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Abstract—A numerical method for homogenization of In the study oflong time limits of viscosity solutions of
Hamilton-Jacobi equations is presented and implemented as Hamilton-Jacobi equations
an L* calculus of variations problem. Solutions are found by
solving a nonlinear convex optimization problem. The numeri- —w; + H(P 4+ Dyw,x) =0,
cal method is shown to be convergent and error estimates are B
provided. Several examples are worked in detail, including the the differencew(z,t) — H(P)t converges ag — —oo to

cases of non-strictly convex Hamiltonians and Hamiltonians for 4 stationary solution of HB) [Fat98b], [BS00]. See also
which the cell problem has no solution. [Al01], [CDIO1].

. INTRODUCTION In classical mechanicsmooth solutions of (HB) yield a

canonical change of coordinatés(p, ) and P(p,z): (p =

Given the HamiltonianH (p, =) which is smooth, convex [GIE ) T
P+ D,u, X = x+ Dpu), which simplifies the Hamiltonian

in p, and periodic in the second variable we consider, for

a given P € R", periodic solutions of the Hamilton-Jacobi dYnamics
equation _ & =—DyH(p,z)  p=D.H(p,x) 2)
H(P + Dyu,z) = H(P). (HB) g
i into the trivial dynamics
For each fixedP the problem KIB) can be regarded as a ] ) -
nonlinear eigenvalue problem for the function functiof:) P=0 X =—-DpH(P).

and the numbef (P), the effective Hamiltonian
In this paper, we reduce the problem of finding the
(approximate) effective Hamiltonian to a finite dimensional’
convex optimization problem, which may solved numerically
using standard methods. /L(x’v) + P vdp, 3)
Numerical computations of effective Hamiltonians hav‘?/vhere L(z,v) is the Legendre transform off(p,z), and
been done by [EMS95], [KBMO01], with applications to frontsatisfy a h7olonomy condition: ’
propagation and combustion, and in [Qia01], both of them
using partial differential equations methods. vDydp =0, for all ¢(z) € CL(T™).
In this work we circumvent the difficulties of solvingiB)

by computing H(P) without finding the solutionu. Our  The supports of these measures are called the Aubry-Mather

In Aubry-Mather theory[Mat89], [Mat91], one looks for
robability measureg on T" x R™ that minimize

methods are based on the representation formula sets, [E99], [Fat97a], [Fat97b], [Fat98a], [Fat98b], [CIPP98],
A(P)= inf supH(P + Dy¢,x) 1) [EGOla],_ [EGO1b], [GomO_lb]. Viscosity solutions dfiB)
#€Cher x encode important properties of the Aubry-Mather sets. In
due, for strictly convex Hamiltonians, to [CIPP98]. particular,

In this paper we always assume thHt to be convex
but not necessarily strictly convex. This assumption has
implications for the existence and smoothness of solutio
of (HB). If strict convexity fails, solutions may (s€gV-B)
or may not (seglV-C) exist, and the degree of smoothness (z,—D,H(P + Dyu,x)),
will depend on the Hamiltonian in question. i ) ) )

Computing the effective Hamiltonian is relevant in severaf°" @ny Viscosity solution ofHiB), and if (z,p) belongs to

/L(:c,v) + P -vdpy=—H(P),

’%ﬁe support of the Mather measure is a subset of the graph

problems, as we describe briefly next. any Mather, andz(t), p(t)) is its orbit under ) then
In homogenization problemf_PV88], [Con95], if w* z(T) _
solves . —7 — —DpH(P),
—wi + H(Dgw', ) =0, for someP, if H is differentiable.
then ase goes to0, the solutionw® converges tav® which Equation HB) and related stationary first and second order
is a solution of the limiting problem Hamilton-Jacobi equations are also important to efgodic

_ control problem [Ari98], [Ari97]. Effective Hamiltonians
—w} + H(Dyw®) =0 ise i i i
t i : also arise in the study gfropagation of flame fronts in com-
DG was partially supported by FCT/POCTUFEDER andPustion inlthis case, solving a homogenization problem gives
FCT/POCI/MAT/55745/2004 the effective or averaged front speed [EMS95], [KBMO01].



Il. CONVERGENCE RESULTS is convex inP.

We start this section by reviewing two results concerning ~ Proof: Let Py, P € R™ and let¢,, ¢, € C(T) be
the functiond (P): the corresponding minimizers. Lét< \ < 1, and setP =

Proposition 1 (Lions, Papanicolao, Varadharifhere is AP1+ (1 —A)Pz, andé = Agy + (1 — A)¢». Then, for any
at most one valuél for which (HB) has a periodic viscosity © We have

solution.
Proposition 2 (Contreras, lturriaga, Paternain, Paternain): H(P + Do, )
SupposeH is periodic inz and convex inp. Assume that SAH(Py+ Dyér,z) + (1= A H (P2 + Dy, o),
there exists a viscosity solutian of (HB). Then and so
H= inf sup H(Dy,z), 4 = .
weé?(m):élﬁ (Dat), ) (4) Hyp(P) = ¢Eg2’l)eii%ng(P + D,o,x)
in which the infimum is taken over the spac&(T") of < AHL(P)) 4 (1 = N Hy(Py).

periodic functions.
We should note that the original proof required strict con- _ o u
vexity, but a simple viscosity solution argument overcomes 'neorem 1:For any convex HamiltonianH (p,x) for

this problem. which (HB) has a viscosity solution
The next issue is the approximation of the probleth ( A< inf esssupH(Dyo, ).
To this effect, consider a triangulation @™ with cells of $eC(Th) =

diameter smaller thark. Let C(7},) be the collection of | there exists a globally2 solution of HB) then

piecewise linear finite elements which interpolate given nodal B

values. inf esssupH(Dy¢,x) = H+ O(h).
Proposition 3: SupposeH (p, z) is convex inp. Then $eCTn) @
) ) ) If (HB) has a Lipschitz solution (for instance H(p, z) is
inf s1alcp H(Dgy,z) = lim inf essiupH(quS,x). strictly convex inp) we have

$eC1(T) _ h—09eC(Th) = _
Proof: Fix e > 0. Lety be aC" function for which lcnfT esssupH (D, ) = H + O(hV/?).
sup H(D v, z) < inf  sup H(Dy¢,x) + €. $eC(Tn) o
zeTr YpeCH(T) getTn If H is convex but not strictly convex andHB) has a
Becausey is C!, D, is uniformly continuous. Thus, Viscosity solution then
for h sufficiently small, th_er_e is<_;$ € C(Tp) such that inf esssupH (D, ) = H + o(1).
esssup|D,¢ — D,9| < e. This implies ¢eC(Tn)
€T Proof: Observe that
esssupH (D, ¢, x) < sup H(D,, ) + Ofe), H—= inf H(D < inf H(D
sssu sup Jinf S H(Dy.x) < int esssupH (Do),

by Lipschitz continuity of & in p. Thus, taking first pocquse by convexity we can associate to eachC(T}) a
limy, o infoeo(r,), theninfyeci(rm), and finally e — 0, gynetiony = g1, € C*(T™) such thasup, H(D,),z) <

we obtain the first inequaliIY' ) ) esssupH (D¢, x) + O(e), for arbitrarye > 0.
To prove the converse inequality observe thatpif e

x
C(Ty), n. is a smooth mollifier, and) = 7. * ¢, then To prove the second assertion suppase aC? viscosity

convexity yields solution of HB). Fix h and construct a function, € C(T3)
by interpolating linearly the values aof at the nodal points.
H(Dy(x),z) < /H(Dmaﬁ(y),y)ne(:c —y)dy + O(e), In each triangleT™, the oscillation of the derivative of is

O(h), sinceu is C?. Thus, we obtain
Dau(x) = Dyu(z) + O(h),

for any x. SinceH (D, u,z) = H, at every pointz € T" we
taking first inf e, then limy, o infyec(r,), and finally haveH(Dyy,x) < H + O(h), which implies

everyz, and so the result follows from

H(Dyy(z),z) < egscib;rng(Dm(a?% z) + O(e),

€ — 0. [ | : 7
inf esssupH(D,¢p,x) < H+ O(h).
First observe that $€C(Th) a;E’]I‘"p (Det ) Q
H(¢) = sup H(D,,z) If w is a Lipschitz viscosity solution, lek = 7,1/2 * u.
z€Tn Observe thatD? i| < +&5, and

is a convex, but not strictly convex, functional. Therefore
local minima are global minima.
Proposition 4: The approximate Hamiltonian Construct a functionp,, € C(T},) by interpolating lin-
=~ . early the values ofi at the nodal points. In each trian-
Hn(P) = ¢Elcn(fT,L)e§S€SﬁpH(P+D””¢’x) gle 77, the oscillation of the derivative ofi is O(h!'/2).

H(Dyi,z) < H+O(h'/?).



Fig. 1: H(P) for the one-dimensional pendulum. Fig. 2: H(P) for the double pendulum

IV. COMPUTATIONAL RESULTS

Thus D,y (z) = Dyi(z) + O(h'/?), for any . Since  p Strictly convex Hamiltonians

H(D,u,xz) < H + O(h'/?), for every pointz € T we

have H(Dy ¢y, z) < H + O(h'/?). This implies We present two examples, the one-dimensional pendulum
and the double pendulum.
inf esssupH(Dy,z) < H + O(h1/2). Ex_ample 1.(0ne—dimension2al pendulunt: this case the
€C(Th) zeTr Hamiltonian is H(p,z) = & — cos2rz. the result is

) o presented in Figurd, and agrees with the explicit formula
The last case, for not strictly convex Hamiltonians, th@or 77 which is known in this case.

sup convolution yields a function:;.,s that satisfies Example 2 (Double pendulum)he double pendulum is
_ a well known non-integrable system for which the effective
H(Dyups, ) < H + o(1), Hamiltonian is not known. The Hamiltonian for the double
) ) gendulum is
almost everywhere and has Lipschitz constant bounded

2
%. Defined = ny,1/s * uy,1/s which satisfied (D, ii,z) < Pz — 2papy cos(2m(z — y)) + 2p,
H +0(1) and has D2, i| < ;5. Since in each triangle the 2 — cos?(2m(z — y))
oscillation of the derivative i€)(h'/?) we have the result, The result is presented in Figuge

since

+ 42 cos 2mx + cos 2my.

B. Non strictly convex problems

In this section we study several examples in whighis
convex, but not strictly convex, for which there is a viscosity
) ) ) solution of HB).

A corollary to the previous theorem is the following: Example 3 (Linear non-resonantConsider the linear

Corollary 1: Suppose¢, € R™ is a supporting plane (nonresonant) Hamiltonian
for H;(P) that converges a®i — 0 to & Then ¢ is

H(Dy¢y,x) < H+o(1).

a supporting hyperplane fof(P). As a consequence if H(p,z) =w-p+V(z,y). (6)
H(P) is differentiable atP then¢;, converges to the unique sypposeu is a smooth solution ofHB). Integrating the
supporting hyperplane off (P) at P. equation ovefl” yields

1. NUMERICAL IMPLEMENTATION H(0) = v )

Tn

We can make a further approximation, discretizing th@nd soH(P) = H(0) + w - P. _
spatial variable by computing the supremum only at the For the exampleu, + v/2u, + cos(2rz) we obtained

nodesz;, which gives the minimax problem DpH = (1,v/2) and H(0,0) = 0. In this (linear) case the
optimization routine converged very quickly.
min max H(Dy¢, z;), (5) Example 4 (Vakonomic)Finally, we study an example of
deC(Th) @i a non-strictly convex Hamiltonian which satisfies commuta-

. - tion relations related to vakonomic mechanics [AKN97],
for x; at the nodal points of the finite element space. [ ]

The minimax problem) is a finite dimensional nonlinear H(p,z) = |f1 - Dul? + |f2 - Duf? +V(z,y)
optimization problem which can by solved using standard 2 2
optimization routines. We carried out the implementation ifn which the vector fieldg;, f» do not sparR2 in every point
MATLAB, using the Optimization Toolbox. but when we consider the commutaigi, /2] we have that
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Fig. 3: H(P) for the Vakonomic Hamiltonian. Fig. 4: H(P) for the quasi-periodic Hamiltonian.

: . o Let ¢ be any function. Thenm,, — ¢ has a local minimum
2 «
f1, f2,[f1, f2] spanR# in every point. In this situationHB) at a pointa,. At this point

has Hlder continuous viscosity solutions [EJ89], [GomO01a].
We chosef; = (0,1), andfo = (cos 27y, sin 27y), so that ave(z0) + H(Dyo(20), 20) > Hay,

f1, f2, [f1, f2] always sparR?. Therefore there is a éider _ _
continuous viscosity solution. The potential ¥&(z,y) = 2Nd SOsup,ern H(D:¢, ) = Ho — eq — H. Therefore

cos 27z + sin 27 (z — y) The result is presented in Figuge ¢ SUPsern H(D:, x) = H. I .
Example 5 (Quasiperiodic HamiltoniansyVe give an
C. Non-existence of viscosity solutions example from [LSO3] where there is no viscosity solution

There are situations where there do not exist viscositS? (HB), but wheret{(P) can be determined fron®). Let
solutions to HB), but H can still be defined by solving a H(ps,py, ,y) = |pe + ap,| + sin(z) + sin(y)
more general problem, see [BS00], [BS01] and [LS03]. In o
some of these situations, the solution of the minimax probleNyith « irrational.

We work out two interesting examples and try to explaifPresented in Figuré. _ o
the results obtained numerically. Example 6 (Linear resonant)Resonant linear Hamiltoni-
The problem ans @) may fail to have a viscosity solution. An example is
ou® + H(P + Dyu®, z) =0, (8) (0,1) - Du + sin(27x) = H.

The formula ) yields H(0) = 0 if there were a solution of
(HB). However, we have

igf sup H(D,¢,z) = 1.

which (whena # 0) has a unique solution is considered in
[LS03]. Sendinga — 0 gives the effective Hamiltonian
H(P) = lim au®. 9
Proposition 5: Let u® be a solution of §), and suppose In fact, let¢ be an arbitrary periodic function. Sey = 1/4,

au® converges uniformly to a constant numbig¢P). Then SO thatsin2mzo = 1. Then¢(xo, y) is a periodic function
of y and soD,¢(xg,y) = 0 at somey = y,. Thus

H(P) = ili% au® = igf sup H(P + D, ¢, x).

8 _ €T supH(D’Ld)a 'r) > H(Dx¢(x05y0)7x07y0) =1
Proof: 1. DefineH, = —a min, u* and z
;i Numerically we obtained)pH = (0,1) and H(0,0) = 1.
H
v =u® 4+ =2,
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