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Abstract: The eccentricity of a node in a graph is defined as the length of a longest shortest
path starting at that node. The eccentricity distribution over all nodes is a relevant descriptive
property of the graph, and its extreme values allow the derivation of measures such as the
radius, diameter, center and periphery of the graph. This paper describes two new methods
for computing the eccentricity distribution of large graphs such as social networks, web
graphs, biological networks and routing networks. We first propose an exact algorithm based
on eccentricity lower and upper bounds, which achieves significant speedups compared to the
straightforward algorithm when computing both the extreme values of the distribution as well
as the eccentricity distribution as a whole. The second algorithm that we describe is a hybrid
strategy that combines the exact approach with an efficient sampling technique in order to
obtain an even larger speedup on the computation of the entire eccentricity distribution. We
perform an extensive set of experiments on a number of large graphs in order to measure
and compare the performance of our algorithms, and demonstrate how we can efficiently
compute the eccentricity distribution of various large real-world graphs.
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1. Introduction

Within the field of graph mining, researchers are often interested in deriving properties that describe
the structure of their graphs. One of these properties is the eccentricity distribution, which describes the
distribution of the eccentricity over all nodes, where the eccentricity of a node refers to the length of a
longest shortest path starting at that node. This distribution differs from properties such as the distance
distribution in the sense that eccentricity can be seen as a more “extreme” measure of distance. It also
differs from indicators such as the degree distribution in the sense that determining the eccentricity of
every node in the graph is computationally expensive: the traditional method computes the eccentricity
of each node by running an All Pairs Shortest Path (APSP) algorithm, requiring O(mn) time for a graph
with n nodes and m edges. Unfortunately, this approach is too time-consuming if we consider large
graphs with possibly millions of nodes.

The aforementioned complexity issues are frequently solved by determining the eccentricity of a
random subset of the nodes in the original graph, and then deriving the eccentricity distribution from
the obtained values [1]. While such an estimate may seem reasonable when the goal is to determine
the overall average eccentricity value, we will show that this technique does not perform well when the
actual extreme values of the distribution are of relevance. The nodes with the highest eccentricity values
realize the diameter of the graph and form the so-called graph periphery, whereas the nodes with the
lowest values realize the radius and form the center of the graph, and finding exactly these nodes can be
useful within various application areas.

In routing networks, for example, it is interesting to know exactly which nodes form the periphery
of the network and thus have the highest worst-case response time to any other device [2]. Also, when
(routing) networks are modeled, for example for research purposes, it is important to measure the exact
eccentricity distribution so that the model can be evaluated by comparing it with the distribution of real
routing networks [3]. The eccentricity also plays a role in networks that model some biological system.
There, proteins (nodes in the network) that have a low eccentricity value are easily functionally reachable
by other components of the network [4]. The diameter, defined as the length of a longest shortest path,
is the most frequently studied eccentricity-based measure, and efficient algorithms for its computation
have been suggested in [5–7].

Generally speaking, the eccentricity can be seen as an extreme measure of centrality, i.e., the relative
importance of a node in a graph. Centroid centrality [8] and graph centrality [9] have been suggested as
centrality measures based on the eccentricity of a node. Compared to other measures such as closeness
centrality, the main difference is that a node with a very low eccentricity value is relatively close to
every other node, whereas a node with a low closeness centrality value is close to all the other nodes
on average.

In this paper we first discuss an algorithm based on eccentricity lower and upper bounds for
determining the exact eccentricity of every node of a graph. We also present a useful pruning strategy,
and show how our method significantly improves upon the traditional algorithm. To realize an even larger
speedup, we propose to incorporate a sampling technique on a specific set of nodes in the graph which
allows us to obtain the eccentricity distribution much faster, while still ensuring a high accuracy on the
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eccentricity distribution, and an exact result for the eccentricity-based graph properties such as the radius
and diameter.

The rest of this paper is organized as follows. We consider some notation and formulate the main
problems addressed in this paper in Section 2, after which we cover related work in Section 3. Section 4
describes an exact algorithm for determining the eccentricity distribution. In Section 5, we explain how
sampling can be incorporated. Results of applying our methods to various large datasets are presented in
Section 6, and finally Section 7 summarizes the paper and offers suggestions for future work.

2. Preliminaries

We consider graphs G(V, E), where V is the set of |V | = n vertices (nodes) and E ⊆ V ×V is the set
of |E| = m edges (also called arcs or links). The distance d(v, w) between two nodes v, w ∈ V is defined
as the length of a shortest path from v to w, i.e., the minimum number of edges that have to be traversed
to get from v to w. We assume that our graphs are undirected, meaning that (v, w) ∈ E iff (w, v) ∈ E

and thus d(v, w) = d(w, v) for all v, w ∈ V . Note that each edge (v, w) is thus included twice in E: once
as a link from v to w and once as a link from w to v. We will also assume that G is connected, meaning
that d(v, w) is always finite. Furthermore it is assumed that there are no parallel edges and no loops
linking a node to itself. The neighborhood N(v) of a node v is defined as the set of all nodes connected
to v via an edge: N(v) = {w ∈ V | (v, w) ∈ E}. The degree deg(v) of a node v can then be defined as
the number of nodes connected to that node, i.e., its neighborhood size: deg(v) = |N(v)|.

The eccentricity ε(v) of a node v ∈ V is defined as the length of a longest shortest path from v

to any other node: ε(v) = maxw∈V d(v, w). The eccentricity distribution counts the frequency f(x) of
each eccentricity value x, and can easily be derived when the eccentricity of each node in the graph is
known. The relative eccentricity distribution lists for each eccentricity value x its relative frequency
F (x) = f(x)/n, normalizing for the number of nodes in the graph. Figure 1 shows the relative
eccentricity distributions of a number of large graphs (for a detailed description of these datasets, see
Section 6.1).

Figure 1. Relative eccentricity distributions of various large graphs.
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Various other measures can be derived using the notion of eccentricity, such as the average
eccentricity ε(G) of a graph G, defined as ε(G) = 1

n

∑
v∈V ε(v). Another related measure is the

diameter ∆(G) of a graph G, which is is defined as the maximum eccentricity over all nodes in the
graph: ∆(G) = maxv∈V ε(v). Similarly, we define the radius Γ(G) of a graph G as the minimum
eccentricity over all nodes in the graph: Γ(G) = minv∈V ε(v). The graph center C(G) refers to the set
of nodes with an eccentricity equal to the radius, C(G) = {v ∈ V | ε(v) = Γ(G)}. Similarly, the graph
periphery D(G) is defined as the set of nodes with an eccentricity value equal to the diameter of the
graph: D(G) = {v ∈ V | ε(v) = ∆(G)}. Each of the measures explained above can be derived when
the eccentricity of all nodes is known. Figure 2 shows an example of a graph that explains the different
measures covered in this section.

Figure 2. Toy graph showing the eccentricity of its 12 nodes, with average eccentricity 4.67,
radius 3 realized by center node G, and diameter 6 realized by periphery nodes D, E and L.
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Computing the eccentricity of one node can be done by running Dijkstra’s algorithm, and returning
the largest distance found (i.e., the distance to a node furthest away from the starting node). Because
we only consider unweighted graphs and thus, starting from the current node, can simply explore the
neighboring nodes in level-order, computing the eccentricity of one node can be done in O(m) time. The
process of determining the eccentricity of one node v is denoted by ECCENTRICITY(v) in Algorithm 1.

Algorithm 1 NAIVEECCENTRICITIES

1: Input: Graph G(V, E)

2: Output: Vector ε, containing ε(v) for all v ∈ V

3: for v ∈ V do
4: ε[v]← ECCENTRICITY(v) // O(m)

5: end for

6: return ε

This algorithm simply computes the eccentricity for each of the n nodes, resulting in an overall
complexity of O(mn) to determine the eccentricity of every node in the graph. Clearly, in graphs with
millions of nodes and possibly hundreds of millions of edges, this approach is too time-consuming. The
rest of this paper describes more efficient approaches for determining the eccentricity distribution, where
we are interested in two things:
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• The (relative) eccentricity distribution as a whole.
• Finding the extreme values of the eccentricity distribution, i.e., the radius and diameter, as well as

derived measures such as the center and periphery of the graph.

We will address these issues by answering the following two questions:

• How can we obtain the exact eccentricity distribution by efficiently computing the exact value of
ε(v) for all nodes v ∈ V ? (Section 4)
• How can we obtain an accurate approximation of the eccentricity distribution by using a sampling

technique? (Section 5)

3. Related Work

Substantial work on the eccentricity distribution dates back to 1975, when the term “eccentric
sequence” was introduced to denote the sequence that counts the frequency of each eccentricity
value [10]. The facility location problem is an example of the usefulness of eccentricity as a measure
of centrality. When considering the placement of emergency facilities such as a hospital or fire station,
assuming the map is modelled as a graph, the node with the lowest eccentricity value might be a good
location for such a facility. In other situations, for example for the placement of a shopping center, a
related measure called closeness centrality, defined as a node’s average distance to every other node
(c(v) = 1

n

∑
w∈V d(v, w)), is more suitable. Generally speaking, the eccentricity is a relevant measure

when some strict criterion (the firetruck has to be able to reach every location within 10 minutes) has
to be met [11]. An application of eccentricity as a measure on a larger scale is the network routing
graph, where the eccentricity of a node says something about the worst-case response time between one
machine and all other machines.

The most well-known eccentricity-based measure is the diameter, which has been extensively
investigated in [5–7]. Several measures related to the eccentricity and diameter have also been
considered. Kang et al. [12] study the effective radius, which they define as the 90th-percentile of all the
shortest distances from a node. In a similar way, the effective diameter can be defined, which is shown to
be decreasing over time for many large real-world graphs [13]. Each of these measures is computed by
using an approximation algorithm [14] to determine the neighborhood of a node, a technique on which
we will elaborate in Section 5.3.

To the best of our knowledge, there are no efficient techniques that have been specifically designed
to determine the exact eccentricity distribution of a graph. Obviously, the naive approach, for example
as suggested in [15], is too time-consuming. Efficient approaches for solving the APSP problem (which
then makes determining the eccentricity distribution a trivial task) have been developed, for example
using matrix multiplication [16]. Unfortunately, such approaches are still too complex in terms of time
and memory requirements.

4. Exact Algorithm

In order to derive an algorithm that can compute the eccentricity of all n nodes in a graph faster than
simply recomputing the eccentricity n times (once for each node in the graph), we have two options:
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1. Reduce the size of the graph as a whole to speed up one eccentricity computation.
2. Reduce the number of eccentricity computations.

In this section we propose lower and upper bounds on the eccentricity, a strategy that accommodates the
second type of speedup. We will also outline a pruning strategy that helps to reduce both the number of
nodes that have to be investigated, as well as the size of the graph, realizing both of the two speedups
listed above.

4.1. Eccentricity Bounds

We propose to use the following bounds on the eccentricity of all nodes w ∈ V , when the eccentricity
of one node v ∈ V has been computed:

Observation 1 For nodes v, w ∈ V we have max(ε(v)− d(v, w), d(v, w)) ≤ ε(w) ≤ ε(v) + d(v, w).

The upper bound can be understood as follows: if node w is at distance d(v, w) from node v, it can always
employ v to get to every other node in ε(v) steps. To get to node v, exactly d(v, w) steps are needed,
totalling ε(v) + d(v, w) steps to get to any other node. The first part of the lower bound (ε(v)− d(v, w))
can be derived in the same way, by interchanging v and w in the previous statement. The second part of
the lower bound, d(v, w) itself, simply states that the eccentricity of w is at least equal to some found
distance to w.

The bounds from Observation 1 were suggested in [6] as a way to determine which nodes could
contribute to a graph’s diameter. We extend the method proposed in that paper by using these bounds to
compute the full eccentricity distribution of the graph. The approach is outlined in Algorithm 2.

First, the candidate set W and the lower and upper eccentricity bounds are initialized (lines 3–8).
In the main loop of the algorithm, a node v is repeatedly selected (line 10) from W , its eccentricity is
determined (line 11), and finally all candidate nodes are updated (line 12–19) according to Observation 1.
Note that the value of d(v, w) which is used in the updating process does not have to be computed, as
it is already known because it was calculated for all w during the computation of the eccentricity of v.
If the lower and upper eccentricity bounds for a node have become equal, then the eccentricity of that
node has been derived and it is removed from W (lines 15–18). Algorithm 2 returns a vector containing
the exact eccentricity value of each node. Counting the number of occurrences of each eccentricity value
results in the eccentricity distribution.

An overview of possible selection strategies for the function SELECTFROM can be found in [6]. In
line with results presented in that work, we found that when determining the eccentricity distribution,
interchanging the selection of a node with a small lower bound and a node with a large upper bound,
breaking ties by taking a node with the highest degree, yielded by far the best results. As described
in [6], examples of graphs in which this algorithm would definitely not work are complete graphs and
circle-shaped graphs. However, most real-world graphs adhere to the small world property [17], and in
these graphs the eccentricity distribution is sufficiently diverse so that the eccentricity lower and upper
bounds can effectively be utilized.
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Algorithm 2 BOUNDINGECCENTRICITIES

1: Input: Graph G(V, E)

2: Output: Vector ε, containing ε(v) for all v ∈ V

3: W ← V

4: for w ∈ W do
5: ε[w]← 0 εL[w]← −∞ εU [w]← +∞
6: end for

7: while W 6= ∅ do
8: v ← SELECTFROM(W )
9: ε[v]← ECCENTRICITY(v)

10: for w ∈ W do
11: εL[w]← max(εL[w], max(ε[v]− d(v, w), d(v, w)))

12: εU [w]← min(εU [w], ε[v] + d(v, w))

13: if (εL[w] = εU [w]) then
14: ε[w]← εL[w]

15: W ← W − {w}
16: end if
17: end for
18: end while

19: return ε

Figure 3. Eccentricity bounds of the toy graph in Figure 2 after subsequently computing the
eccentricity of node G (left) and node E (right).
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As an example of the usefulness of the bounds suggested in this section, consider the problem of
determining the eccentricities of the nodes of the toy graph from Figure 2. If we compute the eccentricity
of node G, which is 3, then we can derive bounds 2|4 for the nodes at distance 1 (B, C, F, J and K), 2|5
for the nodes at distance 2 (A, H and I) and 3|6 for the nodes at distance 3 (D, E and L), as depicted by
the left graph in Figure 3. If we then compute the eccentricity of node E, which is 6, we derive bounds
5|7 for node I, 4|8 for node F, 3|9 for nodes A, B and G, 4|10 for nodes C, J and K, 5|11 for node K,
and 6|12 for nodes D and L. If we combine these bounds for each of the nodes, then we find that lower
and upper bounds for a large number of nodes have become equal: 4|4 for C, F, J and K, 5|5 for H and
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I, and 6|6 for D and L, as shown by the right graph in Figure 3. Finally, computing the eccentricity of
nodes A and B results in a total of 4 real eccentricity calculations to compute the complete eccentricity
distribution, which is a speedup of 3 compared to the naive algorithm, which would simply compute the
eccentricity for all 12 nodes in the graph.

To give a first idea of the performance of the algorithm on large graphs, Figure 4 shows the number of
iterations (vertical axis) that are needed to compute the eccentricity of all nodes with given eccentricity
value (horizontal axis) for a number of large graphs (for a description of the datasets, see Section 6.1). We
can clearly see that especially for the extreme values of the eccentricity distribution, very few iterations
are needed to compute all of these eccentricity values, whereas many more iterations are needed to derive
the values in between the extreme values.

Figure 4. Eccentricity values (horizontal axis) vs. number of iterations to compute the
eccentricity of all nodes with this eccentricity value (vertical axis).
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4.2. Pruning

In this subsection we introduce a pruning strategy, which is based on the following observation:

Observation 2 Assume that n > 2. For a given v ∈ V , all nodes w ∈ N(v) with deg(w) = 1 have
ε(w) = ε(v) + 1.

Node w is only connected to node v, and will thus need node v to reach every other node in the graph.
If node v can do this in ε(v) steps, then node w can do this is in exactly ε(v) + 1 steps. The restriction
n > 2 on the graph size excludes the case in which the graph consists of v and w only.

All interesting real-world graphs have more than two nodes, making Observation 2 applicable in our
algorithm, as suggested in [6]. For every node v ∈ V we can determine if v has neighbors w with
deg(w) = 1. If so, we can prune all but one of these neighbors, as their eccentricity will be equal,
because they all employ v to get to any other node. In Figure 2, node G has two neighbors with degree
one, namely J and K. According to Observation 2, the eccentricity values of these two nodes are equal to
ε(J) = ε(K) = ε(G) + 1 = 4. The same argument holds for nodes D and L with respect to node H. We
expect that Observation 2 can be applied quite often, as many of the graphs that are nowadays studied
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have a power law degree distribution [18], meaning that there are many nodes with a very low degree
(such as a degree of 1).

Observation 2 can be beneficial to our algorithm in two ways. First, when computing the eccentricity
of a single node, the pruned nodes can be ignored in the shortest path algorithm. Second, when the
eccentricity of a node v has been computed (line 11 of Algorithm 2), and this node has adjacent nodes w

with deg(w) = 1, then the eccentricity of these nodes w can be set to ε(w) = ε(v) + 1.

5. Sampling

Sampling is a technique in which a subset of the original dataset is evaluated in order to estimate (the
distribution of) characteristics of the (elements in the) complete dataset, with faster computation as one
of the main advantages. In this section we first discuss the use of sampling to determine the eccentricity
distribution in Section 5.1. We focus on situations where we not only want to estimate the distribution
of the eccentricity values, but also want to assess some parts of it (the extreme values) with higher
reliability. For that purpose we propose a hybrid technique to determine the eccentricity distribution by
that combines the exact approach from Section 4 with non-random sampling in Section 5.2. Finally in
Section 5.3 we consider an adaptation of an existing approximation approach from literature.

5.1. Random Node Selection

If we want to apply sampling to the naive algorithm for obtaining the eccentricity distribution, we
could choose to evaluate only a subset of size n′ of the original n nodes, and multiply the values of the
sampled eccentricity distribution by a factor n/n′ to get an idea of the real eccentricity distribution, a
process referred to as random node selection. Indeed, taking only a subset of the nodes would clearly
speed up the computation of the eccentricity distribution and realize the second type of speedup discussed
in Section 4. The trade-off here is that we no longer obtain the exact eccentricity distribution, but only
get an approximation. The main question is then whether or not this approximation is representative of
the original distribution. The effectiveness of sampling by random node selection with respect to various
graph properties has been demonstrated in [19]. Using similar arguments as presented in [20,21], the
absolute error can be assessed; indeed, when the chosen sampling subset is sufficiently large, the error is
effectively bounded.

However, there are situations where we are not interested in minimizing the absolute error, but in
minimizing the relative standard deviation (i.e., the absolute standard deviation divided by the mean)
of the distribution of a particular eccentricity value. This especially makes sense when each eccentricity
value is of equal importance, which might be the case when the extreme values of the distribution that are
realizing the radius and diameter are of relevance. Let us consider an example. The real exact eccentricity
distribution over all nodes in the ENRON dataset [22] is as follows:

ε(v) 7 8 9 10 11 12 13
f(ε(v)) 24 12 210 17 051 3 647 485 44 11



Algorithms 2013, 6 109

Figure 5 shows the relative standard deviation for each eccentricity value for different sample sizes
(1%, 2%, 5%, 10%, and 20%). For each sample size, we took 100 random samples to average the result.
We note that low relative standard deviations can be observed for the more common eccentricity values
(in this case, 8, 9 and 10). However, the standard deviation is quite large for the extreme values, meaning
that on many occasions, the sample did not correctly reflect the frequency of that particular eccentricity
value. Indeed, if only 11 out of 33,696 nodes (0.03%) have a particular eccentricity value (in this case, a
value of 13), we need a sample size of at least 100%/11 = 9% if we want to expect just one node with
that particular eccentricity value. Even with a large sample size of 20%, the standard deviation for the
extreme value of 13 is very high (0.63). For sample sizes of 1% or 2%, the eccentricity value of 13, that
exists in the real distribution, was never even found. Similar events were observed for our other datasets,
which is not surprising: the eccentricity distributions are tailed on the extremes, and these tails are likely
to be left out in a sample. So clearly sampling does not suffice when extreme values of the eccentricity
distribution have to be found, because such extreme values are simply too rare. However, for the more
common eccentricity values, errors are very low, even for small sample sizes.

Figure 5. Relative standard deviation (vertical axis) vs. eccentricity value (horizontal axis)
for different random sample sizes of the ENRON dataset.
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5.2. Hybrid Algorithm

From Figures 4,5 we can conclude that the exact approach is able to quickly derive the more extreme
values of the eccentricity distribution, whereas a sampling technique is able to approximate the values
in between the extremes with a very low error. Therefore we propose to combine the two approaches
in order to quickly converge to an accurate estimation of the eccentricity distribution using a hybrid
approach. This technique assumes that the eccentricity distribution has a somewhat unimodal shape,
which is the case for all real-world graphs that we have investigated.

The sampling window consists of bounding variables ` and r that denote between which eccentricity
values the algorithm is going to use the sampling technique. This window obviously depends on the
distribution itself, which is not known until the exact algorithm has finished. Therefore we propose to set
the value of ` and r dynamically, i.e., ` = minv∈V εL[v] and r = maxv∈V εU [v]. We furthermore change
the stopping criterion in line 9 of Algorithm 2 to “while |{w ∈ W | εL[w] = ` or εU [w] = r}| > 0 do”.
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This means that the algorithm should stop when there are no more candidates that are potentially part of
the center or the periphery of the graph. Note that these bounds apply to the candidate set W , but use
information about all nodes V , ensuring that at least the center and periphery are known before the exact
phase is terminated. When the exact algorithm has done its job, it can tighten ` and r even further, based
on the eccentricity of the remaining candidate nodes: ` = minv∈W εL[v]− 1 and r = maxv∈W εU [v] + 1.
After this, ` and r become static, and the rest of the eccentricity distribution will be derived by using
the sampling approach outlined in Algorithm 3. We will refer to the adjusted version of Algorithm 2 as
BOUNDINGECCENTRICITIESLR.

Algorithm 3 HYBRIDECCENTRICITIES

1: Input: Graph G(V, E) and sampling rate q

2: Output: Vector f , containing the eccentricity distribution of G, initialized to 0

3: ε′ ← BOUNDINGECCENTRICITIESLR(G, `, r)

4: Z ← ∅

5: for v ∈ V do
6: if ε′[v] 6= 0 and (ε′[v] ≤ ` or ε′[v] ≥ r) then
7: f [ε′[v]]← f [ε′[v]] + 1

8: else
9: Z ← Z ∪ {v}

10: end if
11: end for

12: for i← 1 to n · q do
13: v ← RANDOMFROM(Z)

14: ε[v]← ECCENTRICITY(v)

15: f [ε[v]]← f [ε[v]] + (1/q)

16: Z ← Z − {v}
17: end for

18: return f

Compared to Algorithm 2, the difference in terms of input is that the hybrid algorithm given in
Algorithm 3 takes as input both the original graph and a sampling rate q between 0 and 1, where q = 0.10

means that 10% of the nodes have to be sampled. In Section 6 we will perform experiments to determine
how q should be set. The result vector f holds the eccentricity distribution and is initialized based on the
exact eccentricity values ε′ for values outside the sampling window (line 7). Nodes for which the exact
eccentricity is not yet known are added to the candidate set Z (line 9). In lines 12–17, the eccentricity
of a total of n · q random nodes are calculated, and if this value lies within the specified window, the
frequency of this eccentricity value is increased proportionally to the sample size. Finally, the eccentricity
distribution f is returned.
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5.3. Neighborhood Approximation

State of the art algorithms for computing the neighborhood function have been introduced
in [12,14,23]. These algorithms can be adjusted as follows to also approximate the eccentricities. For
an integer h > 0, the normalized size of the neighborhood Nh(u) of a node u can be defined as:

Nh(u) =
1

n− 1
| {v ∈ V | 0 < d(u, v) ≤ h} |

If we determine the value of Nh(u) for increasing values of h, then the eccentricity ε(u) is the
smallest h such that the approximated value of Nh(u) is sufficiently close to 1 or does not change in
successive iterations.

We have used the Approximate Neighborhood Function (ANF) [14] algorithm by Palmer et al. in
order to approximate Nh(u) (by using the C source code available at the author’s website). Figure 6
shows the actual relative eccentricity distribution of the ENRON dataset, as well as the distribution that
was approximated using the ANF-based approach. As ANF gives an approximate result, we averaged
the result of 100 runs. We note that although the distribution shapes are very similar, ANF clearly
underestimates the eccentricity values. We furthermore mention that the obtained distribution is clearly
an approximation: a real eccentricity distribution would never have eccentricity values for which the
smallest and largest value differ more than a factor of 2. Similar results were observed for other datasets,
which leads us to believe that these approximation algorithms are not suitable for determining the
eccentricity distribution, especially because they fail at assessing the extreme values of the distribution.

Figure 6. Exact and approximated relative eccentricity distribution of the ENRON dataset.
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6. Experiments

In this section we will use a number of large real-world datasets to assess the performance of both
the exact algorithm from Section 4 and the hybrid algorithm from Section 5. The performance of our
algorithms is measured by comparing the number of iterations and thus is independent of the hardware
and software that were used for the implementation.



Algorithms 2013, 6 112

6.1. Datasets

We use a variety of network datasets, of which the name, type and source are listed in the first three
columns of Table 1. The set of graphs covers a broad range of network types, including citation networks,
collaboration networks, communication networks, peer-to-peer networks, protein-protein interaction
networks, router topology networks, social networks and webgraphs. We will only consider the largest
connected component of each graph, which is always the vast majority of the original graph. We also
mention that some directed graphs have been interpreted as if they were undirected, and that self-edges
and parallel edges are ignored. These factors may cause minor differences between the number of nodes
and edges that we present here, and the numbers presented in the source papers. In Table 1 we also
present for each dataset the exact average eccentricity ε(G), radius Γ(G), diameter ∆(G) and center and
periphery sizes |C(G)| and |D(G)|. For a more detailed description of these graphs, we refer the reader
to the source papers in which the datasets were introduced.

Looking at the exact eccentricity distributions that we were able to compute, we can conclude
that the distribution is not perfectly Gaussian as [32] suggests, but does appear to be unimodal. The
distribution appears to be somewhat “tailed”; a positive skew is noticeable in Figure 1, which shows the
relative eccentricity distribution of a number of graphs. The tail also becomes clear when comparing the
average eccentricity value ε(G) with the radius and diameter of the graph: for every dataset, the average
eccentricity is closer to the radius. For example, for the CIT-HEPTH dataset with radius 8 and diameter
15, the average eccentricity is equal to 10.14.

Table 1. Number of nodes, edges, average eccentricity, radius, diameter, center size and
periphery size of our datasets.

Dataset Type Source Nodes Edges ε(G) Γ(G) ∆(G) |C(G)| |D(G)|
YEAST protein [24] 1 846 4 406 13.28 11 19 48 4
CA-HEPTH collab. [25] 8 638 49 612 12.53 10 18 74 4
CA-HEPPH collab. [25] 11 204 235 238 9.40 7 13 12 17
DIP20090126 protein [26] 19 928 82 406 22.01 15 30 1 2
CA-CONDMAT collab. [13] 21 363 182 572 10.58 8 15 6 11
CIT-HEPTH citation [13] 27 400 704 042 10.14 8 15 4 4
ENRON commun. [22] 33 696 361 622 8.77 7 13 248 11
CIT-HEPPH citation [13] 34 401 841 568 9.18 7 14 1 2
SLASHDOT commun. [27] 51 083 243 780 11.66 9 17 7 3
P2P-GNUTELLA peer-to-peer [25] 62 561 295 756 8.94 7 11 55 118
FACEBOOK social [28] 63 392 1 633 772 9.96 8 15 168 7
EPINIONS social [29] 75 877 811 478 9.74 8 15 614 6
SOC-SLASHDOT social [30] 82 168 1 008 460 8.91 7 13 484 3
ITDK0304-RLINKS router [26] 190 914 1 215 220 17.09 14 26 155 7
WEB-STANFORD webgraph [30] 255 265 3 883 852 106.49 82 164 1 3
WEB-NOTREDAME webgraph [31] 325 729 2 180 216 27.76 23 46 12 172
DBLP20080824 collab. [26] 511 163 3 742 140 14.79 12 22 72 9
EU-2005 webgraph [26] 862 664 37 467 426 14.03 11 21 3 4
FLICKR social [28] 1 624 992 30 953 670 15.03 12 24 17 3
AS-SKITTER router [13] 1 694 616 22 188 418 21.22 16 31 5 2
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6.2. Exact Algorithm

In order to determine the performance of the exact algorithm (Algorithm 2), we can count the number
of shortest path computations that are needed to obtain the full distribution, and compare this value to
n, the number of iterations performed by the naive algorithm (Algorithm 1). The number of iterations
performed by our exact algorithm is displayed in the fourth column of Table 2, followed by the speedup
factor compared to the naive algorithm. We note that significant speedups can be observed in terms of
the number of iterations, especially for datasets for which the eccentricity distribution is wide, i.e., the
difference between the radius and diameter is very large. We believe that this is due to the fact that
the nodes that form the periphery of the network are sufficiently eccentric to have a large influence on
the more central nodes, so that their lower and upper eccentricity bounds can very quickly be fixed by
the bounding technique. We mention that the performance of our exact algorithm does not appear to be
directly related to the number of nodes. The reduction in terms of the number of nodes as a result of
our pruning strategy (see Section 4.2) is displayed in the column labeled “Pruned”, and is diverse, yet
sometimes very significant (anywhere between 1% and 34%).

To get a better idea of the performance of the algorithm, we propose to look at the quality of both the
lower and upper bounds as the exact algorithm iterates over the candidate nodes. For this we define the
measure of bound accuracy as the percentage of bound values that are correct at that iteration:

bound accuracy =
1

n
| {v ∈ V | εreal(v) = εbound(v)} |

Here, εreal(v) is the actual eccentricity value, and εbound(v) is the (lower or upper) bound that we
investigate. Figure 7 shows the lower and upper bound accuracy for a number of datasets. We can observe
that for each of the datasets, after just a few iterations, the lower bound gives a very accurate indication
of the actual eccentricity values. Apparently, the majority of the iterations are spent lowering the upper
bound, whereas the lower bound quickly reflects the actual eccentricity distribution. Thus, in order to get
an online estimate of the distribution, we could choose to consider only the lower bound, and obtain an
accuracy of around 90% after only a handful of iterations.

Figure 7. Bound accuracy vs. number of iterations for Algorithm 2.
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Table 2. Performance (number of pruned nodes, number of iterations and speedup) of the
exact algorithm (Algorithm 2) and the hybrid algorithm (Algorithm 3).

Dataset Nodes
Exact algorithm Hybrid algorithm

Pruned Iterations Speedup Exact Sampling Total Speedup
YEAST 1 846 399 213 8.7 104 483 587 3.1
CA-HEPTH 8 638 351 1 055 8.2 150 350 500 17.3
CA-HEPPH 11 204 282 1 588 7.1 57 264 321 34.9
DIP20090126 19 928 3 032 224 89.0 8 1321 1 329 15.0
CA-CONDMAT 21 363 353 3 339 6.4 73 388 461 46.3
CIT-HEPTH 27 400 140 8 104 3.4 57 444 501 54.7
ENRON 33 696 8 715 678 49.7 536 145 681 49.5
CIT-HEPPH 34 401 150 10 498 3.3 37 271 308 112
SLASHDOT 51 083 19,255 31 1648 24 180 204 250
P2P-GNUTELLA 62 561 16 413 21 109 3.0 8 575 177 8 752 7.1
FACEBOOK 63 392 1 075 11 185 5.7 780 168 948 66.9
EPINIONS 75 877 20 779 4302 17.6 1 308 75 1 383 54.9
SOC-SLASHDOT 82 168 14 848 1460 56.3 990 156 1 146 71.7
ITDK0304-RLINKS 190 914 16 434 10 830 17.6 312 960 1 272 150
WEB-STANFORD 255 265 10 350 9 28 363 8 1 198 1 206 212
WEB-NOTREDAME 325 729 141,178 143 2277 94 1 381 1 475 4528
DBLP20080824 511 163 22 579 42 273 12.1 150 355 505 1012
EU-2005 862 664 26 507 59 751 14.4 71 1 630 1 701 507
FLICKR 1 624 992 553 242 4 810 338 200 1 618 1 818 932
AS-SKITTER 1 694 616 114 803 42 996 39.4 14 308 322 5502

6.3. Hybrid Algorithm

In our second set of experiments, we have evaluated the performance of the hybrid approach that
incorporates sampling for the non-extreme values of the distribution (Algorithm 3). We will verify the
quality of the obtained distribution by using the measure of distribution accuracy, defined as one minus
the sum of the absolute difference between the eccentricity counts of real relative eccentricity distribution
F (x) and the estimated distribution F̂ (x):

distribution accuracy = 1−
∆(G)∑

x=Γ(G)

|F (x)− F̂ (x)|

A distribution accuracy value of 1 indicates a perfect match between the actual and estimated relative
eccentricity distributions. We note that for our hybrid approach, the error outside the sampling window is
always equal to 0. As a result of the exact approach, we have access to the real eccentricity distribution.
Therefore we can investigate the number of iterations that are needed to obtain an accuracy of 0.95 in
order to determine how we should set the sampling rate q. The sixth column of Table 2 shows the number
of iterations needed to (exactly) compute the extreme values (center and periphery), which together with
the column titled “Sampling” (averaged over 10 runs) results in the value denoted in column “Total”,
which shows the total number of iterations needed to obtain an accuracy of 0.95. Apparently, for large
graphs (over 100,000 nodes), a sampling rate of q = 0.10 is more than sufficient to accurately derive the
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eccentricity distribution. An alternative would be to change the number of samples to a constant number,
which would ensure that the number of eccentricity calculations does not exceed some fixed maximum.

An advantage of the exact approach is obviously that the nodes that have a certain eccentricity value
can be pointed out exactly, whereas this is only possible for the extreme values in case of the hybrid
approach. The hybrid approach does however improve upon the exact algorithm in terms of computation
time (number of iterations) in many cases, especially for the larger graphs (over 100,000 nodes) with
relatively tight eccentricity distributions, as can be seen in the rightmost column of Table 2. A bold value
indicates the largest of the two speedups when comparing the hybrid approach and the exact approach.
The exact approach performs better than the hybrid approach in a few cases, which we believe is due to
the fact that the sampling phase should not have a too large window when the number of nodes is very
small, because then a large number of iterations would be needed to obtain a representative sample of the
distribution. This is especially the case for WEB-STANFORD, which has a very long tail. For this dataset,
the exact algorithm performs really well, whereas the hybrid approach needs quite a few more iterations.
We mention that, analogously to the performance of the exact algorithm, the performance of our hybrid
algorithm does not appear to be correlated with the number of nodes.

From the experiments in this section we can generally conclude that we have developed a flexible
approach for determining the eccentricity distribution of a large graph with high accuracy, while
guaranteeing an exact result on the extreme values of the distribution (center and periphery of the graph).

7. Conclusions

In this paper we have studied means of computing the eccentricity of all nodes in a graph, resulting
in the (relative) eccentricity distribution of the graph. It turns out that the eccentricity distribution of
real-world graphs has an unimodal shape and tends to have a positive tail. We have shown how large
speedups compared to the traditional method can be achieved by considering lower and upper bounds on
the eccentricity, and by applying a pruning strategy. Even when the exact algorithm does not immediately
give a satisfying result, the lower bounds proposed in this paper can serve as a reliable online estimate
of the distribution as a whole.

We have also investigated the use of sampling as a means of computing the eccentricity distribution.
The resulting hybrid algorithm uses the exact approach to derive the extreme values of the distribution
and a sampling technique within a specific sampling window to accurately assess the values in between
the extreme values. This results in an overall approach that is able to accurately determine the eccentricity
distribution with only a fraction of the number of computations required by the naive approach.

In future work we would like to investigate the extent to which eccentricity and other centrality
measures are related, and when the eccentricity can be used as a meaningful centrality measure. We
are also interested in how the eccentricity distribution of a graph changes over time as the graph is
evolving through the addition and deletion of nodes and edges.
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