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Abstract— A numerical method for homogenization of
Hamilton-Jacobi equations is presented and implemented as
an L∞ calculus of variations problem. Solutions are found by
solving a nonlinear convex optimization problem. The numeri-
cal method is shown to be convergent and error estimates are
provided. Several examples are worked in detail, including the
cases of non-strictly convex Hamiltonians and Hamiltonians for
which the cell problem has no solution.

I. I NTRODUCTION

Given the HamiltonianH(p, x) which is smooth, convex
in p, and periodic in the second variablex, we consider, for
a givenP ∈ Rn, periodic solutions of the Hamilton-Jacobi
equation

H(P +Dxu, x) = H̄(P ). (HB)

For each fixedP the problem (HB) can be regarded as a
nonlinear eigenvalue problem for the function functionu(x)
and the number̄H(P ), the effective Hamiltonian.

In this paper, we reduce the problem of finding the
(approximate) effective Hamiltonian to a finite dimensional
convex optimization problem, which may solved numerically
using standard methods.

Numerical computations of effective Hamiltonians have
been done by [EMS95], [KBM01], with applications to front
propagation and combustion, and in [Qia01], both of them
using partial differential equations methods.

In this work we circumvent the difficulties of solving (HB)
by computingH̄(P ) without finding the solutionu. Our
methods are based on the representation formula

H̄(P ) = inf
φ∈C1

per

sup
x
H(P +Dxφ, x) (1)

due, for strictly convex Hamiltonians, to [CIPP98].
In this paper we always assume thatH to be convex

but not necessarily strictly convex. This assumption has
implications for the existence and smoothness of solutions
of (HB). If strict convexity fails, solutions may (see§IV-B)
or may not (see§IV-C) exist, and the degree of smoothness
will depend on the Hamiltonian in question.

Computing the effective Hamiltonian is relevant in several
problems, as we describe briefly next.

In homogenization problems[LPV88], [Con95], if wε

solves
−wεt +H(Dxw

ε,
x

ε
) = 0,

then asε goes to0, the solutionwε converges tow0 which
is a solution of the limiting problem

−w0
t + H̄(Dxw

0) = 0.
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In the study oflong time limits of viscosity solutions of
Hamilton-Jacobi equations

−wt +H(P +Dxw, x) = 0,

the differencew(x, t) − H̄(P ) t converges ast → −∞ to
a stationary solution of (HB) [Fat98b], [BS00]. See also
[AI01], [CDI01].

In classical mechanicssmooth solutionsu of (HB) yield a
canonical change of coordinatesX(p, x) andP (p, x): (p =
P +Dxu, X = x+DPu), which simplifies the Hamiltonian
dynamics

ẋ = −DpH(p, x) ṗ = DxH(p, x) (2)

into the trivial dynamics

Ṗ = 0 Ẋ = −DP H̄(P ).

In Aubry-Mather theory[Mat89], [Mat91], one looks for
probability measuresµ on Tn × Rn that minimize∫

L(x, v) + P · vdµ, (3)

whereL(x, v) is the Legendre transform ofH(p, x), and
satisfy a holonomy condition:∫

vDxφdµ = 0, for all φ(x) ∈ C1(Tn).

The supports of these measures are called the Aubry-Mather
sets, [E99], [Fat97a], [Fat97b], [Fat98a], [Fat98b], [CIPP98],
[EG01a], [EG01b], [Gom01b]. Viscosity solutions of (HB)
encode important properties of the Aubry-Mather sets. In
particular, ∫

L(x, v) + P · vdµ = −H̄(P ),

the support of the Mather measure is a subset of the graph

(x,−DpH(P +Dxu, x)),

for any viscosity solution of (HB), and if (x, p) belongs to
any Mather, and(x(t), p(t)) is its orbit under (2) then

x(T )
T

→ −DP H̄(P ),

for someP , if H̄ is differentiable.
Equation (HB) and related stationary first and second order

Hamilton-Jacobi equations are also important to theergodic
control problem [Ari98], [Ari97]. Effective Hamiltonians
also arise in the study ofpropagation of flame fronts in com-
bustion: in this case, solving a homogenization problem gives
the effective or averaged front speed [EMS95], [KBM01].



II. CONVERGENCE RESULTS

We start this section by reviewing two results concerning
the functionH̄(P ):

Proposition 1 (Lions, Papanicolao, Varadhan):There is
at most one valuēH for which (HB) has a periodic viscosity
solution.

Proposition 2 (Contreras, Iturriaga, Paternain, Paternain):
SupposeH is periodic inx and convex inp. Assume that
there exists a viscosity solutionu of (HB). Then

H̄ = inf
ψ∈C1(Tn)

sup
x∈Tn

H(Dxψ, x), (4)

in which the infimum is taken over the spaceC1(Tn) of
periodic functions.
We should note that the original proof required strict con-
vexity, but a simple viscosity solution argument overcomes
this problem.

The next issue is the approximation of the problem (1).
To this effect, consider a triangulation ofTn with cells of
diameter smaller thanh. Let C(Th) be the collection of
piecewise linear finite elements which interpolate given nodal
values.

Proposition 3: SupposeH(p, x) is convex inp. Then

inf
ψ∈C1(Tn)

sup
x
H(Dxψ, x) = lim

h→0
inf

φ∈C(Th)
esssup

x
H(Dxφ, x).

Proof: Fix ε > 0. Let ψ be aC1 function for which

sup
x∈Tn

H(Dxψ, x) ≤ inf
ψ∈C1(Tn)

sup
x∈Tn

H(Dxψ, x) + ε.

Becauseψ is C1, Dxψ is uniformly continuous. Thus,
for h sufficiently small, there isφ ∈ C(Th) such that
esssup
x∈Tn

|Dxφ−Dxψ| ≤ ε. This implies

esssup
x∈Tn

H(Dxφ, x) ≤ sup
x∈Tn

H(Dxψ, x) +O(ε),

by Lipschitz continuity of H in p. Thus, taking first
limh→0 infφ∈C(Th), then infψ∈C1(Tn), and finally ε → 0,
we obtain the first inequality.

To prove the converse inequality observe that ifφ ∈
C(Th), ηε is a smooth mollifier, andψ = ηε ∗ φ, then
convexity yields

H(Dxψ(x), x) ≤
∫
H(Dxφ(y), y)ηε(x− y)dy +O(ε),

everyx, and so the result follows from

H(Dxψ(x), x) ≤ esssup
x∈Tn

H(Dxφ(x), x) +O(ε),

taking first infψ∈C1 , then limh→0 infφ∈C(Th), and finally
ε→ 0.

First observe that

H(φ) = sup
x∈Tn

H(Dxφ, x),

is a convex, but not strictly convex, functional. Therefore
local minima are global minima.

Proposition 4: The approximate Hamiltonian

H̄h(P ) = inf
φ∈C(Th)

esssup
x∈Tn

H(P +Dxφ, x)

is convex inP .
Proof: Let P1, P2 ∈ Rn and letφ1, φ2 ∈ C(Th) be

the corresponding minimizers. Let0 ≤ λ ≤ 1, and setP =
λP1 + (1− λ)P2, andφ = λφ1 + (1− λ)φ2. Then, for any
x we have

H(P +Dxφ, x)
≤ λH(P1 +Dxφ1, x) + (1− λ)H(P2 +Dxφ2, x),

and so

H̄h(P ) = inf
φ∈C(Th)

esssup
x∈Tn

H(P +Dxφ, x)

≤ λH̄h(P1) + (1− λ)H̄h(P2).

Theorem 1:For any convex HamiltonianH(p, x) for
which (HB) has a viscosity solution

H̄ ≤ inf
φ∈C(Th)

esssup
x

H(Dxφ, x).

If there exists a globallyC2 solution of (HB) then

inf
φ∈C(Th)

esssup
x

H(Dxφ, x) = H̄ +O(h).

If (HB) has a Lipschitz solution (for instance ifH(p, x) is
strictly convex inp) we have

inf
φ∈C(Th)

esssup
x

H(Dxφ, x) = H̄ +O(h1/2).

If H is convex but not strictly convex and (HB) has a
viscosity solution then

inf
φ∈C(Th)

esssup
x

H(Dxφ, x) = H̄ + o(1).

Proof: Observe that

H̄ = inf
ψ∈C1(Tn)

sup
x
H(Dxψ, x) ≤ inf

φ∈C(Th)
esssup

x
H(Dxφ, x),

because by convexity we can associate to eachφ ∈ C(Th) a
functionψ = φ∗ηε ∈ C1(Tn) such thatsupxH(Dxψ, x) ≤
esssup

x
H(Dxφ, x) +O(ε), for arbitrary ε > 0.

To prove the second assertion supposeu is aC2 viscosity
solution of (HB). Fix h and construct a functionφu ∈ C(Th)
by interpolating linearly the values ofu at the nodal points.
In each triangleT i, the oscillation of the derivative ofu is
O(h), sinceu is C2. Thus, we obtain

Dxφu(x) = Dxu(x) +O(h),

for anyx. SinceH(Dxu, x) = H̄, at every pointx ∈ T i we
haveH(Dxφu, x) ≤ H̄ +O(h), which implies

inf
φ∈C(Th)

esssup
x∈Tn

H(Dxφ, x) ≤ H̄ +O(h).

If u is a Lipschitz viscosity solution, let̃u = ηh1/2 ∗ u.
Observe that|D2

xxũ| ≤ C
h1/2 , and

H(Dxũ, x) ≤ H̄ +O(h1/2).

Construct a functionφu ∈ C(Th) by interpolating lin-
early the values of̃u at the nodal points. In each trian-
gle T i, the oscillation of the derivative of̃u is O(h1/2).
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Fig. 1: H̄(P ) for the one-dimensional pendulum.

Thus Dxφu(x) = Dxũ(x) + O(h1/2), for any x. Since
H(Dxũ, x) ≤ H̄ + O(h1/2), for every pointx ∈ T i we
haveH(Dxφu, x) ≤ H̄ +O(h1/2). This implies

inf
φ∈C(Th)

esssup
x∈Tn

H(Dxφ, x) ≤ H̄ +O(h1/2).

The last case, for not strictly convex Hamiltonians, the
sup convolution yields a functionuh1/3 that satisfies

H(Dxuh1/3 , x) ≤ H̄ + o(1),

almost everywhere and has Lipschitz constant bounded by
C
h1/3 . Defineũ = ηh1/3 ∗uh1/3 which satisfiesH(Dxũ, x) ≤
H̄ + o(1) and has|D2

xxũ| ≤ C
h2/3 . Since in each triangle the

oscillation of the derivative isO(h1/3) we have the result,
since

H(Dxφu, x) ≤ H̄ + o(1).

A corollary to the previous theorem is the following:
Corollary 1: Supposeξh ∈ Rn is a supporting plane

for H̄h(P ) that converges ash → 0 to ξ. Then ξ is
a supporting hyperplane for̄H(P ). As a consequence if
H̄(P ) is differentiable atP thenξh converges to the unique
supporting hyperplane of̄H(P ) at P .

III. N UMERICAL IMPLEMENTATION

We can make a further approximation, discretizing the
spatial variable by computing the supremum only at the
nodesxi, which gives the minimax problem

min
φ∈C(Th)

max
xi

H(Dxφ, xi), (5)

for xi at the nodal points of the finite element space.
The minimax problem (5) is a finite dimensional nonlinear

optimization problem which can by solved using standard
optimization routines. We carried out the implementation in
MATLAB, using the Optimization Toolbox.
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Fig. 2: H̄(P ) for the double pendulum

IV. COMPUTATIONAL RESULTS

A. Strictly convex Hamiltonians

We present two examples, the one-dimensional pendulum
and the double pendulum.

Example 1 (one-dimensional pendulum):In this case the
Hamiltonian is H(p, x) = p2

2 − cos 2πx. the result is
presented in Figure1, and agrees with the explicit formula
for H̄, which is known in this case.

Example 2 (Double pendulum):The double pendulum is
a well known non-integrable system for which the effective
Hamiltonian is not known. The Hamiltonian for the double
pendulum is

p2
x − 2pxpy cos(2π(x− y)) + 2p2

y

2− cos2(2π(x− y))
+ +2 cos 2πx+cos 2πy.

The result is presented in Figure2.

B. Non strictly convex problems

In this section we study several examples in whichH is
convex, but not strictly convex, for which there is a viscosity
solution of (HB).

Example 3 (Linear non-resonant):Consider the linear
(nonresonant) Hamiltonian

H(p, x) = ω · p+ V (x, y). (6)

Supposeu is a smooth solution of (HB). Integrating the
equation overTn yields

H̄(0) =
∫

Tn

V, (7)

and soH̄(P ) = H̄(0) + ω · P .
For the exampleux +

√
2uy + cos(2πx) we obtained

DP H̄ = (1,
√

2) and H̄(0, 0) = 0. In this (linear) case the
optimization routine converged very quickly.

Example 4 (Vakonomic):Finally, we study an example of
a non-strictly convex Hamiltonian which satisfies commuta-
tion relations related to vakonomic mechanics [AKN97],

H(p, x) =
|f1 ·Du|2

2
+
|f2 ·Du|2

2
+ V (x, y)

in which the vector fieldsf1, f2 do not spanR2 in every point
but when we consider the commutator[f1, f2] we have that
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Fig. 3: H̄(P ) for the Vakonomic Hamiltonian.

f1, f2, [f1, f2] spanR2 in every point. In this situation (HB)
has Ḧolder continuous viscosity solutions [EJ89], [Gom01a].

We chosef1 = (0, 1), andf2 = (cos 2πy, sin 2πy), so that
f1, f2, [f1, f2] always spanR2. Therefore there is a Ḧolder
continuous viscosity solution. The potential isV (x, y) =
cos 2πx+ sin 2π(x− y) The result is presented in Figure3.

C. Non-existence of viscosity solutions

There are situations where there do not exist viscosity
solutions to (HB), but H̄ can still be defined by solving a
more general problem, see [BS00], [BS01] and [LS03]. In
some of these situations, the solution of the minimax problem
(1) may exist and give a consistent result.

We work out two interesting examples and try to explain
the results obtained numerically.

The problem

αuα +H(P +Dxu
α, x) = 0, (8)

which (whenα 6= 0) has a unique solution is considered in
[LS03]. Sendingα→ 0 gives the effective Hamiltonian

H̄(P ) ≡ lim
α→0

αuα. (9)

Proposition 5: Let uα be a solution of (8), and suppose
αuα converges uniformly to a constant numberH̄(P ). Then

H̄(P ) = lim
α→0

αuα = inf
φ

sup
x∈Tn

H(P +Dxφ, x).

Proof: 1. DefineH̄α ≡ −αminx uα and

vα ≡ uα +
H̄α

α
,

so thatminx vα = 0. We will demonstrateH̄α → H̄. We
have

H̄ = lim
α→0

H(P +Dxu
α, x) = lim

α→0
−αuα

= lim
α→0

α(uα −min
x
uα) + αmin

x
uα = H̄α

2. Let vεα denote the sup convolution of vα and let
φ = ηε ∗ vεα. ThenH(Dxφ, x) ≤ H̄α + O(ε). Therefore
infφ supx∈Tn H(Dxφ, x) ≤ H̄α → H̄.

3. Now let eα = supx αvα, which converges to0.
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Fig. 4: H̄(P ) for the quasi-periodic Hamiltonian.

Let φ be any function. Thenvα−φ has a local minimum
at a pointx0. At this point

αvα(x0) +H(Dxφ(x0), x0) ≥ H̄α,

and sosupx∈Tn H(Dxφ, x) ≥ H̄α − eα → H̄. Therefore
infφ supx∈Tn H(Dxφ, x) ≥ H̄.

Example 5 (Quasiperiodic Hamiltonians):We give an
example from [LS03] where there is no viscosity solution
to (HB), but whereH̄(P ) can be determined from (9). Let

H(px, py, x, y) = |px + αpy|+ sin(x) + sin(y)

with α irrational.
We computedH̄(P ) numerically from (1). The results are

presented in Figure4.
Example 6 (Linear resonant):Resonant linear Hamiltoni-

ans (6) may fail to have a viscosity solution. An example is

(0, 1) ·Du+ sin(2πx) = H̄.

The formula (7) yields H̄(0) = 0 if there were a solution of
(HB). However, we have

inf
φ

sup
x
H(Dxφ, x) = 1.

In fact, letφ be an arbitrary periodic function. Setx0 = 1/4,
so thatsin 2πx0 = 1. Thenφ(x0, y) is a periodic function
of y and soDyφ(x0, y) = 0 at somey = y0. Thus

sup
x
H(Dxφ, x) ≥ H(Dxφ(x0, y0), x0, y0) = 1.

Numerically we obtainedDP H̄ = (0, 1) and H̄(0, 0) = 1.
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