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Computing the Entire Active Areapower 

Consumption versus Delay Tradeoff Curve 
for Gate Sizing with a Piecewise Linear 

Simulator 
Michel R. C. M. Berkelaar, Pim H. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Abstruct- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe gate sizing problem is the problem of finding 
load drive capabilities for all gates in a given Boolean network 
such, that a given delay limit is kept, and the necessary cost in 
terms of active area usage and/or power consumption is minimal. 
This paper describes a way to obtain the entire cost versus delay 
tradeoff curve of a combinational logic circuit in an efficient 
way. Every point on the resulting curve is the global optimum 
of the corresponding gate sizing problem. The problem is solved 
by mapping it onto piecewise linear models in such a way, that a 
piecewise linear (circuit) simulator can do the job. It is shown that 
this setup is very efficient, and can produce tradeoff curves for 
large circuits (thousands of gates) in a few minutes. Benchmark 
results for the entire set of MCNC '91 two-level examples are 
given. 

I. INTRODUCTION zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. The Gate Sizing Problem 

HE PROBLEM TREATED in this paper is the problem T of gate sizing. It can be defined as assigning load drive 

capabilities to the gates in a Boolean network such, that a 

given delay limit is obeyed, and the total cost in terms of active 

area and/or power consumption of the circuit is minimal. The 

problem is very similar to the transistor sizing problem. The 
main difference is that in gate sizing all transistors in a logic 

gate are sized simultaneously, whereas transistor sizing sizes 
single transistors. The main reason we focus on gate sizing is 

the fact that we want to be able to optimize large circuits. Our 

ideas are, however, also applicable to transistor sizing. 

B. Previous Work 

In the past, several algorithms have been proposed to 

solve the transistor sizing problem. There are a number of 
heuristic or combined algorithmicheuristic optimizers [9], 

[ I l l ,  [14], [15], [21], and [23] which solve the problem but 
cannot guarantee optimality of the solution. More recently 
a number of solutions which use efficient forms of solv- 

ing a nonlinear programming problem [17], [18], and [22] 
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have been published. They prove that in many cases the 
heuristic solutions stay far from the global optimum. The 
most important problems in these nonlinear programming 

approaches are usually the run time, which becomes too long 
for large examples, and the convergence. In [I] and [31, a 

solution to the gate sizing problem was proposed using linear 

programming (LP), and piecewise linear (PL) approximations 

of the nonlinear delay formulas. This proved to be fast and, 

therefore, feasible for large circuits. 

C. Why Compute the Entire Tradeoff Curve? 

All of the above approaches can find one point in the 

solution space of the problem per invocation of the program. 
Very often, however, a designer is interested in (part zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof) 
the tradeoff curve, to be able to compare the advantages 

and disadvantages of several possible implementations. If 

we examine typical tradeoff curves as in Figs. 3-5 it is 

immediately apparent that most designers will want to avoid 

using solutions in the leftmost parts of the curves, where small 

gains are made at large costs. 

To obtain the tradeoff curves, one could calculate a lot 

of points by repeatedly using a single-point optimization 
algorithm. This is not only computationally expensive, but it 

is also not easy to determine which points are needed to make 

linear interpolation between them an accurate estimation of the 

real tradeoff curve. It is just this task that our circuit simulator 

with variable integration step size performs very efficiently. 

By introducing a time-dependent delay, (part oQ the tradeoff 

curve is visited during the simulation. Because the different 

solutions for two slightly different delays are usually close to 

each other, the new solution can be calculated with only a 
few updates. We will show that the LP problem of [l] can 
be mapped onto piecewise linear models, which can be solved 

with the piecewise linear simulator PLATO. As we shall see in 
the results section, the PL simulator setup can calculate entire 

tradeoff curves in about the same amount of CPU time as it 
takes to solve one LP problem for one solution point. 

D. Setup of This Paper 

In Section 11, we will discuss the LP formulation of the 

gate sizing problem, summarizing [I] and [3] ,  chs. 4 and 6. In 

0278-0070/96$05.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1996 IEEE 
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Section 111, we will introduce the piecewise linear simulator 

PLATO. In Section IV, we will discuss the mapping of the 

gate sizing problem onto piecewise linear models suitable for 

PLATO. In Section V, we will present results for all MCNC 

91 benchmark examples, comparing the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 11 approach with 

the performance of PLATO. In Section VI, we will discuss 

some numerical aspects of optimizing very large circuits. In 

Section VII, we will give some conclusions and directions of 

future work. 

11. LP FORMULATION OF GATE SIZING zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. Basic Delay Model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof a Gate 

To describe the way we have modeled the gate sizing 

optimization problem for the PL simulator, we will introduce 

a simple gate level delay model, as introduced in [l]. This 

is a model which uses the worst case delay of a logic gate, 

both with respect to inputs as with respect to rise or fall time, 
as delay value. Although this kind of model can give quite 

accurate delay estimations for large circuits, it is not very 

accurate for many small circuits. It is, however, important to 

realize that any convex delay model can be used with our gate 

sizing method. In [9] the important class of distributed RC 
models is proved convex. 

We use the following symbols: 

r delay of a gate 

C capacitance value 

c constant 

S speed factor 

We start with the widely used basic model 

r g a t c  =rvnt + c x Cload 

Cload = Cui,, e + Ctr 

(1) 

(2) 

where C7,,,, e is the wire capacitance and Ct, is the sum of the 

capacitances of the connected gates. Because we are dealing 

with gates of variable size, we introduce the speed factor Sqote 
of a gate 

(3 )  

The fact that it is reasonable to model the load drive 
capability of a gate by just one parameter S can be justified 
by the following reasoning: cells are made faster by increasing 

the gate width of the internal transistors. Their load drive 

capability grows linearly with this width, as long as we keep 

the sizing within reasonable limits. The internal capacitances 

of the cell, however, will also increase almost linearly with 

the width of the gate. The combination of these two effects 

will keep the internal delay r,nt almost constant over a range 

of load drive capabilities, but will decrease the delay due to 

capacitive loading linearly. 
Because Sgate is implemented in the physical layout by 

multiplying the width of the transistors, the gate capacitances 
also grow almost linearly with it, and we get 

l 0 i  -'\. I 

======A 
1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 

S 

Fig. 1. Delay of a NAND gate under different loads versus its speed factor. 

Combining (2)-(4) leads to a complete (nonlinear) delay 

model 

~ t u i r e  + si x c in,  i 

. (5 )  

To use this delay model in a LP environment, it has to 

be linearized. To obtain the desired accuracy, we can use a 
piecewise linear fit with as many pieces as desired. In [3] ,  it 
is shown that 3 pieces is enough for above delay model, if we 

limit S to the range [l, 31. Increasing the number of pieces 

beyond that does change the accuracy only marginally (< 1%). 

Fig. 1 shows a typical case of a 2-input nand gate in a 1.5 m 

CMOS process under various load conditions. It also shows a 

possible piecewise linear approximation of one of the curves 

in 2 pieces. 

i 
rgate = Tint + c x 

S p t e  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

B. Delay of a Logic Circuit 

We model the total delay of a logic circuit by calculating 
the longest path in the Boolean network [4]. The false path 
problem is ignored this way. To be able to calculate the longest 
path, we introduce the symbol Tyatp, the schedule time of a 
gate. It is defined as the worst case time after which the output 

of the gate will become stable on an input transition. The 

arrival times of the primary input signals are assumed to be 

known. The schedule time of a gate can be expressed in the 

schedule times of its input signals and its own delay 

T g a t r  rqa te  + LEtnpwts  max (gate)  T .  (6) 

Both the summation and the max function can easily be 

The wire capacitance C',,,,,, in (2) and ( 5 )  is estimated based 
expressed in LP terms. 

on statistical data from actual layout. See [3] for details. 

C. The Total Active Area of a Circuit 

Because the transistor sizes in the gates are adapted in just 

one dimension with changing speed factor, the total active area 
of a circuit is a linear combination of the speed factors, where 

the constants c, reflect the relative contribution to the active 
area of gate i. 

A = cis;.  (7) 
a tga tes  
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D. CMOS Dynamic Power Consumption 

ing frequency of the gates does not change during gate sizing. 

This is, of course, not completely correct: the amount of 

glitching in the circuit will in general change, and probably 

become less as the delay differences in the circuit get smaller. 
Yet, the model presented here to estimate power consumption 

will be accurate enough if the amount of glitching in the circuit 

does not change a lot, or is not a large percentage of the total 

switching activity. 

If we define zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf,, to be the average switching frequency of a 

2) S is limited 

The following discussion assumes that the average switch- 
Sniiri I S g a t r  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI Smax.  (1 1) 

3) Definitions of sChedU1e times [implement (6)1 

(12) V j E f a n , i n ( g n t r ) T q a t c  2 Tf  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATgTgote. 

4) Definitions for maximum schedule time of circuit [im- 

plement (9)]. If the gate is a primary output 

(13) Tmax 2 T g a t e .  

5 )  The objective function is a linear combination of A, P, 
gate, the dynamic power consumption of a single CMOS gate and Tmax 

can be expressed as 

~ _?  

The total power consumption of a circuit is the sum of the 

power consumptions of the individual gates 

The first summation of (8) represents the power consumed 

while charging and discharging the capacitances of the wiring 

and is constant for our optimization problem. The second 

summation represents the power consumed while charging or 

discharging the capacitances of the transistor gates and is a 

linear expression in the speed factors. 

To obtain the average switching frequencies, one must either 

perform logic simulations with appropriate input vectors or 
apply statistical methods, as in [IO] and [19]. 

E. LP Formulation of the Gate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASizing Problem 

The linear program is now composed as follows: First, we 

define Ti to be the schedule time, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAri the delay, and Si the speed 

constant of gate i .  For the primary inputs T is the arrival time 

of the signal. The total delay of the circuit is 

Tmax = , max Ti. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(9)  

Now, for every gate in the circuit the following constraints 

1) The n linearized delay models [a PL implementation of 

7 ~ € p ~ i r n ~ a r y o u t p ~ ~ t ~  

are defined. 

(5)1 

7.9ate 2 c1,l - C1,ZSga te  + cl. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 sicin, i 
7 

. . .  
> >  

~ 9 o t e  2 G, 1 - en, 2 ~ g n t c  + en, 3 sicin. i (10) 
7 

CAA + C p p  4- CTTmax. (14) 

If the circuit has a Boolean network representation with 

V vertices (one for every gate) and E edges (one for every 
connection), we can calculate the LP problem size. The 

number of constraints is IEl + (2 + n)lV + 4 (1 for every 

predecessor relation, 2 per vertex for limitation of Sgate, n 
per vertex for the piecewise linear delay model, 1 to express 

the total delay T,,,, 1 to express the total active area A, 1 

to express the total power consumption P and 1 more to limit 

Tmax). The number of variables is 31V + 3 (per vertex S, 7 ,  

and T ,  and for the global network Tnlax, A, and P). 
Because in practical Boolean networks both the fanin and 

the fanout of a gate are limited, implying lEl < clVl for some 

constant c > 1, the size of the LP problem is effectively linear 
in the number of gates in the circuit. 

111. THE PL SIMULATOR PLATO 

The simulator PLATO [5]- [8]  is a piecewise linear simu- 

lator, primarily intended for simulating electrical and logical 

circuits. The component relations are described by a matrix, 

relating linear, dynamic and complementary variables and 
equations. The complementary variables and equations to- 

gether form a Linear Complementarity Problem (LCP), which 
is the following problem: given a matrix M and a vector q, 

determine vectors w and z satisfying 

(15) 

The equations like w 2 0 are considered component-wise, 

i.e., VJ;W; 2 0. The complementary variables and equations 

model the piecewise linear behavior of the components. Due 

to this piecewise linear modeling, electrical, logical and macro 
models can be used in one circuit description and simula- 
tion run. To support these different models, two types of 

connections (nets) are available: electrical, with voltage and 
current variables satisfying the Kirchhoff relations, and signal, 

which have only a voltage-like variable. The connections of a 

component to the nets, called terminals, also have one of these 

types. All kinds of components can be used by the simulator: 

it has no built-in models but uses a mixture of user-supplied 

models and library models. To solve the system efficiently, the 

following methods are repeatedly employed: 

The linear equations, determining the values of voltages, 
currents and signals, are separated from the component 

w = M z + q  i w 2 0, z 2 0, w T z = 0 .  
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0 

solution is found with the new zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz equal to zero. The Lemke 

algorithm in general might perform off-diagonal pivots. 

The van de Panne algorithm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[20] is a modification, which 

follows the same path through space toward a solution, 
but postpones off-diagonal pivot operations until a block- 

diagonal pivot is assembled and subsequently executed. 
The PLATO circuit simulator internally takes advantage 

of hierarchical structuring of equations as often found in 

large circuits. In such structuring, the van de Panne block- 

diagonal pivots are easier to accomplish than the single 

off-diagonal pivots as asked for by the original Lemke 

algorithm. 
The dynamic equations, a set of linear differential equa- 

tions, are solved with an integration method. Which 
method is employed, depends on the problem; usually 

an implicit linear multistep method is used [13]. To 
exploit the sparsity and latency of most circuits, the 

integration method is employed in a multirate scheme, 

where the circuit is divided dynamically in clusters, and 

the components in one cluster have the same integration 

step size, differing from the step size in other clusters. 

However, if the solution is linear in time, the much 

simpler and more efficient Forward Euler integration 
method is used. 

The simulator follows a path in the complex space of 

linear, dynamic and LCP variables. The starting point is 

determined first by applying the Van de Panne algorithm. The 

LCP variables and equations determine (convex) regions in 

the space of linear and dynamic variables. So the state of 

the LCP, the zero-nonzero partition of the w and z vectors, 

remains valid for some time during the integration. If an entry 

in either vector becomes negative during the integration, the 
Van de Panne algorithm is started to change the state of the 

LCP. The path that the simulator follows can be pictured as a 
piecewise continuous path (in time) through the space, mixed 

with (possibly discontinuous) steps. The continuous path is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

f Boolean value 

driven by the integration in time, while the (discontinuous) 

steps are governed by the Van de Panne algorithm. 7 Schedule time Speed factor 

Fig. 2. Circuit to perform optimization in the simulator. 

description. These equations are solved with an LU 

decomposition [12]. Because of the sparse nature of 
the linear equations (connection matrix), a sparse data 
structure is used. If the linear equations change, the 

update of the LU matrices is calculated efficiently with an 
algorithm that visits only those elements of the matrices 

that change. 

Solving the LCP is in general, for unrestricted matrices, 

an NP-hard problem. The Lemke algorithm [16] is a di- 

rect, exact method to solve the LCP. It thus has worst case 

exponential complexity, but in practice almost always 
finds a solution in very few steps. The solution is found 
by computing a path through space, performing pivot 

transformations on the matrix M along its way. Such a 
pivot effectively exchanges the position of a component 

of w with a component of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz in (15), while updating M 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq. If after the pivot the new q becomes nonnegative, a 

I v .  MODELING THE GATE SIZING 

PROBLEM IN THE PL SIMULATOR 

To obtain the Area-Delay tradeoff curve, the LP problem 

will be solved for a constraint T,,, 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ( t )  with f ( t )  
continuous. The function f ( t )  may be nonmonotone, but it 
is simpler to choose a function f ( t )  = a - b x t ,  with b > 0 

and a larger than Tmax(0), the value T,,, assumes for S 
minimal [the value T,,, (0) can be determined easily from 

inspection of the circuit]. Then the solution at t = 0 is feasible, 

and a list of solutions for different values of T,,, is generated, 

until no solution can be found. This dynamic problem cannot 
be integrated easily into the used LP solver. However, the 

problem can be transformed into an LCP, as will be shown 
in the next paragraph. This LCP, together with the dynamic 
behavior, is solved by the simulator PLATO. 

An LP problem is converted into an LCP in the following 

way. Let the LP problem be: find minA,,Sb{pTz1}. Apply 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. 
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Area-time and power-time tradeoff curves for the circuit apex2. 
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Fig. 4. Area-time and power-time tradeoff curves for the circuit duke2. 

the (Karush-)Kuhn-Tucker relations to find the system: A. Converting an LP into an LCP Circuit 

If a solution to this problem exists, the vector z1 is the 

solution of the original LP. For an LCP with a matrix as 
given in (16), the Van de Panne algorithm will always find 

a solution if it exists. This problem could be entered in a 

straightforward way into the circuit simulator by creating one 

large component with this matrix. But the problem can also be 

represented as the original circuit, with some additional special 

components. In this way, the sparsity of the network can be 

employed and the simulation will take much less computer 

time and resources. In the next section, the conversion of the 

LP as given in the (10)-(14) into a circuit with appropriate 
components is discussed. 

The LP problem of (lo)-( 14) is based on the subdivision 

of the logic circuit into connected components. To use the 

sparsity of the interconnections, the related LCP problem is 

converted into a network. Instead of logic values, the schedule 

times and speed factors are passed between the components. 

As will be shown in the next paragraphs, it is simpler to use 

electrical nets: not only schedule times or speed factors are 

passed over a net, but also extra information needed to solve 

the optimization problem. Fig. 2 shows the basic conversion 

step. 

Each component has two output terminals, one with its 

schedule time as signayvoltage value, the other with its speed 

factor. Furthermore, the schedule times of the components in 

the fanin set of a component must be known, so the respective 

nets each have their own input terminal. For the same reason, 

the nets related to the speed factors of the components in the 

fanout set are connected to input terminals. The matrix of one 
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Fig. 5. Area-time and power-time tradeoff‘ curves for the circuit misex3c 

component is constructed from three submatrices, each related 

to one group of inequalities. 

The inequalities Snlin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 S; 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS,,, (1 l), together with the 

optimization requirement c,S; minimal [(7) and (14)], are 
transformed, according to (1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6), into the following equations: 

The equations x1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0 and tu2 2 0 determine the minimum 

and maximum bounds of S, , while the value c, in the constant 

vector denotes the value in the objective function. 

The second group of inequalities, T, = max {T3 1 .? E 
f a n m ( i ) }  + r, (12), is transformed into system (18). For 

simplicity, the example gate has only two inputs with delays 

TI and T,. 

This local matrix is not block-diagonal: the rows related to 
the variables ?U,,  and w,, are not rows of this component’s 

matrix, but the w3 rows of their respective components. 

Therefore, the value of 24, respectively, 2 5  must be transported 

to these components and added to the relevant row. This is 

done conveniently by setting the schedule time explicitly to 
an electrical type, with as voltage value the schedule time 

7‘1, and as current value on this connection the value of 24. 

Because the currents satisfy the Kirchhoff law, the current on 
the output T is the sum of these currents of its successors. 
By adding one entry in the matrix in the row related with w3, 

having the value -1 (incoming current!), the correct system 

is created. 
The third group of inequalities, 7, = PL(S,,  SOut) (lo), 

has a form comparable to system (18). Therefore, the nets 

54 56 58 60 62 64 66 68 

Tmax 

transferring the speed factors also have a current related to 

them, and an extra term occurs in the respective w 1  rows. The 

extra inequality T,,, < f ( t )  will give the same matrix as 
in (17), but with a right-hand side [0, f(t)]’. This matrix is 

embedded in a final component that determines the maximal 

schedule time in the circuit by taking the maximum of the 
schedule times at the output gates. 

The components in the circuit are created according to the 

equations above, and the connections between them are laid 

out according to the connections of the original circuit. The 

extra component for determining and changing the maximum 

schedule time is connected to the output gates of the circuit. 

The total number of LCP variables is 2[(4+n)lVI+IE1+2], the 

number of linear (circuit) variables is 4)VI + )El. Notice that 

there is no special component connected to all gates for guid- 

ing the optimization process. The gates “know” themselves 

when their speed factors must change, as is explained in the 

next section. 

B. Finding the LCP Solution 

The LCP solution is found by combining the Van de Panne 

algorithm with an integration in time. By using the inequality 

T,,,, 5 a - bt, the simulation determines the relation between 

S and the time t. Then it is trivial to find the relation 
between T,,,, and C S. Using a linear function for the time, 

the numerical integration is as exact as possible and will give 

no problems. But first an initial solution must be found. This 

is rather straightforward, when starting from the basic point 

z = 0. This implies S, = S,,, for all i ,  and the internal 

delays 7, have the values related to these S,. So only the 

schedule times T, and the corresponding LCP variables must 

be determined. This is done easily by the Van de Panne 
algorithm. If the schedule time minus the delay of a component 
is less than the schedule time of one of its predecessors, the 
corresponding w k  is negative. By performing a block pivot, 
and due to the form of the equations, the corresponding wk and 
zk both become zero. In network terms, the schedule time is set 
to the schedule time of the predecessor plus the internal delay. 
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If the initial solution is found, and the forced schedule time at 

this time point, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa ,  is larger than T,,,, all currents are zero at 

the starting point. The other case, that a faster initial solution is 

sought, will follow from the discussion in the next paragraphs. 

Because it is a feed-forward network, the calculations are easy 

and the T,,, with 

The dynamic solution starts from this initial solution. With 

increasing time, the schedule time decreases until no faster 

solution can be found. The Van de Panne algorithm fails 

and the simulation stops with an error message. The dynamic 
solution will follow the piecewise linear tradeoff curve exactly, 

due to the linear form of the constraint on T,,,. We will 

describe the first step of the simulation process, and explain 

which actions will in general happen in the circuit in the 

subsequent steps. The first step starts at that time point of 

the simulation where the inequality in the last component, 

bounding the schedule time, just becomes invalid, and a new 

state of the LCP must be found. 
The rest of this section is intended to give the reader some 

insight on the course of the optimization process. It is not 
mathematically rigorous, but it should give some feeling how 

we have constructed an “auto-optimizing” circuit. 

S minimal is found. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

C. The First Step 

Let k be the index of the violated inequality, i.e., w k  = 
0 A dwk/i3t < 0. Then the z k  variable can be increased. 

On circuit level, this means that a current will flow through 

a schedule time connection, toward the predecessor with the 

highest schedule time. In this predecessor, two actions happen. 

First, the current forces the schedule time of this cell to 
decrease, As in the previous cell, this creates a current through 

one schedule time connection toward a predecessor. So each 

cell on the critical path is activated by a current to decrease its 

schedule time. By the same process, the value of w1 in each of 

these cells decreases. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs soon as in one cell this value reaches 

zero, the corresponding z1 may increase. ‘This means that 
the speed factor of that cell will increase. This decreases the 

delay of this cell, but increases the delay in its predecessors. 

However, the total schedule time over this path will decrease, 
because the global effect is used, i.e., if it would not decrease, 

w1 would not decrease. So a new state of the LCP is found 

that will be valid for the next part of the simulation. The 

newly found state is translated into the linear equations. These 

equations can be interpreted by stating that the speed factor in 

this cell now depends on the time, and that the total schedule 
time only depends on the time by this relation. 

D. Later Steps 

This process is repeated at each time point where the current 
state becomes invalid. This will happen if a speed factor 
reaches its maximum, if another piece of the piecewise linear 

approximation is reached, or if another path also becomes 
critical. In the first case, this cell is replaced by another cell 
(if it exists) and the curve can be tracked further. In the latter 

two cases, in general it is necessary to increase not only this 
speed factor, but also another cell’s speed factor. Depending 
on the size of and the freedom in the circuit, in the latest stages 

of the simulation many speed factors are manipulated and a 
large part of all schedule times is changing. Instead of one 

gate on one critical path, many gates in a critical subnetwork 

are continuously considered. 

Up till now, we have suggested that the speed factors will 

always increase. However, it may happen (see Fig. 6) that by 

decreasing one speed factor and increasing another at the same 

time the total schedule time will decrease. The speed factor 

may increase again later in the simulation. It is clear, that the 
schedule time of cells not on the critical path(s) may and will 

increase, whenever some of their successors become larger 

and faster. 

V. RESULTS 

The results can be divided in three parts: 

1) the tradeoff curves, the actual results of the simulation 

run, 
2) the comparison with the original LP solver, to compare 

the results, and 
3) the different signal curves, describing the values of 

voltages and currents as functions of time. These can 

give detailed information on the optimization process, 

and can, for example, reveal delay bottlenecks in the 

circuit. 

We have applied both the LP approach from [ 11 and the new 

PL simulator approach to thc cntire set of two-level examples 

of the MCNC benchmark suite [24], and to a group of other 

circuits. These other circuits are parameterized versions of a 
circuit that checks if a given n-bit number is prime, and, if not 

so, returns the smallest divisor. Example prn is the n-bit ver- 
sion of this circuit. These prime number circuits have proved 
to be difficult examples for synthesis and layout software. All 

circuits were processed by the EUCLID logic synthesis system 

[2] until a netlist of basic gates was obtained. During this 

processing, the examples Z5xpl and Z9sym became equal to 

5xpl and 9sym, respectively. Therefore, Z5xpl and Z9sym 
are not listed in the results. All experiments were performed 

on a HP 9000/750 workstation, running approximately 22 

MFLOPS. The speed factor was limited between 1 and 3, and 

the PL approximation of the T - S function had 3 pieces. The 

constants e, in (7) and (17) were set to 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. The Tradeoff Curves 

The computation of these curves is the main result of this 

paper. The area-delay and power-delay curves of three bench 
mark circuits are given in Figs. 3-5. The delay model used 
is for a 1.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp CMOS process. Delays are in nanoseconds. 
The solid line represents a pure area-delay tradeoff curve, 
with the area axis drawn on the left hand side. For this test, 
the area estimate was just S. The dashed line represents 
a pure power-delay tradeoff curve, with the vertical axis on 

the right hand side. The relative switching frequencies of 

the gates were obtained by performing logic simulation with 

out delay before gate sizing, with all input vectors equally 
likely. In this way, all glitching activity is neglected. Wiring 

capacitances were estimated with the model from [ 3 ] .  The 
relative difference in power consumption for the slowest and 
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the fastest solutions may seem small, but in these examples 

most power is consumed while charging and discharging the 

wires. Apex2 uses 451 pJ in the wiring, duke2 1212 pJ, 

and misex3c 2043 pJ. As mentioned before, this amount is 

constant during gate sizing. Other circuits give the same type 

of tradeoff curves, whose particular shape will depend on the 
structure of the circuit. The circuits chosen for these figures 
are so complex that the tradeoff curves seem smooth, but 
they are still piecewise linear. For simpler circuits, the curves 

have fewer sections. For more complex circuits, finding the 

complete tradeoff curve is sometimes difficult, because of 

numerical problems in finding the left-most part of the curves, 

i.e., the fastest solutions with minimal T,,,. These numerical 

problems are discussed in a later section. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B. Comparison with the LP Solver 

The solution of the dynamic LCP has to be compared with 
the LP solver with respect to the values of the solution, the run 

times and convergence properties. The results are presented 

in Table I. For both methods, the fastest solution found is 

given with its zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS. For the LCP method, the run time for 

determining the complete tradeoff curve is given, for the LP 

method only the run time for determining the fastest solution 
found is given. Furthermore, the number of gates and the 
number of linear and LCP variables in the simulator is given. 
The last two columns show the gain in speed and cost in extra 
area between the slowest (minimal S) and fastest solution, 
determined from the results of the LCP. A % faster value of 
55% means that the circuit after gate sizing has a delay of 

(100 - 55) = 45%) of the original. No circuit can become 

more than 66.7% faster when S,,, is 3. The values in bold 

face indicate solutions where both methods agree about the 

fastest solution. 

Several aspects must be noted with respect to the results. 

The problem of finding the fastest solution becomes numer- 

ically less stable for larger circuits. Therefore, the LP solver 
could not always find this solution. In those cases the fastest 

solution which did converge is tabulated in Table I. For a 

few cases, the solution with minimal S could not be 

found with the LP solver, because the right-most part of the 

tradeoff curve was too flat. This can probably be repaired by 

a more careful choice of constants in the objective function 

of the minimization problem. The simulator has comparable 

problems with the same circuits. For most circuits, the curve 

could be traced further (sometimes until the end) by changing 

the values of some internal numerical control parameters. 
Table I indicates that both methods agree for most circuits 

on the results. Especially for the smaller circuits there is no 

doubt that both methods are equivalent, and only differ by 

small numerical errors. For the larger examples, it is not 

always clear which method is better. Because in PLATO the 

control of numerical errors is more carefully designed than in 
the LP solver, we suppose that PLATO gives slightly more 

accurate results. 

The run times of both programs are comparable, although 

the LP solver calculates only one point of the total solution 
space. In Fig. 7 the run times are plotted against the size 

of the problem (in gates). This figure suggests that the run 
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TABLE 1 
RESULTS, R U N  TIMES, CHARACTERISTIC SIZES AND GAINKOST FOR SOLVING LP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAND LCP PROBLEM 

LP LCP - . #  # # zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA76 % 
gates linear LCP faster more 

Name vars vars S 

Notes: 1: 

2: 
3: 
4: 

LCP found fastest solution by adjusting numerical control parameters 

LP  could not find fastest solution 

LCP could not find fastest solution 

LP could not find slowest solution 

times are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1(n2) for this range of problems. For the LP solver 

this is justified in [3]. The estimation of the order of the run 

times of the simulator is complex, because all calculations are 

performed on sparse data structures, so the density of the linear 
equations and the connectivity in the system, and the number 

of time steps determine the run time. If the connectivity and 

density remain bounded, the run time is linear in the number of 

time steps, and is expected to be O(n) .  However, in the later 

part of the simulation, during the determination of the fastest 

possible solution, the connectivity and density grow (as will 

be explained in the next section). This might explain why the 

run time tends to grow as O(n2).. 
The cost and gain of the fastest solution compared with 

the initial, slowest solution show a wide range of values. The 

schedule time may vary between 1646% faster, while the 

extra cost in area may differ from 0.4% up to 172%. There 

is a tendency for small circuits to have low gain at relatively 

high costs, while for large circuits high gains are obtained 

at low costs. This can be explained by the fact that in qmall 
circuits there is not much freedom, because each path in the 
Boolean network contains only a few gates. After a few steps 

of the simulation, most of the network becomes critical, so 

decreasing the schedule time is only possible by increasing 
many speed factors simultaneously. Larger circuits usually 

have one or two long paths, so by increasing only the speed 

factors on these paths a faster solution can be found. 

C. Signal Curves 

For each circuit all values as function of the simulation time 
can be printed. We have chosen to show only three values of 
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Fig. 7. Run time versus number of gates 

the simplest circuit in the benchmark suite, con1 (Fig. 6). The 

reason is that many values are trivial (the component’s speed 

factor remains 1) or uninteresting (the currents in the circuit). 

A third reason is that most values show the behavior that 

is expected from the model, i.e., the speed factors increase 
monotonously, and the schedule times show a mixture of 
increasing and decreasing values, depending on their place 

in the network. One of the most interesting features, which 

is many times ignored, is that the speed factors may decrease 

during the simulation, because it gives room for other speed 

factors to increase and so decrease the total schedule time of 

the circuit. This behavior is shown exactly in Fig. 6, where 

the schedule times of the two outputs of the circuit are shown. 

First gate F1 is on the critical path, later both gates are on it. 
The speed factor of gate F2 shows an irregular behavior during 
the simulation. This can be explained by the fact that this gate 
has a low internal delay, so decreasing this delay is not so 

interesting. At certain values for the forcing schedule time, it 

is therefore advantageous to decrease the speed factor. Fig. 6 
shows that for the fastest solution only a small speed factor is 

found, while for some slower solutions a larger speed factor 

suits better. Many heuristical approaches to transistor sizing 

ignore the fact that sizes must sometimes decrease during the 
optimization process to stay near the optimal solution. 

VI. NUMERICAL ASPECTS 

One of the important conclusions that can be drawn from 

the experiments is that both solution methods for this type of 

problems show numerical problems for large examples. We 
will try to analyze these problems in qualitative terms. The 

characteristics for the problems that the methods can not solve 

are the same, i.e., both the LP solver and PLATO do not find 
the fastest solution for (most) problems exceeding a size of 

about 1000 gates. The symptoms are in many cases the same, 
namely that a pivot can not be performed because it is too 
small. Furthermore, the run time increases disproportionately 
when finding a faster solution, so most time is spent in the 

left-most part of the tradeoff curve. 

1( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
‘OoO number of gates 

300 

This last symptom can be explained by the fact that (in 

the simulator) the length of the time interval between two 

subsequent changes of the state of the LCP shortens and 

the number of matrix entries increases. These facts can be 
explained by the increasing interdependency between the 
gates, so more speed factors are changed to decrease the total 

schedule time. 

There may be two reasons for the numerical problems: the 

matrix of the LP/LCP problem may be ill-conditioned, and/or 
the convex hull spanned by the inequalities is very flat near 

the optimal solution. The first case is not likely, as can be 

seen from the inequalities (10)-(13). The coefficients are all 

close enough to 1, so an ill-conditioned matrix will occur 

if two inequalities determine nearly equal hyper-planes. This 
is not the case. For the LCP the same reasoning shows that 
both the linear equations and the LCP equations are not ill- 
conditioned. So it is most likely that the convex hull spanned 

by the inequalities is very flat near the optimal solution. 

VII. CONCLUSION 

The approach to compute tradeoff curves for gate sizing with 

a piecewise linear simulator has proved to be very effective. 

Entire tradeoff curves can be computed with about as much 

CPU time as it takes to get one point on the curve with the LP 
approach. There are some numerical problems with circuits 

with more than 1000 gates, but it should be noted that for 
these large circuits still a substantial part of the tradeoff curve 

is obtained. Because this is from the designers point of view 
probably the most interesting part (the right part), these partial 

results are still useful. 

The topic of numerical stability will be subject of further 

research, because we believe that by careful analysis of the 

source of the numerical problems we might find a way to 
avoid them. 
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