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Although the theoretical behavior of one-dimensional random walks
in random environments is well understood, the numerical evaluation
of various characteristics of such processes has received relatively lit-
tle attention. This paper develops new theory and methodology for
the computation of the drift of the random walk for various depen-
dent random environments, including k-dependent and moving aver-
age environments.

1. Introduction. Random walks in random environments (RWREs) are
well-known mathematical models for motion through disorganized (random)
media. They generalize ordinary random walks, usually on the d-dimensional
lattice Z

d, via a two-stage random procedure. First, the environment is gen-
erated according to some probability distribution (e.g., on a set U Z, where
U is the set of all possible environment states at any position). Second, the
walker performs an ordinary random walk {Xn, n = 0, 1, . . .} in which the tran-
sition probabilities at any state are determined by the environment at that
state. RWREs exhibit interesting and unusual behavior that is not seen in or-
dinary random walks. For example, the walk can tend to infinity almost surely,
while the speed (also called drift) is 0; that is, P(limn→∞Xn = ∞) = 1, while
limn→∞Xn/n = 0. The reason for such surprising behavior is that RWREs can
spend a long time in (rare) regions from which it is difficult to escape — in
effect, the walker becomes “trapped” for a long time.

Since the late 1960s a vast body of knowledge has been built up on the
behavior of RWREs. Early applications can be found in Chernov [4] and Temkin
[16]; see also Kozlov [9] and references therein. Recent applications to charge
transport in designed materials are given in Brereton et al. [3] and Stenzel et
al. [14]. The mathematical framework for RWREs was laid by Solomon [13],
who proved conditions for recurrence/transience for one-dimensional RWREs
and also derived law of large number properties for such processes. Kesten et
al. [8] were the first to establish central limit-type scaling laws for transient
RWREs, and Sinai [12] proved such results for the recurrent case, showing
remarkable “sub-diffusive” behavior. Large deviations for these processes were
obtained in Greven and Den Hollander [6]. The main focus in these papers
was on one-dimensional random walks in independent environments. Markovian
environments were investigated in Dolgopyat [5] and Mayer-Wolf et al. [10]. Alili
[1] showed that in the one-dimensional case much of the theory for independent
environments could be generalized to the case where the environment process
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is stationary and ergodic. Overviews of the current state of the art, with a
focus on higher-dimensional RWREs, can be found, for example, in Hughes [7],
Sznitman [15], Zeitouni [17, 18], and Révész [11].

Although the theoretical behavior of one-dimensional RWREs is nowadays
well understood (in terms of transience/recurrence, law of large numbers, cen-
tral limits, and large deviations), it remains difficult to find easy to compute
expressions for key measures such as the drift of the process. To the best of
our knowledge such expressions are only available in simple one-dimensional
cases with independent random environments. The purpose of this paper is to
develop theory and methodology for the computation of the drift of the random
walk for various dependent environments, including one where the environment
is obtained as a moving average of independent environments.

The rest of the paper is organized as follows. In Section 2 we formulate the
model for a one-dimensional RWRE in a stationary and ergodic environment
and review some of the key results from [1]. We then formulate special cases
for the environment: the iid, the Markovian, the k-dependent, and the moving
average environment. In Section 3 we derive explicit (computable) expressions
for the drift for each of these models, using a novel construction involving an
auxiliary Markov chain. Conclusions and directions for future research are given
in Section 4.

2. Model and preliminaries. In this section we review some key results
on one-dimensional RWREs and introduce the class of “swap-models” that we
will study in more detail. We mostly follow the notation of Alili [1].

2.1. General theory. Consider a stochastic process {Xn, n = 0, 1, 2, . . .} with
state space Z, and a stochastic “Underlying” environment U taking values in
some set U Z, where U is the set of possible environment states for each site in Z.
We assume that U is stationary (under P) as well as ergodic (under the natural
shift operator on Z). The evolution of {Xn} depends on the realization of U,
which is random but fixed over time. For any realization u of U the process
{Xn} behaves as a simple random walk with transition probabilities

P(Xn+1 = i+ 1 |Xn = i,U = u) = αi(u)

P(Xn+1 = i− 1 |Xn = i,U = u) = βi(u) = 1− αi(u).
(2.1)

The general behavior of {Xn} is well understood. Theorems 2.1 and 2.2 below
completely describe the transience/recurrence behavior and the Law of Large
Numbers behavior of {Xn}. The key quantities in these theorems are given first.
Define

(2.2) σi = σi(u) =
βi(u)

αi(u)
, i ∈ Z ,

and let

(2.3) S = 1 + σ1 + σ1 σ2 + σ1 σ2 σ3 + · · ·

and

(2.4) F = 1 +
1

σ−1
+

1

σ−1 σ−2
+

1

σ−1 σ−2 σ−3
+ · · ·
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Theorem 2.1. (Theorem 2.1 in [1])

1. If E[lnσ0] < 0, then almost surely lim
n→∞

Xn = ∞ .

2. If E[lnσ0] > 0, then almost surely lim
n→∞

Xn = −∞ .

3. If E[lnσ0] = 0, then almost surely lim inf
n→∞

Xn = −∞ and lim sup
n→∞

Xn = ∞ .

Theorem 2.2. (Theorem 4.1 in [1])

1. If E[S] < ∞, then almost surely lim
n→∞

Xn

n
=

1

E[(1 + σ0)S]
=

1

2E[S]− 1
.

2. If E[F ] < ∞, then almost surely lim
n→∞

Xn

n
=

−1

E[(1 + σ−1
0 )F ]

=
−1

2E[F ]− 1
.

3. If E[S] = ∞ and E[F ] = ∞, then almost surely lim
n→∞

Xn

n
= 0.

Note that we have added the second equalities in statements 1. and 2. of
Theorem 2.2. These follow directly from the stationarity of U. In particular, if
θ denotes the shift operator on Z, then

E[σ0σ1 · · ·σn−1] = E

[
β0(U)β1(U) · · ·βn−1(U)

α0(U)α1(U) · · ·αn−1(U)

]

= E

[
β1(θU)β2(θU) · · ·βn(θU)

α1(θU)α2(θU) · · ·αn(θU)

]

(apply θU
d
= U) = E

[
β1(U)β2(U) · · ·βn(U)

α1(U)α2(U) · · ·αn(U)

]

= E[σ1σ2 · · ·σn],

from which it follows that E[(1 + σ0)S] = 2E[S]− 1.
We will call limn→∞Xn/n the drift of the process {Xn}, and denote it by V .

Note that, as mentioned in the introduction, it is possible for the chain to be
transient with drift 0 (namely when E[lnσ0] 6= 0, E[S] = ∞ and E[F ] = ∞).

2.2. Swap model. We next focus on what we will call swap models. Here,
U = {−1, 1}; that is, we assume that all elements Ui of the process U take
value either −1 or +1. We assume that the transition probabilities in state i
only depends on Ui, and not on other elements of U, as follows. When Ui = −1,
the transition probabilities of {Xn} from state i to states i + 1 and i − 1 are
swapped with respect to the values they have when Ui = +1. Thus, for some
fixed value p in (0, 1) we let αi(u) = p (and βi(u) = 1 − p) if ui = 1, and
αi(u) = 1− p (and βi(u) = p) if ui = −1. Thus, (2.1) becomes

P(Xn+1 = i+ 1 |Xn = i,U = u) =

{
p if ui = 1

1− p if ui = −1

and

P(Xn+1 = i− 1 |Xn = i,U = u) =

{
1− p if ui = 1

p if ui = −1 .
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Notice that due to our convenient choice of notation for the states in U =
{−1, 1} we have

σi =
p

1− p
I(Ui = −1) +

1− p

p
I(Ui = 1) = σUi ,

where σ = (1 − p)/p. Also, for the quantities in Theorems 2.1 and 2.2 we find
the following.

(2.5) E[lnσ0] = E[U0 lnσ] = lnσ E[U0],

the sign of which (and hence the a.s. limit of Xn) only depends on whether p
is less than or greater than 1/2, and on whether E[U0] is positive or negative,
regardless of the dependence structure between the {Ui}. Furthermore,

(2.6) E[S] =
∞∑

n=0

E

[
σ
∑

n

i=1 Ui

]
and E[F ] =

∞∑

n=0

E

[
σ−

∑
n

i=1 U−i

]
.

In what follows we will focus on E[S], since analogous results for E[F ] follow
by replacing σ with σ−1 and p with 1 − p. This follows from the stationarity
of U, which implies that for any n the product σ−1σ−2 · · ·σ−n has the same
distribution as σ1σ2 · · ·σn (apply a shift over n+ 1 positions).

Next, we need to choose a dependence structure for U. The standard case,
first studied by Sinai [12], simply assumes that the {Ui} are iid (independent
and identically distributed):

Iid environment. Let the {Ui} be iid with

P(Ui = 1) = α, P(Ui = −1) = 1− α

for some 0 < α < 1. In this case the model has two parameters: α and p.

We extend this to a more general model where U is generated by a stationary
and ergodic Markov chain {Yi, i ∈ Z} taking values in a finite set {1, . . . ,m}.
In particular, we let Ui = g(Yi), where g : {0, . . . ,m} → {−1, 1} is a given
function. Despite its simplicity, this formalism covers a number of interesting
dependence structures on U, discussed next.

Markov environment. Let Ui = Yi, where {Yi} is a stationary discrete-time
Markov chain on {−1, 1}, with one-step transition matrix P given by

P =

[
1− a a
b 1− b

]
,

for some a, b ∈ (0, 1). The {Ui} form a dependent Markovian environment
depending on a and b.

k-dependent environment. Let k > 1 be a fixed integer. Our goal is to ob-
tain a generalization of the Markovian environment in which the conditional
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distribution of Ui given all other variables is the same as the conditional distri-
bution of Ui given only Ui−k, . . . , Ui−1 (or, equivalently, given Ui+1, . . . , Ui+k).
To this end we define a k-dimensional Markov chain {Yi, i ∈ Z} on {−1, 1}k

as follows. From any state (ui−k, . . . , ui−1) in {−1, 1}k, {Yi} has two possible
one-step transitions, given by

(ui−k, . . . , ui−1) → (ui−k+1, . . . , ui−1, ui), uj ∈ {−1, 1},

with corresponding probabilities 1 − a(ui−k,...,ui−2), a(ui−k,...,ui−2), b(ui−k,...,ui−2),
and 1−b(ui−k,...,ui−2), for (ui−1, ui) equal to (−1,−1), (−1, 1), (1,−1), and (1, 1),
respectively. Now let Ui denote the last component of Yi. Then {Ui, i ∈ Z} is a
k-dependent environment, and Yi = (Ui−k+1, . . . , Ui).

Note the correspondence in notation with the (1-dependent) Markov envi-
ronment: a indicates transition probabilities from Ui−1 = −1 to Ui = +1, and
b from Ui−1 = +1 to Ui = −1, where in both cases the subindex denotes the
dependence on Ui−k, . . . , Ui−2.

Moving average environment. Consider a “moving average” environment,
which is built up in two phases as follows. First, start with an iid environment
{Ûi} as in the iid case, with P(Ûi = 1) = α. Let Yi = (Ûi, Ûi+1, Ûi+2). Hence,
{Yi} is a Markov process with states 1 = (−1,−1,−1), 2 = (−1,−1, 1), . . . , 8 =
(1, 1, 1) (lexicographical order). The corresponding transition matrix clearly is
given by

(2.7) P =




1− α α 0 0 0 0 0 0
0 0 1− α α 0 0 0 0
0 0 0 0 1− α α 0 0
0 0 0 0 0 0 1− α α

1− α α 0 0 0 0 0 0
0 0 1− α α 0 0 0 0
0 0 0 0 1− α α 0 0
0 0 0 0 0 0 1− α α




.

Now define Ui = g(Yi), where g(Yi) = 1 if at least two of the three random
variables Ûi, Ûi+1 and Ûi+2 are 1, and g(Yi) = −1 otherwise. Thus,

(2.8) (g(1), . . . , g(8)) = (−1,−1,−1, 1,−1, 1, 1, 1) ,

and we see that each Ui is obtained by taking the moving average of Ûi, Ûi+1

and Ûi+2, as illustrated in Figure 2.2.

Fig 1. Moving average environment.
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3. Evaluating the drift. As a starting point for the analysis, we begin
in Section 3.1 with the solution for the iid environment, based on first princi-
ples. As mentioned earlier, this case was first studied by Sinai [12]. Then, in
Section 3.2 we give the general solution approach for the Markov-based swap
model, followed by sections with results on the transience/recurrence and on
the drift for the random environments mentioned in Section 2.2: the Markov en-
vironment, the 2-dependent environment, and the moving average environment
(all based on Section 3.2).

3.1. Iid environment. As a warm-up we consider the iid case first, with
P(Ui = 1) = α = 1− P(Ui = −1). Here,

E[lnσ0] = E[U0] lnσ = (1− 2α) ln
1− p

p
.

Hence, by Theorem 2.1, we have the following findings, consistent with intuition.
Xn → +∞ a.s. if and only if either α > 1/2 and p > 1/2, or α < 1/2 and
p < 1/2; Xn → −∞ a.s. if and only if either α > 1/2 and p < 1/2, or α < 1/2
and p > 1/2; and {Xn} is recurrent a.s. if and only if either α = 1/2, or p = 1/2,
or both.

Moving on to Theorem 2.2, we have

E[S] =
∞∑

n=0

E

[
σ
∑

n

i=1 Ui

]
=

∞∑

n=0

(
E[σU1 ]

)n
=

∞∑

n=0

(σ−1(1− α) + σα)n,(3.1)

which is finite if and only if σ−1(1 − α) + σα < 1; that is, E[S] < ∞ if and
only if either α > 1/2 and p ∈ (1/2, α), or α < 1/2 and p ∈ (α, 1/2). Similarly
(replace σ by σ−1 and p by 1−p), E[F ] =

∑
∞

n=0(σ(1−α)+σ−1α)n < ∞ if and
only if either α > 1/2 and p ∈ (1− α, 1/2), or α < 1/2 and p ∈ (1/2, 1− α).

Clearly the cases with respect to E[S] and E[F ] do not entirely cover the
cases we concluded to be transient above. E.g., when α > 1/2 and p ∈ [α, 1],
the process tends to +∞, but the drift is zero. We summarize our findings in
the following theorem.

Theorem 3.1. We distinguish between transient cases with and without
drift, and the recurrent case as follows.

1a. If either α > 1/2 and p ∈ (1/2, α) or α < 1/2 and p ∈ (α, 1/2), then
almost surely lim

n→∞
Xn = ∞ and

(3.2) V = (2p− 1)
α− p

α(1− p) + (1− α)p
> 0 .

1b. If either α > 1/2 and p ∈ (1 − α, 1/2) or α < 1/2 and p ∈ (1/2, 1 − α),
then almost surely lim

n→∞
Xn = −∞ and

(3.3) V = −(1− 2p)
α− (1− p)

αp+ (1− α)(1− p)
< 0 .
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2a. If either α > 1/2 and p ∈ [α, 1] or α < 1/2 and p ∈ [0, α], then almost
surely lim

n→∞
Xn = ∞ , but V = 0.

2b. If either α > 1/2 and p ∈ [0, 1 − α] or α < 1/2 and p ∈ [1 − α, 1], then
almost surely lim

n→∞
Xn = −∞ , but V = 0.

3. Otherwise (when α = 1/2 or p = 1/2 or both), {Xn} is recurrent and
V = 0.

Proof. Immediate from the above; (3.2) follows from (3.1) by using σ =
(1− p)/p; and similar for (3.3).

We illustrate the drift as a function of α and p in Figure 2.

1

10

V = 0

X → −∞

V = 0

X → ∞

V > 0

X → ∞

V > 0

X → −∞

V = 0

X → −∞
V = 0

X → ∞

V < 0

X → ∞

V < 0

X → −∞

↑

p

α →1

2

1

2

Fig 2. Graphical representation of Theorem 3.1. Solid lines, where the process is recurrent,
divide the remaining parameter space in four quadrants. In quadrants I and III, {Xn} moves
to the right; in quadrants II and IV, {Xn} moves to the left. In gray areas (including dashed
boundaries and boundaries at p = 0, 1), the drift is zero. In white areas (including boundaries
at α = 0, 1), the drift is nonzero.

3.2. General solution for swap models. Consider a RWRE swap model with
a random environment generated by a Markov chain {Yi, i ∈ Z}, as specified in
Section 2. We already saw that the a.s. limit of Xn only depends on whether
p is less than or larger than 1/2, and on whether E[U0] is positive or negative,
regardless of the dependence structure between the {Ui}, see (2.5). The other
key quantity to evaluate is (see (2.6)):

E[S] =
∞∑

n=0

E

[
σ
∑

n

i=1 Ui

]
=

∞∑

n=0

E

[
σ
∑

n

i=1 g(Yi)
]
.

Let
G(n)

y (σ) = E

[
σ
∑

n

i=1 g(Yi) |Y0 = y
]
, y = 1, . . . ,m .
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Let P = (Py,y′) be the one-step transition matrix of {Yi}. Then, by conditioning
on Y1,

G(n+1)
y (σ) = E

[
σ
∑

n+1
i=1 g(Yi) |Y0 = y

]
= E

[
σ
∑

n+1
i=2 g(Yi)σg(Y1) |Y0 = y

]

=
m∑

y′=1

Py,y′σ
g(y′)G

(n)
y′ (σ) .

In matrix notation, with G(n)(σ) = (G
(n)
1 (σ), . . . , G

(n)
m (σ))⊤, we can write this

as
G(n+1)(σ) = PDG(n)(σ),

where
D = diag(σg(1), . . . , σg(m)) .

It follows, also using G
(0)
y (σ) = 1, that

G(n)(σ) = (PD)nG(0)(σ) = (PD)n1,

where 1 = (1, 1)⊤, and hence

E[S] =

∞∑

n=0

πG(n)(σ) = π

∞∑

n=0

(PD)n1,

where π denotes the stationary distribution vector for {Yi}. The matrix series∑
∞

n=0(PD)n converges if and only if Sp(PD) < 1, where Sp(·) denotes the
spectral radius, and in that case the limit is (I −PD)−1. Thus, we end up with

(3.4) E[S] =

{
π(I − PD)−11 if Sp(PD) < 1

∞ else.

Based on the above, the following subsections will give results on the tran-
sience/recurrence and on the drift for the random environments mentioned in
Section 2.2.

3.3. Markov environment. The quantity E[lnσ0] in Theorem 2.1, which de-
termines whether Xn will diverge to +∞ or −∞, or is recurrent, is given by

E[lnσ0] =
b

a+ b
lnσ−1 +

a

a+ b
lnσ =

a− b

a+ b
ln

1− p

p
.

Hence, Xn → +∞ a.s. if and only if either a > b and p > 1/2, or a < b and
p < 1/2; Xn → −∞ a.s. if and only if either a > b and p < 1/2, or a < b and
p > 1/2; and {Xn} is recurrent a.s. if and only if either a = b, or p = 1/2, or
both.

Next we study E[S] to find the drift. In the context of Section 3.2 the processes
{Ui} and {Yi} are identical and the function g is the identity on the state space
U = {−1, 1}. Thus, the matrix D is given by D = diag(σ−1, σ), and since P is
as in Section 2.2, the matrix PD is given by

PD =

[
(1− a)σ−1 aσ

bσ−1 (1− b)σ

]
,

for which we have the following.
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Lemma 3.1. The matrix series
∑

∞

n=0(PD)n converges to

(3.5) (I − PD)−1 =
1

det(I − PD)

[
1− (1− b)σ aσ

bσ−1 1− (1− a)σ−1

]
,

with det(I − PD) = 2− a− b−
(
1−a
σ

+ (1− b)σ
)
, iff σ lies between 1 and 1−a

1−b
.

Note that the condition that σ lies between 1 and 1−a
1−b

can either mean

1 < σ < 1−a
1−b

(when a < b), or 1−a
1−b

< σ < 1 (when a > b).

Proof. The series
∑

∞

n=0(PD)n converges if and only if Sp(PD) < 1, where
Sp(·) denotes the spectral radius maxi |λi | . The eigenvalues λ1, λ2 follow from

|λI−PD | = λ2−Aλ+(1−a−b) = 0, where A = (1−a)σ−1+(1−b)σ.

The discriminant of this quadratic equation is

A2 − 4(1− a)(1− b) + 4ab =

(
1− a

σ
− (1− b)σ

)2

+ 4ab > 0,

so the spectral radius is given by the largest eigenvalue,

Sp(PD) =
A+

√
A2 − 4(1− a− b)

2
.

Clearly Sp(PD) < 1 if and only if
√

A2 − 4(1− a− b) < 2−A, or equivalently
A < 2− a− b. Substituting the definition of A and multiplying by σ this leads
to

(1− b)σ2 − (2− a− b)σ + (1− a) < 0,

or equivalently,
(σ − 1)

(
(1− b)σ − (1− a)

)
< 0.

Since the coefficient of σ2 in the above is 1− b > 0, the statement of the lemma
now follows immediately.

This leads to the following theorem.

Theorem 3.2. We distinguish between transient cases with and without
drift, and the recurrent case as follows.

1a. If either a > b and p ∈
(
1
2 ,

1−b
(1−a)+(1−b)

)
or a < b and p ∈

(
1−b

(1−a)+(1−b) ,
1
2

)
,

then almost surely lim
n→∞

Xn = ∞ and

(3.6) V = (2p− 1)
(1− b)(1− p)− (1− a)p(

b+ a−b
a+b

)
(1− p) +

(
a− a−b

a+b

)
p
> 0 .
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1b. If either a > b and p ∈
(

1−a
(1−a)+(1−b) ,

1
2

)
or a < b and p ∈

(
1
2 ,

1−a
(1−a)+(1−b)

)
,

then almost surely lim
n→∞

Xn = −∞ and

(3.7) V = −(1− 2p)
(1− b)p− (1− a)(1− p)(

b+ a−b
a+b

)
p+

(
a− a−b

a+b

)
(1− p)

< 0 .

2a. If either a > b and p ∈
[

1−b
(1−a)+(1−b) , 1

]
or a < b and p ∈

[
0, 1−b

(1−a)+(1−b)

]
,

then almost surely lim
n→∞

Xn = ∞ , but V = 0.

2b. If either a > b and p ∈
[
0, 1−a

(1−a)+(1−b)

]
or a < b and p ∈

[
1−a

(1−a)+(1−b) , 1
]
,

then almost surely lim
n→∞

Xn = −∞ , but V = 0.

3. Otherwise (when a = b or p = 1/2 or both), {Xn} is recurrent and V = 0.

Proof. Substitution of (3.5) and π = 1
a+b

(b, a) in (3.4) leads to

V −1 = 2E[S]− 1

=
2

(a+ b) det(I − PD)
(b, a)

[
1− (1− b)σ aσ

bσ−1 1− (1− a)σ

](
1
1

)
− 1

=
2

det(I − PD)

(a+ b)− (1− a− b)(bσ + aσ−1)

a+ b
− 1

=
1 + σ

1− σ

(
b+ a−b

a+b

)
σ +

(
a− a−b

a+b

)

(1− b)σ − (1− a)

=
1

2p− 1

(
b+ a−b

a+b

)
(1− p) +

(
a− a−b

a+b

)
p

(1− b)(1− p)− (1− a)p
.

When σ lies between 1 and 1−a
1−b

, i.e. when p = (1 + σ)−1 lies between 1/2 and
(1− b)/((1−a)+(1− b)), it follows by Lemma 3.1 that the process has positive
drift, given by the reciprocal of the above. This proves (3.6). The proof of (3.7)
follows from replacing σ by σ−1 and p by 1− p, and adding a minus sign. The
other statements follow immediately.

When we take a+ b = 1 we obtain the iid case of the previous section, with
α = a/(a + b). Indeed the theorem then becomes identical to Theorem 3.1. In
the following subsection we make a comparison between the Markov case and
the iid case.

3.3.1. Comparison with the iid environment. To study the impact of the
(Markovian) dependence, we reformulate the expression for the drift in Theo-
rem 3.2. Note that the role of α in the iid case is played by P (U0 = 1) = a/(a+b)
in the Markov case. Furthermore, we can show that the correlation coefficient
between two consecutive Ui’s satisfies

̺ ≡ ̺(U0, U1) =
Cov(U0, U1)

Var(U0)
=

a+b−4ab
a+b

−
(
a−b
a+b

)2

1−
(
a−b
a+b

)2 = 1− a− b.
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So ̺ depends on a and b only through their sum a + b, with extreme values 1
(for a = b = 0; i.e., Ui ≡ U0) and −1 (for a = b = 1; that is, U2i ≡ U0 and
U2i+1 ≡ −U0). The intermediate case a+ b = 1 leads to ̺ = 0 and corresponds
to the iid case, as we have seen before. To express V in terms of α and ̺ we
solve the system of equations a

a+b
= α and 1−a− b = ̺, leading to the solution

a = (1− ̺)α

b = (1− ̺)(1− α).

Substitution in the expression for V (here in case of positive drift only, see
(3.6)) and rewriting yields

V = (2p− 1)
α− p+ ̺(1− α− p)(

α(1− p) + (1− α)p
)
(1 + ̺)− ̺

.

This enables us not only to immediately recognize the result (3.2) for the iid
case (take ̺ = 0), but also to study the dependence of the drift V on ̺. Note
that due to the restriction that a and b are probabilities, it must hold that
̺ > max{1− 1/α, 1− 1/(1− α)}.

Figures 3 and 4 illustrate various aspects of the difference between iid and
Markov cases. Clearly, compared to the iid case (for the same value of α),
the Markov case with positive correlation coefficient has lower drift, but also a
lower ‘cutoff value’ of p at which the drift becomes zero. For negative correlation
coefficients we see a higher cutoff value, but not all values of α are possible (since
we should have a < 1). Furthermore, for weak correlations the drift (if it exists)
tends to be larger than for strong correlations (both positive and negative),
depending on p and α. Note that Figure 4 seems to suggest there are two cutoff
values in terms of the correlation coefficient. However, it should be realized
that drift curves corresponding to some α are no longer drawn for negative
correlations since the particular value of α cannot be attained. E.g., when ̺ is
close to −1, then a and b are both close to 1, hence α can only be close to 1/2.
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0.6 0.7 0.8 0.9 1.0
p

0.2

0.4

0.6

0.8

1.0

V

Fig 3. Drift for ̺ = 0 (blue, dashed), ̺ = 0.3 (red,solid), and ̺ = −0.3 (green,dotdashed) as a
function of p. From highest to lowest curves for α = 1, 0.95, . . . , 0.55 (for ̺ = 0 and ̺ = 0.3),
and for α = 0.75, 0.70, . . . , 0.55 (for ̺ = −0.3).

-1.0 -0.5 0.5 1.0
Ρ

0.2

0.4

0.6

0.8

V

Fig 4. Drift for p = 0.7 (blue, dashed) and p = 0.9 (red, solid) as a function of the correlation
coefficient ̺, for α = 1, 0.95, . . . , 0.55 (from highest to lowest curves). The values at ̺ = 0 give
the drift for the independent case. Note that ̺ must be greater than or equal to 1/α.

3.4. 2-dependent environment. In this section we treat the k-dependent en-
vironment for k = 2. For this case we have the transition probabilities

Pui−2ui−1,ui
= P(Ui = ui |Ui−2 = ui−2, Ui−1 = ui−1), uj ∈ {−1, 1},
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so that the one-step transition matrix of the Markov chain {Yi, i ∈ Z} with
Yi = (Ui−1, Ui) is given by

P =




P−1−1,−1 P−1−1,+1 0 0
0 0 P−1+1,−1 P−1+1,+1

P+1−1,−1 P+1−1,+1 0 0
0 0 P+1+1,−1 P+1+1,+1


 =




1− a− a− 0 0
0 0 b− 1− b−

1− a+ a+ 0 0
0 0 b+ 1− b+


 .

Thus, the model has five parameters, a−, a+, b−, b+, and p. Also note that the
special case a− = a+(= a) and b− = b+(= b) corresponds to the (1-dependent)
Markovian case in Section 3.3.

We first note that the stationary distribution (row) vector π is given by

(3.8) π =

(
2 +

1− a+
a−

+
1− b−
b+

)−1(1− a+
a−

, 1, 1,
1− b−
b+

)
,

so assuming stationarity we have P(U0 = 1) = π−1,1 + π1,1 and P(U0 = −1) =
π−1,−1 + π1,−1. It follows that P(U0 = 1) > P(U0 = −1) if and only if a−

1−a+
>

b+
1−b−

. This is important to determine the sign of E[lnσ0], which satisfies (with

σ = 1−p
p

as before),

E[lnσ0] =
(
2P(U0 = 1)− 1

)
lnσ.

Hence, Xn → +∞ a.s. if and only if either a−
1−a+

> b+
1−b−

and p > 1/2, or
a−

1−a+
< b+

1−b−
and p < 1/2; Xn → −∞ a.s. if and only if either a−

1−a+
> b+

1−b−

and p < 1/2, or a−
1−a+

< b+
1−b−

and p > 1/2; and {Xn} is recurrent a.s. if and

only if either a−
1−a+

= b+
1−b−

, or p = 1/2, or both.

Next we consider the drift. As before we have when E[S] < ∞ that V −1 =
2E[S] − 1. So in view of (3.4) we need to consider the matrix PD where D =
diag(σ−1, σ, σ−1, σ), so

PD =




(1− a−)σ
−1 a−σ 0 0

0 0 b−σ
−1 (1− b−)σ

(1− a+)σ
−1 a+σ 0 0

0 0 b+σ
−1 (1− b+)σ




and hence

V −1 = 2π

(
∞∑

n=0

(PD)n

)
1 − 1

= 2π(I − PD)−1 1 − 1

if Sp(PD) < 1. Unfortunately, the eigenvalues of PD are now the roots of a
4-degree polynomial, which are hard to find explicitly. However, using Perron–
Frobenius theory and the implicit function theorem it is possible to prove the
following lemma, which has the same structure as in the Markovian case.
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Lemma 3.2. The matrix series
∑

∞

n=0(PD)n converges to (I−PD)−1, which
is






























1 − a+b
−

− σ + σB a
−
σ((b+ − 1)σ + 1) a

−
(−σb

−
+ b

−
+ b+σ) −a

−
(b

−
− 1)σ2

(a+−1)(b
−

(σ−1)−b+σ)

σ2

(a
−

+σ−1)((b+−1)σ+1)

σ
−

(a
−

+σ−1)(b
−

(σ−1)−b+σ)

σ2 −(b
−

− 1)(a
−

+ σ − 1)

−

(a+−1)((b+−1)σ+1)

σ
(a

−
+ a+(σ − 1))((b+ − 1)σ + 1)

(a
−

+σ−1)((b+−1)σ+1)

σ
−(b

−
− 1)(a

−
+ a+(σ − 1))σ

b+−a+b+

σ2

b+(a
−

+a+(σ−1))

σ

b+(a
−

+σ−1)

σ2

1−A+σ−a+b
−

σ

σ































divided by det(I − PD) = −σ−1(σ − 1)
(
(1−B)σ − (1−A)

)
, iff σ lies between

1 and 1−A
1−B

. Here, A = a− + a+b− − a−b− and B = b+ + a+b− − a+b+.

Proof. To find out for which values of σ we have Sp(PD) < 1, first we
denote the (possibly complex) eigenvalues of PD by λi(σ), i = 0, 1, 2, 3, as
continuous functions of σ. Since PD is a nonnegative irreducible matrix for any
σ > 0, we can apply Perron–Frobenius to claim that there is always a unique
eigenvalue with largest absolute value (the other |λi| being strictly smaller), and
that this eigenvalue is real and positive (so in fact it always equals Sp(PD)).
When σ = 1 the matrix is stochastic and we know this eigenvalue to be 1, and
denote it by λ0(1).

Now, moving σ from 1 to any other positive value, λ0(σ) must continue to
play the role of the Perron–Frobenius eigenvalue; i.e., none of the other λi(σ)
can at some point take over this role. If this were not true, then the continuity
of the λi(σ) would imply that one value σ̂ exists where (say) λ1 ‘overtakes’
λ0, meaning that |λ1(σ̂)| = |λ0(σ̂)|, which is in contradiction with the earlier
Perron–Frobenius statement.

Thus, it remains to find out when λ0(σ) < 1, which can be established using
the implicit function theorem, since λ0 is implicitly defined as a function of σ
by f(σ, λ0) = 0, with f(σ, λ) = det(λI − PD) together with λ0(1) = 1. Using
det(D) = 1, we find that

f(σ, λ) =det((λD−1 − P )D) = det(λD−1 − P ) =

= σ[λ(a+b− − a+b+) + λ3(b+ − 1)]

+ σ−1[λ(a+b− − a−b−) + λ3(a− − 1)]

+ λ4 + (1− a− − b+ + a−b+ − a+b−)λ
2 + a−b− − a−b+ − a+b− + a+b+.

Setting λ = 1 in this expression gives det(I −PD) as given in the lemma, with
two roots for σ. Thus, there is only an eigenvalue 1 when σ = 1, which we
already called λ0(1), or when σ = 1−A

1−B
. In the latter case this must be λ0(

1−A
1−B

),

i.e., it cannot be λi(
1−A
1−B

) for some i 6= 0, again due to continuity. As a result we

have either λ0(σ) > 1 or λ0(σ) < 1 when σ lies between 1 and 1−A
1−B

. Whether
1−A
1−B

< 1 or 1−A
1−B

> 1 depends on the parameters:

(3.9)
1−A

1−B
> 1 ⇔

a−
1− a+

<
b+

1− b−
,

where we used that 1 − B = 1 − b+ − a+b− + a+b+ > (1 − b+)(1 − a+) > 0.
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Now we apply the implicit function theorem:

dλ0(σ)

dσ

∣∣∣
σ=1

= −
∂f(σ,λ0)

∂σ
∂f(σ,λ0)

∂λ0

∣∣∣∣∣
σ=1,λ0=1

(3.10)

= −
b+(1− a+)− a−(1− b−)

a−(1− b− + b+) + b+(1− a+ + a−)
(3.11)

=

a−
1−a+

− b+
1−b−

a−
1−a+

(
1 + b+

1−b−

)
+ b+

1−b−

(
1 + a−

1−a+

) ,(3.12)

which due to (3.9) is < 0 iff 1−A
1−B

> 1 and is > 0 iff 1−A
1−B

< 1, so that indeed

Sp(PD) = λ0(σ) < 1 if and only if σ lies between 1 and 1−A
1−B

.

Note that for the case a−
1−a+

= b+
1−b−

the series never converges, as there is no

drift, P(U0 = 1) = P(U0 = −1). This corresponds to a = b in the Markovian
case and α = 1/2 in the iid case.

We conclude that if σ lies between 1 and 1−A
1−B

, or equivalently, if p lies between

1/2 and 1−B
1−A+1−B

, the drift is given by V = (2π(I − PD)−1 1 − 1)−1, where

π is given in (3.8) and (I − PD)−1 follows from Lemma 3.2. Using computer
algebra, this can be shown to equal

(3.13) V = (2p− 1)
d p(1− p)

(
(1−B)(1− p)− (1−A)p

)
∑3

i=0 ci p
i

where

d = a−(b− − b+ − 1) + b+(a+ − a− − 1)

c0 = 2a−b+(b− − b+)

c1 = −c0(2 + a+ + a−) + (B −A)(1−B)

c2 = −c0 − c1 − c3

c3 = (B −A)(2−A−B).

Including the transience/recurrence result from the first part of this section,
and including the cases with negative drift, we obtain the following analogon
to Theorems 3.1 and 3.2.

Theorem 3.3. We distinguish between transient cases with and without
drift, and the recurrent case in the same way as for the Markov environment
in Theorem 3.2. In particular, all statements (1a.), . . . , (3) in Theorem 3.2
also hold for the 2-dependent environment if we replace a and b by A and B
respectively, (3.6) by (3.13), and (3.7) by minus the same expression (3.13) but
with p replaced by 1− p.

3.4.1. Comparison with the Markov environment. To facilitate a compari-
son between the drifts for the two-dependent and Markov environments it is
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convenient to write the probability distribution vector of (U0, U1, U2) as πR,
where π is the distribution vector of (U0, U1), see (3.8), and

R =




1− a− a− 0 0 0 0 0 0
0 0 b− 1− b− 0 0 0 0
0 0 0 0 1− a+ a+ 0 0
0 0 0 0 0 0 b+ 1− b+


 .

Thus, πR = c
(
(1−a+)(1−a−)

a−
, 1− a+, b−, 1− b−, 1− a+, a+, 1− b−,

(1−b−)(1−b+)
b+

)
,

where c =
(
2 + 1−a+

a−
+ 1−b−

b+

)−1
. If we also define

M0 =




1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1




,M01 =




1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1




,M02 =




1 0 0 0
0 1 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 1 0
0 0 0 1




,

then the probability distribution vector of U0, (U0, U1), and (U0, U2) are respec-
tively given by

πRM0 = c

(

1− a+

a−

+ 1,
1− b−
b+

+ 1

)

,

πRM01 = π = c

(

1− a+

a−

, 1, 1,
1− b−
b+

)

,

πRM02 = c

(

(1− a+)(1− a−)

a−

+ b−, 2− a+ − b−, 2− a+ − b−, a+ +
(1− b−)(1− b+)

b+

)

.

Various characteristics of the distribution of (U0, U1, U2) are now easily found.
In particular, the probability P(U0 = 1) is

α =
a−(1− b− + b+)

a−(1− b− + b+) + b+(1− a+ + a−)
,

the correlation coefficient between U0 and U1 is

̺01 = 1−
a−

a− + 1− a+
−

b+
b+ + 1− b−

,

the correlation coefficient between U0 and U2 is

̺02 = 1− (2− a+ − b−)

(
a−

a− + 1− a+
+

b+
b+ + 1− b−

)

= 1− (2− a+ − b−)(1− ̺01),

and E[U0U1U2] is

e012 =
4a−b+(b− − a+) + a−(1− b− + b+)− b+(1− a+ + a−)

a−(1− b− + b+) + b+(1− a+ + a−)
.
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The original parameters can be expressed in terms of α, ̺01, ̺02, and e012 as
follows:

a− = −
2α(2α(̺02 − 1)− 2̺02 + 1) + e012 + 1

8(α− 1)(α(̺01 − 1) + 1)

b− =
2α(α(4̺01 − 2(̺02 + 1))− 4̺01 + 2̺02 + 1) + e012 + 1

8(α− 1)α(̺01 − 1)

a+ = −
2α(2α(−2̺01 + ̺02 + 1) + 4̺01 − 2̺02 − 3) + e012 + 1

8(α− 1)α(̺01 − 1)

b+ =
2α(−2α(̺02 − 1) + 2̺02 − 3) + e012 + 1

8α(α(̺01 − 1)− ̺01)
.

Note that due to the restriction that a−, a+, b−, and b+ are probabilities, (α, ̺01,
̺02, e012) can only take values in a strict subset of [0, 1]× [−1, 1]3.

An illustration of the different behavior that can be achieved for two-dependent
environments (as opposed to Markovian environments) is given in Figure 5.
Here, α = 0.95 and ̺1 = 0.3. The drift for the corresponding Markovian case is
indicated in the figure. The cutoff value is here approximately 0.75. By varying
̺2 and e012 one can achieve a considerable increase in the drift. It is not difficult
to verify that the smallest possible value for ̺2 is here (α − 1)/α = −1/19, in
which case e012 can only take the value 3+2α(−5−4α(−1+̺1)+4̺1) = 417/500.
This gives a maximal cutoff value of 1. The corresponding drift curve is indi-
cated by the “maximal” label in Figure 5. For ̺2 = 0, the parameter e012
can at most vary from −1 + 2α(−1 + α(2 − 4̺1) + 4̺1) = 103/123 = 0.824
to 7 + 2α(−9 + α(6 − 4̺1) + 4̺1) = 211/250 = 0.844. The solid red curves
show the evolution of the drift between these extremes. The dashed blue curve
corresponds to the drift for the independent case with α = 0.95.

Markov

Independent maximal

0.5 0.6 0.7 0.8 0.9 1.0
p0.0

0.1

0.2

0.3

0.4

V

Fig 5. Drift for α = 0.95 and ̺1 = 0.3 for various ̺2 and e012. The solid red curves show
the drift for ̺2 = 0 and e012 varying from 0.824 to 0.844. The smallest dashed blue curve
corresponds to the Markov case. The “maximal” dotdashed orange curve corresponds to the
case ̺2 = −1/19 and e012 = 417/500. The middle dashed blue line gives the independent case.
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3.5. Moving average environment. Recall that the environment is given by
Ui = g(Yi) where the Markov process {Yi} is given by Yi = (Ûi, Ûi+1, Ûi+2).
The sequence {Ûi} is iid with P(Ûi = 1) = α = 1 − P(Ûi = −1). Thus, {Yi}
has states 1 = (−1,−1,−1), 2 = (−1,−1, 1), . . . , 8 = (1, 1, 1) (in lexicographical
order) and transition matrix P given by (2.7). The deterministic function g is
given by (2.8); see also Figure 2.2.

The almost sure behavior of {Xn} again depends only on E[U0] which equals
−4α3 + 6α2 − 1 = (2α − 1)(−2α2 + 2α + 1). Since −2α2 + 2α + 1 > 0 for
0 6 α 6 1, the sign of E[U0] is the same as the sign of E[Û0] = 2α − 1, so the
almost sure behavior is precisely the same as in the iid case; we will not repeat
it here (but see Theorem 3.4).

To study the drift, we need the stationary vector of {Yi}, which is given by

π =
{
(1− α)3, (1− α)2α, (1− α)2α, (1− α)α2,

(1− α)2α, (1− α)α2, (1− α)α2, α3
}
,

(3.14)

and the convergence behavior of
∑

(PD)n, with D = diag(σ−1, σ−1, σ−1, σ, σ−1,
σ, σ, σ). This is given in the following lemma.

Lemma 3.3. The matrix series
∑

∞

n=0(PD)n converges to (I − PD)−1 iff σ
lies between 1 and σcutoff , which is the unique root 6= 1 of

det(I − PD) =−
α(1− α)2

σ3
+

α2(1− α)2

σ2
−

(1− α)(1− α+ α2)

σ
+ 1

− 2α2(1− α)2 − α2(1− α)σ3 + α2(1− α)2σ2 − α(1− α+ α2)σ.

(3.15)

Proof. The proof is similar to that of Lemma 3.2; we only give an outline,
leaving details for the reader to verify. Again, denote the possibly complex
eigenvalues of PD by λi(σ), i = 0, . . . , 7 and use Perron-Frobenius theory to
conclude that for any σ > 0 we have Sp(PD) = λ0(σ), say, with λ0(1) = 1.

To find out when λ0(σ) < 1 we again use the implicit function theorem on
f(σ, λ0) = 0, with f(σ, λ) = det(λI − PD). Setting λ = 1 gives (3.15). It can
be shown that f(σ, 1) is zero at σ = 1, that f(σ, 1) → ∞ for σ ↓ 0, and that
(∂2/∂σ2)f(σ, 1) < 0 for all σ > 0 (for the latter, consider 0 < σ < 1 and σ > 1
separately). Thus we can conclude that f(σ, 1) has precisely two roots for σ > 0,
at σ = 1 and at σ = σcutoff .

As a result we have either λ0(σ) > 1 or λ0(σ) < 1 when σ lies between 1
and σcutoff . For the location of σcutoff it is helpful to know that (∂/∂σ)f(σ, 1)

∣∣
σ=1

=
(2α−1)(2α2−2α−1), which is positive for 0 < α < 1/2 and negative for 1/2 <
α < 1. Thus we have σcutoff > 1 iff α < 1/2. Also (∂/∂λ)f(1, 1) = 1 so that the
implicit function theorem gives (d/dσ)λ0(σ)

∣∣
σ=1

= −(2α− 1)(2α2− 2α− 1), so
that indeed λ0(σ) < 1 iff σ lies between 1 and σcutoff .

The cutoff value for p is now easily found as (1 + σcutoff)
−1, which can be

numerically evaluated. The values are plotted in Figure 6.
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pcutoff

Fig 6. Relation between cutoff value for p, and α. The solid red curve is for the moving average
process. For comparison, the dashed blue line is the iid case (see also Figure 2).

When p lies between 1/2 and pcutoff , the drift is given by V = (2π(I −
PD)−1 1 − 1)−1, where π is given in (3.14) and (I − PD)−1 follows from
Lemma 3.3. Using computer algebra we can find a rather unattractive, but
explicit expression for the value of the drift; it is given by the quotient of

α4
(
−(1− 2p)2

)
(p− 1)p+ α3(1− 2p((p− 2)p(p(2p− 5) + 6) + 4))

+ α2(2p− 1)(p(3p((p− 2)p+ 3)− 5) + 1)− α(1− 2p)2p2 − (p− 1)2p3(2p− 1)

and

− 2α5(2p− 1)3 − α4(1− 2p)2((p− 11)p+ 6) + α3(2p− 1)(2p(p3 − 9p+ 10)

− 5)− α2(p+ 1)(2p− 1)(p(p(3p− 7) + 6)− 1) + αp2(2p− 1) + (p− 1)2p3 .

Theorem 3.4. Let pcutoff = (1+σcutoff)
−1, where σcutoff follows from Lemma

3.3. Then pcutoff > 1/2 iff α > 1/2. We distinguish between transient cases with
and without drift, and the recurrent case as follows.

1a. If either α > 1/2 and p ∈ (1/2, pcutoff) or α < 1/2 and p ∈ (pcutoff , 1/2),
then almost surely lim

n→∞
Xn = ∞ and the drift V > 0 is given as above.

1b. If either α > 1/2 and p ∈ (1 − pcutoff , 1/2) or α < 1/2 and p ∈ (1/2, 1 −
pcutoff), then almost surely lim

n→∞
Xn = −∞ and the drift V < 0 is given

as minus the same expression as above but with p replaced by 1− p.
2a. If either α > 1/2 and p ∈ [pcutoff , 1] or α < 1/2 and p ∈ [0, pcutoff ], then

almost surely lim
n→∞

Xn = ∞ , but V = 0.

2b. If either α > 1/2 and p ∈ [0, 1− pcutoff ] or α < 1/2 and p ∈ [1− pcutoff , 1],
then almost surely lim

n→∞
Xn = −∞ , but V = 0.

3. Otherwise (when α = 1/2 or p = 1/2 or both), {Xn} is recurrent and
V = 0.
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Figure 7 compares the drifts for the moving average and independent envi-
ronments.

0.6 0.7 0.8 0.9 1.0
p

0.2

0.4

0.6

0.8

1.0

V

Fig 7. Red: Drift for the moving average environment as a function of p for α =
1, 0.95, . . . , 0.55 (from highest to lowest curves). Blue: comparison with the independent case.

It is interesting to note that the cutoff points (where V becomes 0) are
significantly lower in the moving average case than the iid case, using the same
α, while at the same time the maximal drift that can be achieved is higher for
the moving average case than for the iid case. This is different behavior from
the Markovian case; see also Figure 3.

4. Conclusions. Random walks in random environments can exhibit in-
teresting and unusual behavior due to the trapping phenomenon. The depen-
dency structure of the random environment can significantly affect the drift
of the process. We showed how to conveniently construct dependent environ-
ment processes, including k-dependent and moving average environments, by
using an auxiliary Markov chain. For the well-known swap RWRE model, this
approach allows for easy computation of drift, as well as explicit conditions
under which the drift is positive, negative, or zero. The cutoff values where
the drift becomes zero, are determined via Perron–Frobenius theory. Various
generalizations of the above environments can be considered in the same (swap
model) framework, and can be analyzed along the same lines, e.g., replacing iid
by Markovian {Ûi} in the moving average model, or taking moving averages of
more than 3 neighboring states.

Other possible directions for future research are (a) extending the two-state
dependent random environment to a k-state dependent random environment;
(b) replacing the transition probabilities for swap model with the more general
rules in Eq.(2.1); and (c) generalizing the single-state random walk process to a
multi-state discrete-time quasi birth and death process (see, e.g., [2]). By using
an infinite “phase space” for such processes, it might be possible to bridge the
gap between the theory for one- and multi-dimensional RWREs.
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