quadratic form to the form (1-1) on the correlator

w =
I

where the xt and yi are normal deviates with zero means and we assume that

cov (xt,Xj) = cov{yitj/y) = Si}, cov(xltjry) = pSi} and \p\ < 1.

Expressions for the probability density of w have been given in some particular cases of these
assumptions by Roe & White (1961). Let

z= (x1,...,xn,y1,...,yn)' and $ = (f*i,—,fin>Vi 7»)'-

Then w = (z — %)' A(z — £), where A and the covariance matrix Z of z can be partitioned into
square submatrices of n rows each: If U denotes the unit (identity) matrix,

z = | u

u
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Under the linear transformation z* = Pz, where

the correlator takes the form w = (z* — £*)' A*(z* — £*), where £* = P£ and A* is a diagonal
matrix having its n first diagonal elements equal to p — 1, the n remaining ones equal to p + 1.
The covariance matrix of z* is the unit matrix. The random variable w can therefore be
written

a linear combination of two independent ^-variables with non-centrality parameters

S\ =

2. FINITE EXPRESSIONS

Box (1954) has considered the case where in (1-1) 8? = 0 and hr = 2yr(r = 1, ...,m), the t>r

being positive integers. In statistical applications, it is often possible to arrange for the
d.f.'s to be even. A problem in the theory of Gaussian noise where this condition is always
fulfilled is described by Davenport & Root (1958). Box has then expressed the probability
P{Q > x) by means of a finite series of x* probabilities. Using a different proof, a modified and
often more convenient form of his result will be obtained, as well as a corresponding expres-
sion for the probability density g(x) of Q. Suppose Ax>..., A^ have been ordered, so that

m p
A 1 > A a > . . . > A p > 0 > A_+1 > ... > An,. Let n = ^vT and q = 2> r .

I I

THEOEEM. If x > 0, then

where Fk(\, x) = A""1 exp { - x/(2A)} fl (A - A,
lr - l

r+k

Proof. Let AJ,..., Â , A^j , . . . ,A^ be real, pairwise unequal parameters such that Â  > 0 for
n

8= 1, ...,q and Ai < 0 for a = q+ 1, ...,n. Let Q' = YiKx\(8)> where the n ^-variables xi(«)
I

with two d.f. each are independent. The characteristic function <f>'(t) of Q' is

1

and correspondingly the probability density is

The integrand having simple poles only, one finds for x > 0

where IT' indicates that the factor corresponding to s' = s is omitted, and where
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in which X and Y are independent Poisson variables with expected values \x and ^J2,
respectively. Johnson (1959) rediscovered this equality and used it as a starting point to

k

The density g(x) of Q can now be obtained by a passage to the limit. Let a0 = 0, crk = 2 vr
r - l

for k = 1 ro. For positive distinct integers a, b, ...,d all not larger than m, denote by
lim the passage to the limit
bd

Then g(x) = lim g'(x) can be written
1,2 m

p at at

t -1 * «-(r»_,+ l */-eri_,+l

x lim Yl (Ag —A^)"1 lim n I
1 k-l *<<n-i k+l m 4>n

P at

t -1 k M-at-,+ 1

where/i(A, x) = (3/3x)i^(A, x). One recognizes the summation over a as the divided difference
of order vk— 1 of the function fk(A,x), corresponding to the vk 'abscissas' A^_1+1,..., A^t.
Hence, by a well-known result, one has for x > 0

(2-2)

Upon integrating this expression, formula (2-1) results. For x < 0, one must substitute

S for - 2 in (2-2) and 1 - £ for £ in (2-1).
i I JJ+I l

A particular case of the theorem is

Even using this, it is not easily possible to establish in general the equivalence of (21) with
formula (2-11) of Box (1954).

The formulae (2-1) and (2-2) are very convenient to use when all vk are small. With in-
creasing vks, the labour of computing the corresponding derivatives of Fk(\, x), or /t(A, x)
rapidly becomes considerable. The numerical method of the next section is then often easier
to apply.

Consider now the case where the variables are non-central. The characteristic function of
( 1 1 ) i B 1

(2-3)

To obtain the probability density by integration of the inversion formula appears hopeless,
except in the particular case m = 1. One finds then for the density pn(x, 8*) of ^n-t* the
Nation pJ 3t) k { U + Si)} ( i / » * » - i I i n _ l { S x i ) , (2-4)

where I,(z) is the Bessel function of purely imaginary argument, of order v. This formula has
been given first by Fisher (1928) who pointed out on the same occasion the relation
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derive some simple approximations for P{xii;j« < x}- However, expressions in finite terms
obtainable for such probabilities, when n is odd, by integrating (2-4) do not seem to have
previously been written down explicitly. We shall give the first few of them, which are
simple enough to be useful in numerical work. It is necessary to assume n > 1. Write then
n = 2m + 3 (m = 0,1,...). A classical formula permits the expression in finite terms of the
Bessel function of half integral order appearing in (2-4). One finds

2 ( - lYAm(r,x) + {- l ^ e - l * 1 S AJr.x)],
r-0 r-0 J

where a= z* - 8, b = x^ + 8, Am(r, x) =
2M(m-r)!

The above density can be integrated explicitly. If I(x) denotes the cumulative distribution
function of a unit normal variable, the result is found to be

~-^[Kn(8,a)-Kn(8, -6)],

where Kn(8,x) = exp{ — \x2}Pn(8,x) and Pn(8,x) is a polynomial in 8 of degree n—3. The
general expression for Pn(8, x) is not simple. The polynomials corresponding to the values
n = 3,5, 7 and 9 are

Pz(8, x) = 1, Pb(8, x) = 28* + x8 - 1,

P7(8,x) = 38i + 3x33+(x2-4:)82-3x8+3,

P9{8,x) = 4<J6+6x^8+(4x2-10)(J
4 + (x3-15a;)53-(6x i i-18) 8i+ 15x8- 15.

In the applications, b is often large enough so that one can assume I(b) = 1, Kn(8, —b) = 0.

3. NUMERICAL INVERSION OF THE CHARACTERISTIC FUNCTION

In this section we show that the cumulative distribution function F(x) of the variable Q
defined by (11) can be obtained quite easily by straightforward numerical integration of an
inversion formula. The standard inversion formula gives an expression not for F(x) itself,
but for the difference F(x) —F(0). If Q, as is the case, for instance, in (1-2), is not strictly
positive, a formula is needed which gives F(x) directly. Such a formula is implicit in work of
Gurland (1948) and has been later derived explicitly by Gil-Pelaez (1951), namely

F(x) = i - ^

where f{z) denotes the imaginary part of z and where the characteristic function <f>(t) of
Q is given by (2-3). Using the relations

arg[(l-t&0~"] = ff tan-1 (it), \(\-ibt)-o\ = (1 + bHs)-l<>,

arg[exp{ia</(l-t&0}] =

one finds that for the quadratic form Q of (11), equation (3-1) can be written, after the
substitution 2t = u is made,
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1
d(u) = l- S [hr tan-i (A^) + *? Ar«( 1 + AJu')"1] - £xu,

^ I

n
The following relations are immediate

— oo if x > 0,

<?(«) = | + 0 0 if * < 0 ,

The function up(u) increases monotonically towards + oo. Therefore, in numerical work the
integration in (3-2) will be carried over a finite range 0 < u < U only; the degree of approxi-
mation obtained will depend (apart from rounding-off errors) on two sources of error: (i) the
' error of integration' resulting from the use of an approximate rule for computing

ru
Iv = 7T-1 [upiu)]-1 sin d(u) du,

Jo
and (ii) the 'error of truncation'

tv = TT1 \up(v)Y1sxn.d(u)du.
Ju

Noticing that x > y implies xi(l+xi)~1 > j/*(l +yi)~1, one finds that \tv\ can be bounded
above by Tv, where

1 m

and where we have put k = - 2 hT. One can hopefully expect that Tv will often be satis-
2 I

factorily small, even for moderate values of U. It does not seem feasible on the other hand
to obtain an upper bound for the error of integration resulting from the application of a
standard quadrature formula. With equal step formulae (in the application of which the
ordinate at the origin is given by (3-3)), a common procedure is then to carry out the integra-
tion repeatedly, each time halving the step of integration until two consecutive results agree
to the desired accuracy. In order to gather some more detailed information relative to the
performance of the two simplest and most commonly used rules, namely, the trapezoidal rule
and Simpson's rule, we have preferred to follow a different procedure. Given a tolerance e,
numerical integration in (3-2) was carried out by using steps of length j/10. The integer j was
then increased, one unit at a time, until the largest value was attained such that, for the first
even number of steps yielding a bound Tv < e, the values of the integral obtained by the
trapezoidal rule and by Simpson's rule, say JT and Js, still satisfy \JT — Ja\ < e- Results for
the values e = 0-01 and e = 0001 are given in Table 1. The following unexpected behaviour
was observed in all cases: As j increases, Js departs from the correct value of the integral' more
rapidly' than does JT. In other words, to achieve a given accuracy, longer steps are per-
missible with the trapezoidal rule than with Simpson's rule. Some computations made with
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a formula (sometimes referred to as Hardy's rule) based on approximation of the integrand

with polynomials of degree six seem to indicate that in fact, the higher the degree of the

approximation polynomials used, the shorter the step of integration must be. Accordingly,

only the results obtained with the trapezoidal rule are recorded in columns (i) and (ii) of

Table 1 and are seen to be of much greater accuracy than the value of e would let one

Table 1. Probability that the quadratic form Q exceeds x

(i) Integration in (3-3) with the trapezoidal rule and n steps of length j , for tolerance e = 0-01;
(ii) same for tolerance e = 0-001; (iii) exact values; (iv) Pearson's three-moment %* approximation;
(v) Patnaik's two-moment %* approximation.

e = 001 e = 0-001

Q

Qi =

<3i = o-6*J + 0-3*5 -

Qt = 0-6*! + 0-3*1 + 0-1*5

Q* = 0-6*J +0-3*1+ 0-l*J

<2, = 0-7*;.,+0-3*;.,

0. =

40. + W.

W.-W.

X

0-1
0-7
2

0-2
2
6

1
5

12

1
3
8

2
10
20

1
6

15

1-5
4
7

- 2
0
2-6

3-6
8

13

- 2
2
7

3
6

10

- 3
0
4

n

16
14
10

8
6
8

6
4
8

8
6

10

6
4
6

8
6
8

8
4
8

6
4
8

6
4
6

6
2
6

10
6

12

12
6

12

j

1-9
2-2
30

1-2
1-9
11

0-7
11
0-6

11
1-4
0-8

0-3
0-7
0-3

0-4
0-7
0-4

1-2
2-4
1-2

1-6
2-2
11

0-6
11
0-6

0-6
3-9
0-6

10
20
0-9

0-9
20
0-9

(i)

0-9478
•5076
•1262

0-9903
•4020
•0159

0<9980
•4354
•0087

0-9663
•4201
•0088

0-9938
•4098
•0223

0-9544
•4079
•0224

0-9891
•3463*
•0154

0-9103
•4052
•0097

0-9563
•4161
•0462

0-9218
•4685
•0396

0-9842
•4270*
•0117

0-9861
•5180
•0162

n

136
114
86

24
20
20

14
8

12

16
10
14

14
8

10

48
36
36

12
8

12

10
10
14

10
8
8

8
4

10

16
10
14

18
12
16

j

10
1-2
1-6

0-8
10
10

0-4
0-7
0-5

0-7
10
0-8

0-2
0-4
0-3

0-3
0-4
0-4

0-9
1-4
10

1-2
1-3
0-8

0-4
0-6
0-5

0-5
1-4
0-4

0-7
1-2
0-8

0-7
1 1
0-8

(ii)

0-9457
-5066
•1240

0-9930
•3997
•0161

0-9974
•4353
•0088

0-9666
•4195
•0087

0-9937
•4086
•0221

0-9549
•4076
•0223

0-9890
•3453
•0164

0-9102
•4061
•00fl8

0-9563
•4162
•0462

0-9218
•4782
•0396

0-9842
•4264
•0117

0-9861
•6170
•0152

(iii)

0-9458
•6064
•1240

0-9936
-3998
•0161

0-9973
•4363
•0088

0-9666
•4196
•0087

0-9939
•4087
•0221

0-9649
•4076
•0223

0-9891
•3453
•0154

0-9102
•4061
•0097

0-9563
•4152
•0462

0-9218
•4779
•0396

0-9842
•4264
•0117

0-9861
•6170
•0152

(iv)

10000
0-4901

•1264

10000
0-3961

•0162

0-9984
•4346
•0087

0-9767
•4156
•0086

0-9928
•4089
•0221

0-9515
•4084
•0223

0-9923
•3449
0154

0-9011
•4221
•0032

0-9560
•4163
•0461

0-91661
•4810f
•0387t

0-9840
•4264
•0117

0-9904
•5164
•0139

(v)

0-9184
•5079
•1310

0-9867
•4098
•0145

0-9961
•4400
•0080

0-9522
•4330
•0066

0-9954
•4045
•0230

0-9719
•3948
•0246

0-9842
•3552
•0131

0-9605
•4101
•0474

0-9837
•4270
•0116

—,-«.) + *<«.-«.)

Corresponds to first mft-rimnm o{\JT-J3\. f Wilson-Hilferty approximation.
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suspect. We have in several cases computed the correction terms, up to the one involving
finite differences of orders one to six, which are to be added to the trapezoidal rule according
to Gregory's formula. They have proved to give no reliable estimate of the error of integration
resulting from the use of the trapezoidal rule. For e «= 0-01, it was found in two cases that
&sj increases, \JT — Js\ first increases to reach a maximum smaller than 0-01, then decreases
again. The results corresponding to the value of j for which | JT — J81 attains its first maximum
are then recorded. It is clear that under such circumstances, the procedure we have followed
is not an adequate one to use in general practice. Another example of this is provided by
Q = $Q6 — %Qe, for x = 2. In this case, it was necessary to increase,; up to 3-9 before \JT — Ja\
reached e = 0-01, while two steps of length 1-5 already make Tv < 0-01 and give the better
value 0-4787. It is hoped, however, that a sufficient variety of quadratic forms is covered so
that Table 1 can serve as a useful guide for the length of the step of integration to be used in

m
any particular case. To help in this purpose, all quadratic forms listed satisfy 2 I'M = 1-

The probability density g(x) of the quadratic form Q could be computed by using a formula
analogous to (3-2). In fact,

g(x) = 7T-1 f lXtO^cos t fMdt t .
JO

Due to the absence of the factor u - 1 in the integrand, numerical integration, for the same
accuracy, can be expected to require a slightly larger number of steps than is needed to
compute the distribution function.

4. THE ACCURACY OF SOME APPBOXIMATIONS

Recently Johnson (1959) has shown that Pearson's (1959) three-moment central #•
approximation to the distribution of non-central ^* is remarkably accurate in both tails of
the distribution. It is therefore natural to extend this approximation to the general case of
the quadratic form Q of (1-1). Let E(Q) and <r(Q) be the mean and standard deviation of Q.
Following Pearson, we write for a positive quadratic form Q,

Q Z (£'-h')(2h')-i(T(Q)+E(Q),

and determine h' so that both members have equal third moments. This amounts to taking

P{Q * x) = P{£. > y), (4-1)

where A' = ct/c|, y = (x-cj (h'fa*+ h', c, = piiK+3^) 0=1,2,3).

If Q is non-positive, the same approximation can be used but one must assume that c, > 0.
Otherwise, approximate the distribution of — Q. The values obtained from (4-1) are shown
in column (iv) of Table 1. For the quadratic form ±Q5 — ^Qs, one has h' = 1395-85. In this
case, the Wilson-Hilferty approximation was used to evaluate the right-hand member of
(4-1). The merits of the three-moment approximation are obvious, particularly in the upper
tail of positive quadratic forms. For such forms, the approximate values given by the
standard two-moment (Patnaik) approximation are indicated in column (v). I t is seen that
the three-moment approximation, which requires very little more work, gives a much better
fit than is achieved with the Patnaik approximation. While there is an appreciable loss of
accuracy for non-positive forms, the approximation still gives useful indications which can
suffice for certain practical purposes.
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Most of the computations summarized in Table 1 have been performed on the Ferranti
' Mercury' computer at CERN, Geneva. I am much indebted to the late Director General of
that organization, Prof. C. J. Bakker, who made it possible for me to use the faculties of the
computer service.

I wish to thank the Referee for suggesting some notable improvements in the presentation
of the paper.
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