
Computing the edit distance of a regular language1

Stavros Konstantinidis

Department of Mathematics and Computing Science
Saint Mary’s University

Halifax, Nova Scotia B3H 3C3, Canada
s.konstantinidis@smu.ca

Abstract. The edit distance (or Levenshtein distance) between two words is the smallest number
of substitutions, insertions, and deletions of symbols that can be used to transform one of the words
into the other. In this paper we consider the problem of computing the edit distance of a regular
language (also known as constraint system), that is, the set of words accepted by a given finite
automaton. This quantity is the smallest edit distance between any pair of distinct words of the
language. We show that the problem is of polynomial time complexity. We distinguish two cases
depending on whether the given automaton is deterministic or nondeterministic. In the latter case
the time complexity is higher. Incidentally, we also obtain an upper bound on the edit distance of
a regular language in terms of the automaton accepting the language.

Key words: algorithm, automaton, constraint system, edit distance, Levenshtein distance, regular
language.

1 Introduction

The problem of measuring the distance, or generally the difference, between words and languages
(sets of words) is important in various applications of information processing such as error control
in data communications, bio-informatics, speech recognition and spelling correction. The languages
of interest are usually regular languages (also called constraint systems), that is, languages defined
by finite automata (edge-labeled finite state graphs), but they could be non regular as well. Well-
known measures of the difference between two words are the edit (or Levenshtein) distance and the
Hamming distance. The edit distance between two words is the smallest number of substitutions,
insertions, and deletions of letters required to transform one of the words to the other. Typical
problems pertaining to difference measures for words and languages are the following.

1. The word difference problem: Compute the edit distance between two given words. The
problem can be solved using a dynamic programming algorithm – see [10], for instance.

2. The error-correction problem: Given a language of valid (or correct) words, correct a given
word to some word of the language that is the least different to the given word. This problem
presupposes an agreed measure of word difference such as the edit distance. For (arbitrary)
regular languages and for the measure of edit distance the problem was first addressed in
[12]. In [7] it is addressed for cases where the language in question is not even regular. In

1Research supported by grant R220259 of the Natural Sciences and Engineering Research Council of Canada.

1

[6] and [2] the problem is considered for regular languages and for general word difference
measures defined by weighted automata. In coding theory of course, the problem has been
addressed extensively for various instances of the word difference measure – this measure is
usually implicitly specified by the communications channel that is capable of changing words.

3. The error-detection capability problem: Compute the distance (also referred to as self-distance
or inner distance) of a given language. This quantity is simply the minimum distance between
any pair of distinct words in the language. When the language in question is viewed as a
code, the value of the distance represents the maximum number of errors that the code can
detect. For example, it is well known that a block code (set of equal length words) can detect
up to m bit substitution errors if and only if the Hamming distance of the code is greater
than m. A similar observation exists for the case of the edit distance [4]. In [3], the authors
show how to compute the Hamming distance of a given regular language.

In this work, we address the third problem for the case of the edit distance of a regular language.
In this case, the value of the edit distance represents the maximum number m, say, of substitution,
insertion and deletion errors that can be detected in the words of the language. This means that
no word of the language can be transformed to another different word of the language if up to m
errors are used.

The paper is organized as follows. In the next section we provide the basic notation about
words, automata, and edit strings. An edit string is a special word whose symbols are called edit
operations. It has been used to define formally the edit distance between ordinary words. Here we
also consider languages and finite automata of edit strings as tools for reasoning about the distance
of a language. In Section 3, we obtain a few lemmata that will be used to prove the correctness
of the main result of the paper. We believe that these lemmata might be of interest in their own
right. For example, we show an infinitely-often tight upper bound on the edit distance of a regular
language, which depends on the automaton accepting the language. Section 4, contains the main
result of the paper, that is, a polynomial time algorithm to compute the edit distance of a given
regular language. The time complexity of the algorithm is higher when the language is given via
a nondeterministic automaton. Section 5 contains a few concluding remarks and proposes possible
directions for future research.

2 Basic background and notation

2.1 Cardinality, alphabet, word, language

For any set S, we use the expression |S| to denote the cardinality of the set S. An alphabet is a
finite nonempty set ∆ whose elements are called symbols. A word or string (over ∆) is a finite
sequence a1 · · · an such that each ai is in ∆. The length of a word w is denoted by |w|. The empty
word is the word of length zero. For any two words w1, w2 the expression w1w2 denotes the word
that obtains by concatenating w1 and w2. A language is a set of words. The language of all words
is denoted by ∆∗.

Notational convention.

A word w of length n can be viewed as a mapping from the index set {1, . . . , n} into ∆ such that
w(i) is the symbol of w at position i. If i > |w|, we agree to write that w(i) = ⊥, where ⊥ is a

2

symbol not in the alphabet ∆. With this convention, it follows that any two words u and v are
different if and only if u(i) 6= v(i) for some positive integer i.

2.2 Finite automaton, computation, diameter, regular language

A (nondeterministic) finite automaton is a quintuple A = (∆, S, s0, F, T) such that ∆ is the alpha-
bet, S is the (finite and nonempty) set of states, s0 is the start state, F is the set of final states,
and T is the set of transitions, which we denote with expressions of the form paq such that p, q
are states and a is a symbol in ∆. The automaton A is said to be deterministic if, for any two
transitions of the form paq1, paq2, it is the case that q1 = q2. A computation of A is denoted by
an expression of the form p0a1p1 · · · anpn, for some n ≥ 0, where each pi−1aipi is a transition of
A. When A is viewed as a directed edge-labeled graph, a computation is simply a labeled path
of A. The diameter of A, denoted by diam(A), is the largest number of states in a computation
p0a1p1 · · · anpn for which p0 is the start state and no state occurs more than once, that is, i 6= j
implies pi 6= pj . Obviously the following inequalities about diam(A) hold:

1 ≤ diam(A) ≤ |S|.

If, in the computation p0a1p1 · · · anpn, the state p0 is the start state and pn is a final state then the
word a1 · · · an is accepted by A. The language accepted by the automaton A is denoted by L(A).
The size of A, denoted with |A|, is the quantity |S| + |T |, which is the number of states plus the
number of transitions. A language L is called regular, or a constraint system, if there is a finite
automaton accepting L [5, 13]. If A and A′ are two finite automata then the expression

A ∩ A′

denotes the finite automaton that obtains using the standard cross product construction such that
L(A ∩ A′) = L(A) ∩ L(A′) – see [13]. Moreover, |A ∩ A′| = O(|A||A′|).

2.3 Ordinary word, edit string, weight, edit distance

In this paper we shall use a fixed, but arbitrary, alphabet Σ of ordinary symbols, and the alphabet
E of the (basic) edit operations that depends on Σ. The empty word over Σ is denoted by λ,
that is, λw = wλ = w, for all words w. The alphabet E consists of all symbols (x/y) such that
x, y ∈ Σ ∪ {λ} and at least one of x and y is in Σ. If (x/y) is in E and x is not equal to y then
we call (x/y) an error [1]. We write (λ/λ) for the empty word over the alphabet E. We note
that λ is used as a formal symbol in the elements of E. For example, if a and b are in Σ then
(a/λ)(a/b) 6= (a/a)(λ/b). The elements of E∗ are called edit strings [1], or alignments [6]. The
input and output parts of an edit string h = (x1/y1) · · · (xn/yn) are the words (over Σ) x1 · · ·xn

and y1 · · · yn, respectively. We write inp(h) for the input part and out(h) for the output part of h.
The expression weight(h) denotes the number of errors in h.

The edit (or Levenshtein) distance between two words u and v, denoted by dist(u, v), is the
smallest number of errors (substitutions, insertions and deletions of symbols) that can transform u
to v. More formally,

dist(u, v) = min{weight(h) | h ∈ E∗, inp(h) = u, out(h) = v}.

3

For example, for Σ = {a, b}, we have that dist(ababa, babbb) = 3 and the edit string

h = (a/λ)(b/b)(a/a)(b/b)(a/b)(λ/b)

is a minimum weight edit string that transforms ababa to babbb. In words, h says that we can use
the deletion (a/λ), the substitution (a/b), and the insertion (λ/b) to transform ababa to babbb. We
note the following fact from [4], for all words x, u, v, y:

dist(xuy, xvy) = dist(u, v).

If L is a language containing at least two words then the edit distance of L is

dist(L) = min{dist(u, v) | u, v ∈ L and u 6= v}.

Definition 1 Let L be any set of at least two words. We say that an edit string h realizes the edit
distance of L if weight(h) = dist(L) and inp(h) 6= out(h) and inp(h), out(h) ∈ L.

3 Intermediate lemmata

In this section we obtain a few lemmata that will be used to prove the correctness of the main result
of the paper. We believe that these lemmata might be of interest in their own right. Moreover the
following two paragraphs provide useful technical tools.

Argument used in proofs.

In the proofs of the various statements we shall use the following argument about an automaton A
with s states. If P = p0a1p1 · · · akpk is a computation of A and the number of states k+1 appearing
in P exceeds s, or diam(A) when p0 is the start state, then at least two states pi and pj , with i < j,
in P must be equal. Then we can define a shorter computation P ′ of A that also starts with p0 and
ends with pk, by removing the part piai · · · pj−1aj of P . Moreover, for the words w1 = a1 · · · ai−1,
w = ai · · · aj and w2 = aj+1 · · · ak we have that w is nonempty and both of the words w1ww2 and
w1w2 are formed in computations of A. Of course, this argument is well-known, but we include it
here for completeness.

The automaton A ∩E A.

Given two automata A, A′ and a subset D of E, the finite automaton A ∩D A′ [2] accepts all edit
strings h that transform a word of L(A) into a word of L(A′) using only the edit operations in D.
Moreover, we note that |A ∩D A′| = O(|A||A′|). In our considerations in particular, we shall use
the finite automaton A ∩E A such that

L(A ∩E A) = {h ∈ E∗ | inp(h), out(h) ∈ L(A)}.

The states of A ∩E A are pairs (p, q), where p and q are states of A. Hence, if A has s states then
A ∩E A has at most s2 states.

Lemma 1 Let A be a deterministic finite automaton accepting at least two words. There are
distinct words u, v in L(A) and an index j ≤ diam(A) such that u(j) 6= v(j) and dist(L(A)) =
dist(u, v).

4

Proof. Suppose that dist(L(A)) = dist(u, v) for some distinct words u, v in L(A). We choose the
pair (u, v) to be minimal as follows: if (u1, v1) is another such pair then |u| + |v| ≤ |u1| + |v1|.
Let j be the smallest index for which u(j) 6= v(j) and assume that j > diam(A). We show that
this assumption leads to a contradiction. First note that j = |z| + 1, where the word z is the
common prefix of length j − 1 of u and v. Let u′ and v′ be the words defined by u = zu′ and
v = zv′. Then u′ 6= v′ and dist(u, v) = dist(u′, v′). As |z| ≥ diam(A), the path of A on which
the word z is formed, which starts from the start state, contains more than diam(A) states. This
implies that the path contains a repeated state and, therefore, there are words w1, w, w2 such that
|w| > 0 and z = w1ww2 and the words w1w2u

′ and w1w2v
′ are distinct and in L(A). Moreover,

dist(w1w2u
′, w1w2v

′) = dist(u′, v′) = dist(L(A)). This, however, contradicts the choice of (u, v)
being minimal. Hence, j ≤ diam(A). 2

Unfortunately, the above proof cannot be used if the automaton A is nondeterministic. This is
because there can be two different paths of A on which the prefix z is formed and, therefore, the
pairs of repeated states in these paths are not identical, in general. Thus, the fact that w1ww2u

′

and w1ww2v
′ are in L(A) does not imply that also w1w2u

′ and w1w2v
′ are in L(A).

Lemma 2 Let A be a (nondeterministic) finite automaton accepting at least two words. There are
distinct words u, v in L(A) and an index j ≤ s2 such that u(j) 6= v(j) and dist(L(A)) = dist(u, v),
where s is the number of states in A.

Proof. For the sake of contradiction, assume that for all pairs of distinct words u, v in L(A) with
dist(u, v) = dist(L(A)) it is the case that, for any index j, u(j) 6= v(j) implies j > s2. For any edit
string f for which the input and output parts are different, we denote with if the smallest value
of an index i for which (inp(f))(i) 6= (out(f))(i). Now let h be an edit string that realizes the edit
distance of L(A). Moreover, h is chosen to be of minimal length |h|. By the assumption, it is the
case that ih > s2. There are distinct words x and y, and alphabet symbols a1, . . . , aih−1 such that

inp(h) = a1 · · · aih−1x and out(h) = a1 · · · aih−1y

and dist(L(A)) = dist(x, y) and x(1) 6= y(1). Let g be an edit string that realizes the edit distance
of {x, y}. Define the edit string

h′ = (a1/a1) · · · (aih−1/aih−1) g.

One can verify that h′ realizes the edit distance of L(A). Now the prefix (a1/a1) · · · (aih−1/aih−1)
of h′ appears in some computation, call it P , of A ∩E A. This computation involves ih states and,
as ih > s2, there is a repeated state in P . This implies that there is a shorter computation, say P ′,
from the first to the last state of P and, therefore, there is an edit string h′′ that is shorter than h
and realizes the edit distance of L(A). But this contradicts the assumption about the minimality
of h. 2

Thus, when the automaton A is nondeterministic the upper bound on the index j is larger.
In the next section, in the context of discussing the complexity of the algorithm for computing
the edit distance, we demonstrate that the two upper bounds on the index j cannot be improved
asymptotically, at least.

5

ss 1 n-1· · ·
a a a

a

Figure 1: The finite automaton Cn. The start state is ss. In pictures
for automata, final states are indicated with double lines.

In the next lemma we show that the edit distance of a regular language is upper bounded by
the diameter of any automaton accepting the language. This upper bound cannot be improved, in
general. For example, in Figure 3, we show a sequence of automata (Cn) such that diam(Cn−1) <
diam(Cn) and L(Cn) consists of the words λ, an, a2n, Moreover, dist(L(Cn)) = diam(Cn) = n.

Lemma 3 For any finite automaton A accepting at least two words, dist(L(A)) ≤ diam(A).

Proof. Let (u1, u2, . . .) be an ordering of L(A) such that |ui| ≤ |ui+1| for all i. The word u2 can be
written as u′

1z, for some words u′

1 and z with |u′

1| = |u1|. Obviously,

dist(u1, u
′

1z) ≤ dist(u1, u
′

1) + dist(u′

1, u
′

1z) ≤ |u′

1| + |z|.

Hence, dist(L(A)) ≤ |u2|. If |u2| < diam(A), the statement is true. So assume that |u2| ≥ diam(A).
Then there is an accepting computation of A for u2 of the form

P = p0a1p1 · · · aipi · · · pk−1akpk · · · anpn

such that n+1 > diam(A) and k is the first index for which pk = pi, for some i < k. Then there are
words w1, w, w2 such that w is nonempty, |w1w| = k, w1ww2 = u2 and w1w2 is in L(A) (in fact w1w2

must be equal to u1). Moreover, it follows that dist(L(A)) ≤ |w|. Now, as all states p0, . . . , pk−1

are distinct and p0 is the start state, we have that k ≤ diam(A). This implies |w| ≤ diam(A) and,
therefore, dist(L(A)) ≤ diam(A) as required. 2

Next we show the existence of a polynomial size automaton accepting all edit strings h for which
the input part of h and the output part of h differ at position k, for some given positive integer k.
In the expression for the size of this automaton we show explicitly the contribution of the size |Σ|
of the alphabet Σ because the alphabet is not related to the given parameter k in any way.

Lemma 4 For any positive integer k, we can construct a finite automaton Tk of size Θ(k2|Σ|2 +
k|Σ|3) such that Tk accepts all edit strings h for which (inp(h))(k) 6= (out(h))(k).

Proof. The states of Tk and their associated meanings are defined as follows.

1. [i, j] for 0 ≤ i < k and 0 ≤ j < k: means that the automaton has seen exactly i input symbols
and exactly j output symbols.

2. [ak, j] for a ∈ Σ and 0 ≤ j < k: means that the automaton has seen at least k input symbols
and exactly j output symbols, and the k-th input symbol was a.

6

3. [i, ak] for a ∈ Σ and 0 ≤ i < k: means that the automaton has seen at least k output symbols
and exactly i input symbols, and the k-th output symbol was a.

4. [k, k]: means that the automaton has seen at least k input and at least k output symbols and
the k-th input symbol was different from the k-th output symbol.

The start state is [0, 0] and the final states are [ak, j], [i, ak], and [k, k] for all i, j < k and a ∈ Σ. Of
course Tk accepts an edit string h if and only if Tk starts at state [0, 0] and ends its computation on
h at one of the final states. This implies that h is accepted if and only if (inp(h))(k) 6= (out(h))(k),
as required. The correctness of the construction is established by defining the transitions of Tk such
that the meaning of the states is preserved. This is done next. It is assumed that 0 ≤ i, j ≤ k − 1
and a, b, c ∈ Σ.

1. [i, j](λ/a)[i, j + 1], if j < k − 1. This defines k(k − 1)|Σ| transitions.

2. [i, j](λ/a)[i, ak], if j = k − 1. This defines k|Σ| transitions.

3. [i, j](a/λ)[i + 1, j], if i < k − 1. This defines k(k − 1)|Σ| transitions.

4. [i, j](a/λ)[ak, j], if i = k − 1. This defines k|Σ| transitions.

5. [i, j](a/b)[i + 1, j + 1], if i, j < k − 1. This defines (k − 1)2|Σ|2 transitions.

6. [i, j](a/b)[ak, j + 1], if i = k − 1 and j < k − 1. This defines (k − 1)|Σ|2 transitions.

7. [i, j](a/b)[i + 1, bk], if i < k − 1 and j = k − 1. This defines (k − 1)|Σ|2 transitions.

8. [i, j](a/b)[k, k], if i = j = k − 1 and a 6= b. This defines |Σ|2 − |Σ| transitions.

9. [k, k](x/y)[k, k] with x, y ∈ Σ ∪ {λ} and xy 6= λ. This defines |Σ|2 + 2|Σ| transitions.

10. [ak, j](b/λ)[ak, j]. This defines k|Σ|2 transitions.

11. [ak, j](b/c)[ak, j + 1], if j < k − 1. This defines (k − 1)|Σ|3 transitions.

12. [ak, j](b/c)[k, k], if j = k − 1 and a 6= c. This defines |Σ|2(|Σ| − 1) transitions.

13. [ak, j](λ/b)[ak, j + 1], if j < k − 1. This defines (k − 1)|Σ|2 transitions.

14. [ak, j](λ/b)[k, k], if j = k − 1 and a 6= b. This defines |Σ|2(|Σ| − 1) transitions.

15. [i, ak](λ/b)[i, ak]. This defines k|Σ|2 transitions.

16. [i, ak](b/c)[i + 1, ak], if i < k − 1. This defines (k − 1)|Σ|3 transitions.

17. [i, ak](b/c)[k, k], if i = k − 1 and a 6= b. This defines |Σ|2(|Σ| − 1) transitions.

18. [i, ak](b/λ)[i + 1, ak], if i < k − 1. This defines (k − 1)|Σ|2 transitions.

19. [i, ak](b/λ)[k, k], if i = k − 1 and a 6= b. This defines |Σ|2(|Σ| − 1) transitions.

The claim about the size of Tk follows if one calculates the total number of transitions – this number
exceeds the number of states of Tk. 2

7

4 Computing the distance in polynomial time

In this section we present the main result of the paper, that is, a polynomial time algorithm to
compute the edit distance of a given regular language. The time complexity of the algorithm is
higher when the language is given via a nondeterministic automaton.

In the first place one could approach the problem as follows. Let A be the given finite automaton,
and let B be the automaton A ∩E A (see Section 3) accepting all edit strings for which the input
and output parts are in L(A). If we are able to construct an automaton T accepting all edit strings
for which the input and output parts are distinct, then we can compute the automaton B ∩ T that
accepts all edit strings for which the input and output parts are distinct and in L(A). When B ∩T
is treated as a weighted graph such that the weight of a transition is either 0 or 1, and it is 1 when
the label of the transition is an error, then the edit distance of L(A) is simply the weight of the
shortest path in B ∩ T . The question here is whether the required automaton T exists. We believe
that T does not exist. For the sake of completeness, however, we note that one can construct a
finite-state transducer T realizing all pairs of words (u, v) with u 6= v, but when viewed as an
automaton, T does not accept all possible edit strings h whose parts are distinct as desired.

Although the idea described in the preceding paragraph fails, we can build on that idea using
the results of the previous section and arrive at the desired algorithm. In the algorithm we shall
use the following result from [3].

Lemma 5 There is a linear time Θ(|G|) algorithm that takes as input a weighted graph G whose
weights on the edges are in {0, 1}, and a vertex p of G, and computes, for each vertex of G, the
length of the shortest path to the vertex from p.

Theorem 1 The following problem is computable in polynomial time.

Input: A (deterministic or nondeterministic) finite automaton A accepting at least two words.

Output: The edit distance dist(L(A)).

Proof. Let q(A) be the quantity diam(A) or s2, depending on whether A is deterministic or not,
where s is the number of states in A. We have the following algorithm.

Input = some finite automaton A;
dist = diam(A);
B = A ∩E A;
m = q(A);
for each j = 1, . . . , m
{

G = B ∩ Tj ;
weight = ShortestPathWeight(G);
if (weight < dist) dist = weight;

}
Output = dist;

The function call ShortestPathWeight(G) treats the automaton G as a weighted graph and com-
putes the shortest path to every state from the start state. The weight of a transition p(x/y)q of

8

ss 1 n-1· · ·
a a a

b

Figure 2: The deterministic finite automaton An.

G, where (x/y) is an edit operation and p, q are states, is 1 if x 6= y, or 0 if x = y. The algorithm
initializes dist to the maximum possible value of dist(L(A)) – see Lemma 3 – and then updates dist
according to the equation

dist(L(A)) = min{weight(h) | h ∈ L(A ∩E A) ∩ L(Tj), for some j ≤ q(A)}.

By the lemmata of Section 3, we know that dist(L(A)) = dist(u, v) for some words u, v in L(A)
with u(j) 6= v(j) and j ≤ q(A). Equivalently, dist(L(A)) is equal to weight(h) for some smallest
weight edit string h such that h ∈ L(A ∩E A) and (inp(h))(j) 6= (out(h))(j), for some j ≤ q(A).
This establishes that the algorithm operates correctly.

We turn now to the time complexity of the algorithm. The function call diam(A) that returns
the diameter of A operates in time O(|A|) using a plain depth first search algorithm that computes,
for each state, the length of the shortest (unweighted) path to the state from the start state. The
automaton B can be computed in time O(|A|2) and the automaton G in time O(|A|2|Tj |). By
Lemma 5, the function ShortestPathWeight(G) operates in time O(|A|2|Tj |). Hence, using also
Lemma 4, the dominating term in the time complexity is

m
∑

j=1

|A|2(j2|Σ|2 + j|Σ|3) = O
(

|A|2|Σ|2q(|A|)2(q(A) + |Σ|)
)

.

2

The question that arises here is whether the quantity m = q(A), which is the upper bound of the
loop of the algorithm, can be reduced asymptotically. In turn, the question is whether the upper
bounds on the index j that appear in the lemmata of Section 3 can be improved asymptotically.
Next we show that this is not possible. Let us establish the following notation for a finite automaton
A accepting at least two words:

• MinInd(A) denotes the smallest value of an index j for which there are words u, v in L(A)
such that u(j) 6= v(j) and dist(u, v) = dist(L(A)).

The upper bound diam(A) of Lemma 1 on the index MinInd(A) cannot be improved. More
specifically there is a sequence (An) of deterministic finite automata such that diam(An−1) <
diam(An) and, for all n ≥ 2, MinInd(An) = diam(An) = n. The automaton An is shown in
Figure 2.

Similarly, the upper bound s2 of Lemma 2 on the index MinInd(A) cannot be improved asymp-
totically. More specifically, there is a sequence (Bn) of nondeterministic finite automata such that
sn−1 < sn, where sn is the number of states in Bn, and MinInd(Bn) = Θ(s2

n), as n → ∞. The

9

ss

0′ 1′ n′

0 1 n-2

fs

· · ·

· · ·

a

a

b

b

b b

b b

c

b

b

Figure 3: The nondeterministic finite automaton Bn.

automaton Bn is shown in Figure 3. It should be clear that sn = 2n + 2 and the language L(Bn)
consists of all words of the forms abi(n−1) and abn+jnc, for all i, j ≥ 0. Moreover, for n ≥ 3,
dist(L(Bn)) = 1 and dist(abi(n−1), ab(j+1)nc) = 1 if and only if i(n − 1) = (j + 1)n if and only if
i = mn and j + 1 = m(n − 1) for some m ≥ 1. Then, for m = 1, the words abn2

−n and abn2
−nc

differ at position n2 − n + 2, which implies that MinInd(Bn) = n2 − n + 2 = Θ(s2
n).

5 Discussion

We have shown why the problem of computing the edit distance of a given regular language is
of polynomial time complexity. We have restricted our attention to the case of the unweighted
edit distance because this case is closely related to the concept of error detection as discussed in
the introduction. However, the methods can be applied even in the case where the edit distance
is weighted such that the weights on the errors are positive numbers. In this case, however, the
function call ShortestPathWeight(G) in the algorithm of Theorem 1 has to invoke Dijkstra’s algo-
rithm instead of the algorithm of Lemma 5. This change would increase the time complexity of the
algorithm – which of course would remain polynomial.

The first question that arises is whether the time complexity of the algorithms can be improved
asymptotically. It appears that this is possible for certain special cases at least. For example, when
the given automaton A is a trellis [11], that is, an automaton with a single final state accepting only
words of the same length n, then n = diam(A) − 1 and in typical applications n is much smaller
than |A|.

The next question that arises is whether the results extend to the case of other difference
measures for words, in particular, those defined by weighted automata [6, 2]. In this case, the
edit strings that one can use to transform words are restricted to only those permitted by the
weighted automaton. We note that, for the case of the plain edit distance considered here, two
of the arguments that were used in the proofs are (i) dist(xuy, xvy) = dist(u, v), for all words
x, u, v, y; and (ii) if h is any edit string that is used to transform words then also the edit string
(a1/a1) · · · (an/an)h is permitted for transforming words.

10

Acknowledgements

The author is grateful to Nicolae Sântean for providing fruitful comments on this paper.

References

[1] L. Kari, S. Konstantinidis. Descriptional complexity of error/edit systems. In: J. Dassow, M.
Hoeberechts, H. Jürgensen, D. Wotschke (eds), Pre-Proceedings of Descriptional Complexity of
Formal Systems 2002, London, Canada, 133–147. To appear in J. Automata, Languages and
Combinatorics 9 (2004).

[2] L. Kari, S. Konstantinidis, S. Perron, G. Wozniak, J. Xu, Finite-state error/edit-systems
and difference-measures for languages and words. Tech. Report 2003-01, Dept. Math. and
Computing Sci., Saint Mary’s University, Canada, 2003, pp 10. Available electronically at
http://www.stmarys.ca/academic/science/compsci/

[3] L. Kari, S. Konstantinidis, S. Perron, G. Wozniak, J. Xu. Computing the Hamming distance of
a regular language in quadratic time. WSEAS Transactions on Information Science & Appli-
cations 1 (2004) 445–449.

[4] V. I. Levenshtein. Binary codes capable of correcting deletions, insertions, and reversals. Soviet
Physics Dokl. 10 (1966), 707–710.

[5] B. H. Marcus, R. M. Roth, P. H. Siegel. Constrained systems and coding for recording channels.
In [8], pp. 1635–1764.

[6] Mehryar Mohri. Edit-distance of weighted automata: general definitions and algorithms. Inter-
national Journal of Foundations of Computer Science 14(6) (2003), 957-982.

[7] G. Pighizzini. How hard is computing the edit distance? Information and Computation 165

(2001), 1–13.

[8] V. S. Pless, W. C. Huffman (eds). Handbook of Coding Theory, Elsevier, 1998.

[9] G. Rozenberg, A. Salomaa (eds). Handbook of Formal Languages, vol. I. Springer, Berlin, 1997.

[10] D. Sankoff, J. Kruskal (eds). Time Warps, String Edits, and Macromolecules: The Theory and
Practice of Sequence Comparison. CSLI Publications, 1999.

[11] A. Vardy. Trellis structure of codes. In [8], pp. 1989–2117.

[12] R. A. Wagner. Order-n correction for regular languages. Communications of the ACM 17(5)
(1974), 265–268.

[13] S. Yu. Regular languages. In [9], pp 41–110.

11

