
 Open access  Journal Article  DOI:10.1137/S0036139900368571

Computing the equilibrium configuration of epitaxially strained crystalline films
— Source link 

Antonin Chambolle, Eric Bonnetier

Published on: 01 Jan 2002 - Siam Journal on Applied Mathematics (Society for Industrial and Applied Mathematics)

Topics: Surface energy and Free surface

Related papers:

 Equilibrium Configurations of Epitaxially Strained Crystalline Films: Existence and Regularity Results

 
Equilibrium Configurations of Epitaxially Strained Elastic Films: Second Order Minimality Conditions and Qualitative
Properties of Solutions

 Functions of Bounded Variation and Free Discontinuity Problems

 Material voids in elastic solids with anisotropic surface energies

 Interaction of a Bulk and a Surface Energy with a Geometrical Constraint

Share this paper:    

View more about this paper here: https://typeset.io/papers/computing-the-equilibrium-configuration-of-epitaxially-
5dag2n5swh

https://typeset.io/
https://www.doi.org/10.1137/S0036139900368571
https://typeset.io/papers/computing-the-equilibrium-configuration-of-epitaxially-5dag2n5swh
https://typeset.io/authors/antonin-chambolle-xrg4nzkhdh
https://typeset.io/authors/eric-bonnetier-2mrw9mx4s7
https://typeset.io/journals/siam-journal-on-applied-mathematics-3068zppw
https://typeset.io/topics/surface-energy-3750v7po
https://typeset.io/topics/free-surface-32ws2k9w
https://typeset.io/papers/equilibrium-configurations-of-epitaxially-strained-589ae96wf3
https://typeset.io/papers/equilibrium-configurations-of-epitaxially-strained-elastic-3f6aa3yg19
https://typeset.io/papers/functions-of-bounded-variation-and-free-discontinuity-ohe6mf4cb4
https://typeset.io/papers/material-voids-in-elastic-solids-with-anisotropic-surface-1kd88pupdi
https://typeset.io/papers/interaction-of-a-bulk-and-a-surface-energy-with-a-48rem0e7k5
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/computing-the-equilibrium-configuration-of-epitaxially-5dag2n5swh
https://twitter.com/intent/tweet?text=Computing%20the%20equilibrium%20configuration%20of%20epitaxially%20strained%20crystalline%20films&url=https://typeset.io/papers/computing-the-equilibrium-configuration-of-epitaxially-5dag2n5swh
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/computing-the-equilibrium-configuration-of-epitaxially-5dag2n5swh
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/computing-the-equilibrium-configuration-of-epitaxially-5dag2n5swh
https://typeset.io/papers/computing-the-equilibrium-configuration-of-epitaxially-5dag2n5swh


Computing the equilibrium on�gurationof epitaxially strained rystalline �lmsEri BonnetierCentre de Math�ematiques Appliqu�ees, CNRS UMR 7641Eole Polytehnique, 91128 Palaiseau, Franeeopus�mapx.polytehnique.frAntonin ChambolleCEREMADE, CNRS UMR 7534Universit�e de Paris-DauphinePlae de Lattre de Tassigny, 75775 Paris Cedex 16, Franeantonin.hambolle�eremade.dauphine.frAbstratWe study a model for shape instabilities of heteroepitaxial rystalline �lms.Lattie mis�ts between the substrate and the �lm indue elasti stresses in the�lm, whih adjusts the shape of its free surfae to redue its total energy, sumof an elasti and a surfae energy. We give a preise framework that guaranteesexistene of solutions to this variational problem. We show that equilibrium statesan be approximated using a two-phase model for representing the surfae energy.Numerial results, obtained via this approximation, are presented.Key words. �{onvergene, epitaxially stressed �lms, shape instabilitiesAMS subjet lassi�ations. 49J45, 74N201 IntrodutionThis paper is a ontribution to the mathematial formulation of morphologial in-stabilities of interfaes indued by stress rearrangement. Stress driven rearrangementinstabilities (SDRI) are observed in many branhes of material sienes, suh as fra-ture, rystal growth or orrosion. They our for instane in the epitaxial growth ofthin layers of highly strained hetero systems suh as InGaAs/GaAs or SiGe/Si, in viewof appliations to eletroni devie strutures. Beause of these instabilities, ontrollingthe growth of suh systems is a signi�ant hallenge for the Applied Physis ommu-nity (see for instane the speial issue of the MSR bulletin on this topi [17℄). Thereis also a big eonomi inentive as SiGe systems, for instane, would provide low-osthigh-performane tehnology.When a epitaxial �lm is grown on a (at) substrate, if kineti e�ets are negleted,the free surfae of the �lm is at until a ritial value of the thikness is reahed, afterwhih the free surfae beomes orrugated. Atomi-fore mirosopy images showripples, or pits and islands of pyramidal shapes, depending on the type of alloy.1



The basi mehanism that explains this behavior is the following. The lattie mis�tsbetween the substrate and the �lm indue strains in the �lm. To release some of theelasti energy due to these strains, the atoms on the free surfae of the �lm have theability to move and the resulting morphology is energetially more eonomial.The explanation put forward is that ompetition takes plae between two formsof energy, the surfae energy and the bulk elasti energy. The former is roughly pro-portional to the area of the free surfae, thus favoring at on�gurations. A simpleasymptoti omputation [13℄, shows that a at free surfae is unstable with respet tominimizing the bulk elasti energy of a linear elasti solid.A model problem has been studied in [4℄, to understand how the stability of theuniform (at) free surfae depends on the mean thikness. In this one-dimensionalformulation, the �lm oupies a strip 
 = f0 < x < 1; 0 < y < h(x)g, and stableequilibria are de�ned as global minimizers of an energy funtional that depends on thethikness h and on the displaement (in the x diretion) in the strip u(x). The problemtakes the forminfu2V;h2HE(u; h) = infu2V;h2H K Z 10 h(x)[u0(x)℄2dx+ Z 10 q1 + [h0(x)℄2dx : (1)The �rst term in the energy expression models an elasti bulk energy indued by u(x),while the seond represents the length of the urve h. The parameter K is relatedto the salings of the physial onstants (length of the speimen , mean thikness,elastiity onstants). The larger K, the larger the mean thikness (all inertial e�etshave been negleted and the model is quasi-stati).One of the issues that stems from [4℄, is the hoie of spaes of admissible displae-ments and thiknesses. In that work, whih was arried out to understand ompu-tational results obtained for the above energy [9℄, H was hosen to be the spae ofpieewise C1 positive funtions, whih satis�ed the volume onstraintZ 10 h(x)dx = 1 ; (2)reeting onservation of mass during the rearrangement proess. The spae V wassimply hosen to be x + H1(S1) (S1 denotes the torus R=(0; 1)). It turns out thatthese spaes are not adequate neither for the analysis of the problem nor for omputingpurposes. In partiular, if K is large, the equilibrium on�guration has a vertial rakthat runs from the free surfae to the bottom of the �lm. The omputations did notshow anything lose to suh a on�guration, and proved (ironially) highly unstable.A sound mathematial formulation of the minimization of the energy funtional shouldinvolve spaes of funtions whih an hene be somewhat rough; the diÆulty lies thenin de�ning the orresponding energy.These questions are at the heart of the present paper, where we study a physiallymore meaningful formulation : we onsider the �lm as a full 2-dimensional elasti solid.2



Its displaement is thus a vetor-valued funtion u(x; y). The main hange onernsthe modeling of the ontat between the substrate and the �lm. In the 1-d model,strain was reated by imposing boundary onditions on u at the endpoints. Here, theontat a�ets the �lm in a more realisti way : a Dirihlet boundary ondition isimposed at the interfae between �lm and substrate, whih models the ase of a �lmgrowing on an in�nitely rigid substrate. The enforement of this boundary onditionis what auses the �lm to be strained, i.e., what generates elasti energy.Additionally, we make the following assumptions. Firstly, we assume that theadmissible free surfaes are graphs of lower semi-ontinuous funtions. This spae isendowed with a natural topology, for whih sequenes of free surfaes with uniformlybounded length are ompat.Seondly, the on�guration is supposed to be 1-periodi in the x-diretion andthe displaements are periodi up to a linear displaement (the displaement in thesubstrate).Thirdly, we assume as in [4℄ that the �lm is made of a linear elasti material withhomogeneous Hooke's law A. Finally, we assume that the substrate is in�nitely largewith respet to the �lm and oupies the region S1 � (�1; 0℄. The ontat betweenthe substrate and the �lm osts surfae energy, and the orresponding surfae tensionis denoted by �s.This work is devoted to giving a \sound mathematial formulation" for �ndingthe equilibrium on�guration. We de�ne an energy E(
; u) for graphs 
 of l.s..funtions and for displaements u. We show that a minimizer exists and that it an beapproximated by \smooth" thiknesses, namely by thiknesses whih are Lipshitz. Itwas observed in [4℄, that when pieewise smooth thiknesses onverge to a on�gurationwith a vertial rak, the length of the rak has to be ounted twie in the limitingenergy. Our present formulation onveys the same feature.We also propose an approximation sheme for omputing minimizers. It is based ona di�usive two-phase model, one phase representing the �lm, while the other representsthe void above the free surfae. A Cahn{Hilliard energy [1, 5, 15℄ approximates thelength of the free surfae. The total energy E" depends on the displaement u and on amarker funtion v that takes the values v ' 1 in the �lm and v ' 0 in the void. The saleof the Cahn{Hilliard approximation " ontrols the width of the transition zone betweenthe two phases We show that, as " ! 0, a minimizing graph for E an be reoveredas the set of points where the sequene of approximate markers v" ! 1. We givesome numerial examples, based on the minimization of E". This method is inspiredby the approximation tehniques introdued by [3℄ for a free disontinuity problemin the ontext of image proessing, using �{onvergene [1, 6℄. The omputationsof elastially stressed binary alloys of Leo et al [14℄ use a related approah. Mullerand Grant [18℄ introdue a similar Ginzburg-Landau approah to study numerially,3



in two and three dimensions, the Grinfeld instability of the free interfae of a non-hydrostatially stressed solid. For a onise and omprehensive review about the �{onvergene and the �{limit of the Cahn{Hilliard free energy we refer to [1℄.We do not onsider in this paper the anisotropi or so-alled rystalline ase, wherethe surfae energy also depends on the orientation of the surfae of the rystal. How-ever, this an easily be done by introduing a onvex 1{homogeneous funtion '(�) ofthe normal vetor to the interfae, as a weight in the lengths in setion 2.1 (i.e., forinstane, replaing H1(�
) with R�
 '(�(x)) dH1(x) where �(x) is the normal vetorto �
 at x). In the same way, the approximation result of setion 3 holds if we replaejrv(x; y)j2 with '(rv(x; y))2 in (10). However, performing numerial omputations isa muh harder task in the rystalline ase, sine the physis require ' to be singular(only Lipshitz{ontinuous).The paper is organized as follows : in Setion 2 the energy funtional E is de�nedin details and the lower semi-ontinuity of the surfae energy is stated (Lemma 1).Existene of a minimizer is then proved (Theorem 1). In Setion 3, we introdue theapproximating energies E" and we give the main theorem of this paper, Theorem 2,that states �-onvergene of the energies E" towards E. Numerial examples using theapproximating energies E" are given in Setion 4. The proofs of Lemma 1 and 2 �llin Setions 5 and 6, respetively. Finally, the Appendix groups a few results aboutfuntions with bounded variation, that are used in the text.We do not address the issue of stability with respet to the mean thikness. Theseaspets will be treated subsequently.2 Statement of the problem and existene of a minimizerIn the whole paper, Q denotes the 2-dimensional spae S1 � R (S1 = R=Z), Q+ =S1 � (0;+1), and for any a > 0, Qa = S1 � (0; a). The anonial projetion from R2onto Q will be denoted by �, however, in some non ambiguous situations it will not beexpliitly mentioned.We will denote by G the set of all open subsets 
 of Q that are the sub-graph of anon-negative l.s.. funtion h : S1![0;+1):
 2 G () 9h : S1![0;+1) l.s..;
 = f(x; y) 2 Q : y < h(x)g:Note that if 
 2 G, �
 � Q+ = Q+ [ (S1 � f0g). Stating that 
 2 G is equivalent tosaying that Q� = Q n Q+ � 
 and that for any (x; y) 2 
, fxg � (�1; y℄ � 
. Wealso denote by GL � G the sub-graphs of non-negative Lipshitz funtions.If (
n)n�1 is a sequene of open sets, we say that it onverges to 
 as n goes toin�nity if it onverges to 
 in the Hausdor�-omplement topology, i.e. if 
 = Q n
 isthe Hausdor� limit of the omplements 
n. We observe that G is losed in the set of4



all open subsets of Q, indeed, if 
n are the sub-graphs of funtions hn and 
n onvergeto 
 as n goes to in�nity, then 
 is the sub-graph of the funtionh(x) = infxn!x lim infn!1 hn(xn);in fat we have G = GL.2.1 The surfae energyGiven �, �s > 0, we de�ne the surfae energy of a regular domain 
 2 GL asL0(
) = �H1(�
 \Q+) + �sH1(�
 nQ+):(Notie that �
nQ+ = �
\ (S1�f0g).) The idea is that the part �
\Q+ representsthe free surfae of the rystal, whose surfae tension is �, whereas �
nQ+ is the surfaeof the substratum that is not reovered by the rystal, and whose surfae tension is �s.We extend L0 to G by setting L0(
) = +1 if 
 2 G n GL, and de�ne the relaxedsurfae energy L : G![0;+1℄ as the lower semiontinuous envelope of L0. We havethe following lemma:Lemma 1 let 
 2 G, and let h; h be the l.s.. funtions suh that
 = f(x; y) 2 Q : y < h(x)g and Æ
 = f(x; y) 2 Q : y < h(x)g: (3)ThenL(
) = �8<:H1(�
 \Q+) + 2 Xx2S1 �h(x)� h(x)�9=; + (� ^ �s)H1(�
 nQ+): (4)The proof of Lemma 1 is given in setion 5. One onsequene of this lemma, inpartiular, is the fat that if �s > �, it is better to reover all of the substratum withan in�nitesimal layer of rystal atoms and pay the lower surfae tension � instead ofleaving free any part of the surfae of the substratum.2.2 The global energy funtionalWe now introdue the energyE(
; u) = K Z
\Q+Ae(u)(x; y):e(u)(x; y) dxdy + L(
); (5)de�ned for any 
 2 G and u 2 X(
), where X(
) denotes the set of funtions u 2L2lo(��1(
);R2), u(x; y) � x for y � 0, u(x; y) � (x; 0) whih are 1{periodi in x,and suh that the linear deformation tensor (the symmetrized gradient) e(u) is inL2(
 \ Q+;R4). The matrix A = (ai j k l) is a positive-de�nite symmetri tensor of5



order 4 (suh that ai j k l = aj i k l = ak l i j for any i; j; k; l 2 f1; 2g). The salar parameterK is related to the salings of the physial onstants and it balanes the inuene ofeah term in the energy. In the rest of the paper (exept in Setion 4, where weillustrate the dependene on K) for simpliity we set K = 1 without loss of generality.2.3 The problemWe onsider the following minimization problemmin
2G;u2X(
)E(
; u) subjet to: j
 \Q+j = 1: (6)The volume onstraint reets onservation of mass: the model assumes that the re-laxation of the �lm is muh faster than the rate of deposition. We prove the followingTheorem 1 Problem (6) has a solution.Proof. Consider (
n; un) a minimizing sequene for (6). Sine j
n \ Q+j + L(
n) isbounded, 
n\Q+ is uniformly bounded. Up to a subsequene (not relabeled) we maythus assume that it onverges to a domain 
 2 G, with j
 \ Q+j = 1 and, sine L isl.s.., L(
) � lim infn!1 L(
n): (7)The funtion e(un), that we extend to zero outside of 
n, is uniformly boundedin L2(Q+;R4). We thus may assume it onverges weakly to some funtion E 2L2(Q+;R4). In partiular, we haveZ
\Q+AE(x; y):E(x; y) dxdy � lim infn!1 Z
n\Q+Ae(un)(x; y):e(un)(x; y) dxdy: (8)Remark. It an be shown that E = 0 a.e. in Q n 
. Indeed, if K is the Hausdor�limit of some onverging subsequene of (�
n)n�1, one an prove that H1(K) < +1,thus jKj = 0, and that 
 [ K is the Hausdor� limit of 
n, or equivalently that thedomains Q n 
n onverge to Q n (
 [K) (see setion 5.1 for details). Thus E = 0 inQ n (
 [K) and sine jKj = 0, a.e. in Q n 
.Let A � 
 be a Lipshitz sub-graph, with A\Q+ �� 
. (For simpliity we assumeA � Q�, although it is not essential.) For n large enough, A � 
n and un is de�nedon ��1(A). By Korn's inequality, sine un(x; y)� (x; 0) � 0 for y � 0 and sine �A isLipshitz, there exist  = (A) and 0 = 0(A;A) suh thatZA\Q+ jun(x; y)j2 dxdy �  ZA\Q+ e(un)(x; y):e(un)(x; y) dxdy � 0E(
n; un):Thus un is uniformly bounded on A \ Q+, so that some subsequene of (un) weaklyonverges (in fat, strongly) in L2(A;R2) to some funtion u. Sine learly u(x; y) �6



(x; 0) � 0 for y � 0 and e(u) = E , the limit point u is unique and the whole sequene(un) onverges to u.Sine it holds for any Lipshitz sub-graph A \ Q+ �� 
, this shows that thereexists u 2 L2lo(��1(
);R2), 1{periodi in x, with u(x; y) � (x; 0) � 0 for y � 0, andsuh that E = e(u) in the distributional sense in 
. With (7) and (8), we onlude thatu 2 X(
) and that (
; u) is a solution of problem (6).3 An approximation sheme for problem (6)Given a (small) sale parameter " > 0, we now introdue the following approximationof the energy E. We �rst hoose �" > 0 suh that �" = o(") as " goes to zero. Thenwe let E"(v; u) = ZQ+(v(x; y) + �")Ae(u)(x; y):e(u)(x; y) dxdy + L"(v); (9)whereL"(v) = 2� �4"�2 ZQ+ jrv(x; y)j2 dxdy + 1" ZQ+ v(x; y)(1 � v(x; y)) dxdy� ; (10)for v 2 H1(Q+) satisfying 0 � v(x; y) � 1, �yv(x; y) � 0 a.e. in Q+, and v � vs onS1 � f0g, and u 2 H1lo(R �R+;R2) suh that u(x; y) � (x; 0) is 1{periodi in x andvanishes on R� f0g. The onstant vs 2 (0; 1℄ is given byZ vs0 qt(1� t) dt = � ^ �s� Z 10 qt(1� t) dt = � ^ �s� �8 : (11)On the other hand, if v; u do not satisfy these properties we set E"(v; u) = +1.It is well known that the Cahn{Hilliard energy L" is an approximation, in thesense of �{onvergene, of the perimeter [15℄. In this partiular setting we show thefollowing result, whih stritly speaking is not a result of �{onvergene, but has thesame pratial onsequenes for the omputation of minimizers of E.Theorem 2 Let ("n)n�1 be an arbitrary sequene of positive numbers with "n # 0 asn!1.(i) Let (vn; un) be funtions suh thatsupn�1E"(vn; un) < +1 (12)and supn�1 RQ+ vn(�) d� < +1. Then there exist 
 2 G, u 2 X(
), and asubsequene of (vn; un)n�1, still denoted by (vn; un), suh that vn!�
 a.e. inQ+, un!u in L2lo(��1(
);R2) as n goes to in�nity, andE(
; u) � lim infn!1 E"n(vn; un): (13)7



(ii) Let 
 2 G, u 2 X(
). Then there exists a sequene (vn; un)n�1 suh that vn!�
a.e. in Q+, un!u in L2lo(
 \Q+;R2) as n goes to in�nity, andlim supn!1 E"n(vn; un) � E(
; u): (14)Moreover, we an assume that for all n, RQ+ vn(x; y) dxdy = j
 \Q+j.In partiular, this theorem shows that if v"; u" are minimizers of E", subjet to theonstraint RQ+ v"(x; y) dxdy = 1, then, to eah limit point u of (u")">0 orresponds aset 
 with j
 \Q+j = 1, suh that (
; u) is a solution of problem (6).4 Numerial examplesThe purpose of this Setion is purely illustrative : we present a few shapes obtainedby minimizing approximate energiesE"(v; u) = K ZQ+(v(x; y) + �")Ae(u)(x; y):e(u)(x; y) dxdy + L"(v); (15)with L" given by (10). The expression (15) only di�ers from (9) by the presene of theparameter K in front of the elasti energy. It is related to the saling from the physialdimensions to the model problem [4℄, and roughly measures the mean thikness of thespeimen. One expets that when K is small, the term of surfae energy is dominantand therefore �lms with a at free-surfae should minimize the energy. When Kbeomes large, minimizers should show a orrugated free-surfae.This energy is minimized under the onstraints8>><>>: u(x; 0) = (x; 0); v(x; 0) � vsu� (x; 0) and v are 1-periodi in x0 � v � 1; �yv � 0 and ZQ1 v = V: (16)For a �xed value of ", we propose an iterative algorithm, based on a �nite di�erenedisretization, to minimize the energy (15). The omputations are performed on a �xedretangle Q1 = S1 � (0; 1), but the results are displayed on two periods. The domainQ1 is disretized by a artesian mesh : a 200�200 mesh in the omputations presentedhere.At the nth step of the algorithm, the values of un+1 are omputed in a standardmanner, as approximations of the solutions to the Euler equationdiv((vn + �")Ae(un+1)) = 0 ;with the boundary onditions and the periodiity given above.8



For the density, our approah is inspired by algorithms for motion by mean ur-vature desribed in [19, 20℄, where in L" a non-regular potential of the same form isused. Minimizers of E"(:; un+1) are omputed as if they were stationary states of theparaboli problem8<: �tv = 2� � 8"�2�v � 1="(1 � 2v)� �Ae(un+1) : e(un+1)� �0 � v � 1 ; �yv � 0 ; (17)with the initial ondition v(0)n+1 = vn, and where � is a Lagrange multiplier for thevolume onstraint RQ1 v = V . More preisely, we ompute funtions v(k+1)n+1 1{periodiin x and suh that v(k+1)n+1 (x; 0) � vs, approximate solutions to the following variationalproblem 8>>>>>>>><>>>>>>>>:
1=Æ ZQ1(v(k+1)n+1 � v(k)n+1)'+ 2� � 8"�2 ZQ1 rv(k+1)n+1 r'+ 1=" ZQ1(1� v(k+1)n+1 )'�+ ZQ1(�+Ae(un+1) : e(un+1))' = 0 ; (18)where the test funtions ' are 1{periodi in x and satisfy '(x; 0) = 0. The onstraints0 � v(k+1)n+1 � 1 and �yv(k+1)n+1 � 0 are then enfored at eah iteration by a simpletrunation. The parameter Æ orresponds to an arti�ial time step in view of (17), andis required to be smaller than "=2�. In this manner, the variational problem above isthe Euler-Lagrange equation of a onvex minimization problem, and therefore existeneof a solution v(k+1)n+1 is guaranteed.One of the virtues of this method is that the energy E" is dereasing in the ourseof the algorithm. Indeed, sine (18) expresses that v(k+1)n+1 is the minimizer of the energyE"(�; un+1) + 1=2Æ RQ1 j � �v(k)n+1j2, one easily heks thatE"(v(k+1)n+1 ; un+1)�E"(v(k)n+1; un+1) � �1=2Æ ZQ1 jv(k+1)n+1 � v(k)n+1j2 :When E"(v(k)n+1; un+1) has beome stationary, we assign vn+1 = v(k)n+1.This method for omputing equilibrium shapes thus depends on several parameters :"; �"; Æ, and the mesh-size h. The transition zone should be desribed by at least a fewmesh-points. In fat, during the omputations, we let " vary from 20 mesh sizes to 3.The parameter �" has been hosen equal to 0:001. The Hooke's law of the �lm is thatof an isotropi elasti material, with Lam�e onstants � = 1 and � = 2.We �rst illustrate the results obtained by this algorithm when onsidering a one{dimensional approximation for the elasti displaement, like in (1). The approximate9



energy funtionals redue then toE"(v; u) = K ZQ1(v(x; y) + �")j�xu1j2 + L"(v);where u1(x) denotes the average in y of the x�omponent of the displaement. Inthis ontext, it was shown in [4℄ that for K large, the optimal on�guration of the freesurfae onsisted of half irles separated by raks. Figure 1 shows that the algorithmdoes apture the optimal on�guration.

Figure 1: Equilibrium shape for the 1-d model.The rest of the �gures are pertinent to the energy (15). The value of the density onthe bottom of the �lm has been hosen to be v � vs = 0:99 unless stated otherwise, andthe volume of the �lm is onstrained to be equal to V = 0:2. In those omputationsthe initial shape has the form v0(y) + a sin(2�nx)f(y). The funtion v0 is the optimalpro�le assoiated with minimizing, under the volume onstraint, the energy L" only,see (44). If the presribed volume of the �lm is V , v0 has the expression :v0(y) = 8><>: 1 if y � V � ";12 (1� sin �(y�V )2" ) if V � " � y � V + " :0 if y � V + ":The remaining term in the expression of the initial shape is a perturbation, onsistingof a sinusoidal funtion in x, times a funtion f of y whose main attribute is to beonentrated in the transition zone of v0. The hoie of the x�dependene of theperturbation stems from a linearized stability analysis around the shape v0, whih anbe shown to be a global minimizer for the energy E", when K is small, orrespondingto the at free-surfae 
 = S1� (0; V ) solution to (6). These aspets will be disussedelsewhere, however.Figure 2 shows the initial and �nal shapes for a omputation with K = 0:5. Theinitial shape is v0(y) plus a perturbation of amplitude a = 0:4 and frequeny n = 2.10



The resulting free surfae is at, whih is onsistent with the small value of K. Figure 3shows the variations of the total energy, of its elasti and surfae energy omponentsduring this omputation
Figure 2: Initial and �nal shapes, K=0.05
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Figure 3: Energies, K=0.5, initial shape v0(y) + 0:05 sin(2�x)f(y)Figure 4 shows the initial shape (with amplitude a = 0:7 and frequeny n = 1),and the �nal shapes resulting from the algorithm when K = 6 and for three di�erentvalues of vs (0:99, 0:6 and 0:4). Contrarily to the one-dimensional model, no sharpraks are observed, rather wide zones with a nearly barren substrate are formed,while the �lm forms bumps in the shape of milestones. The width of the base of thesemilestones depends on the value of vs : this reets the fat that vs is itself a funtionof the ratio �=�s, and determines the ost of leaving the substrate barren. Figure 5shows the history of energies, when vs = 0:99. Finally, we present some results thatdemonstrate the unstable behavior of the system for large values of K. Figure 6 showsvarious images of the on�gurations obtained during a omputation with K = 20,initiated with the pro�le v0(y) whih is a loal minimum. After a large number ofiterations when nothing seems to happen to the `at surfae', instabilities are triggeredby round-o� errors. One observes orrugations that �nally merge together to form aunique bigger milestone. Figure 7 shows the orresponding energies.11



Figure 4: Initial and �nal shapes, K=6
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Figure 5: Energies, K = 6, vs = 0:995 Proof of Lemma 1In order to prove Lemma 1, we need to show that(i) given any 
n onverging to 
 in G,L(
) � lim infn!1 L0(
n); (19)and that(ii) for any 
 2 G, there exists a sequene 
n onverging to 
 suh thatlim supn!1 L0(
n) � L(
); (20)where L is de�ned by equation (4). 12



Figure 6: Shapes at iterations 1936, 1940, 1944, 1948, 2000, 2100, K=20,initial shapev0(y)5.1 Proof of (i)To show (i), we onsider 
n onverging to 
 in G. Without loss of generality we anassume that a = supn L0(
n) + j
n \ Q+j < +1 (sine if lim infn!1 L0(
n) = +1there is nothing to prove, and if j
n \Q+j!1 and L0(
n) is bounded 
n onvergesto Q 62 G). In partiular, the 
n are sub-graphs of Lipshitz funtions hn : S1![0; a).Clearly, �
n � Qa, so that we may assume (by extrating a subsequene, stilldenoted by (
n)) that the boundaries �
n onverge in the Hausdor� metri to someompat set K. Notie that we easily dedue that 
n onverge to 
[K in the Hausdor�sense: indeed if � 2 
[K, either � 2 
 and therefore � 2 
n for large n, or � 2 K andthere exists �n 2 �
n � 
n suh that � = limn!1 �n. Conversely if �n 2 
n for all nand onverge to some � as n goes to in�nity, if � 62 
 then there exists �0n 2 Q n 
nwith � = limn!1 �0n (sine Q n
n onverge to Q n
 in the Hausdor� sense) and thereexists �00n 2 [�n; �0n)\ �
n: sine �00n!�, we dedue that � 2 K. In a similar way we anshow that �
 � K.Then, invoking Go lab's theorem (see [12, 16, 8℄), �
n being a sequene of uniformlybounded one-dimensional ompat onneted sets, we get thatH1(�
) � H1(K) � lim infn!1 H1(�
n) < +1: (21)Moreover, the proofs of Go lab's theorem based on measure density arguments(see [16℄) also show that the measures �n = H1 �
n, up to a subsequene (not13
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Figure 7: Energies, K=20, initial shape y(x) = 1relabeled), onverge weakly-� to a measure � supported by K suh thatH1 K � �: (22)We de�ne the l.s.. funtions h; h : S![0; a℄ as h(x) = minfy : (x; y) 62 
g (resp.,h(x) = minfy : (x; y) 62 Æ
g) so that (3) holds. Sine 
 � Æ
, h � h.We �rst observe that �
 is the disjoint union of �
 and �Sx2S1fxg � [h(x); h(x)�.Together with (21), this implies that h(x) = h(x) exept for at most ountably manyx 2 S1. As a matter of fat, �
 = 
 n Æ
 � 
 n 
 = �
. Then, �
 n �
 = Æ
 n 
, sothat by de�nition of h and h,�
 n �
 = n(x; y) 2 Q : h(x) � y < h(x)o = [x2S1fxg � hh(x); h(x)� ;whih proves the laim.We now de�ne the measures �n = �H1 �
n \Q+ + �sH1 �
n nQ+. It is notrestritive to assume that �n onverges weakly-� to a positive measure � as n goes toin�nity, and we learly have(�s ^ �)� � � � (�s _ �)�: (23)Moreover, sine Q+ is open and �n Q+ = ��n Q+ for all n, we also have� Q+ = �� Q+ (24)To dedue (19), it remains to show that the one-dimensional density of � on theset �
 n �
 = Sx2S1fxg � [h(x); h(x)) is at least 2�. Indeed, sinelim infn!1 L0(
n) = lim infn!1 �n(Q) � �(Q) = �(K)� �(�
) = �(�
 \Q+) + �(�
 nQ+) + � ��
 n �
�;14



it will imply together with (22), (23) and (24) thatlim infn!1 L0(
n) ��H1(�
 \Q+) + (� ^ �s)H1(�
 nQ+) + 2�H1 ��
 n �
� = L(
):It remains therefore to show that for H1{almost any � = (x; y) 2 �
 n �
,lim sup�#0 �(B(�; �))2� � 2�: (25)Choose suh a �, with h(x) < y (we exlude the ase h(x) = y sine f(x; h(x)) : h(x) <h(x)g is at most ountable, and thus H1{negligible) and � > 0 small enough, so thath(x) < y � �, y + � < h(x), and B(�; 2�) � Æ
.For some Æ > 0 small enough, (x; y � �� Æ) 62 
, so that there exists (xn; yn) 62 
nsuh that (xn; yn)!(x; y� �� Æ) as n goes to in�nity. If n is large enough, yn < y� �,and hn(xn) < y � �, where hn is the Lipshitz funtion whose sub-graph is 
n.Fix " > 0 small (" << �) and hoose x0; x00 with x�" < x0 < x < x00 < x+". Choosealso y0; y00 suh that (x0; y0); (x00; y00) 2 B(�; 2�)nB(�; �) and y0 > y+�, y00 > y+�. Sinethe 
n onverge in the Hausdor� sense to 
 [K � 
, and sine (x0; y0); (x00; y00) 2 
,there are sequenes (x0n; y0n) and (x00n; y00n) onverging respetively to (x0; y0) and (x00; y00)suh that (x0n; y0n); (x00n; y00n) 2 
n for all n.If n is large enough, x � " < x0n < xn < x00n < x + ", and hn(x0n), hn(x00n) > y + �,hn(xn) < y� �, so that the length of the graph �
n of hn inside the ball B(�; �) mustbe at least 2 � 2�� O("2). We dedue that for large n, �n(B(�; �)) � 2� 2� � O("2),and therefore �(B(�; �)) � lim supn!1 �n(B(�; �)) � 2� 2� � O("2). Sending " to 0,we get that for any (small) � > 0, �(B(�; �))2� � 2�;so that (25) learly holds.5.2 Proof of (ii)We now must build, given 
 2 G, a sequene 
n onverging to 
 satisfying (20). It isof ourse not restritive to assume that L(
) < +1.We onsider the l.s.. funtions h and h as in (3). Sine L(
) < +1, h andh are bounded and h(x) = h(x) exept for an at most ountable number of pointsx 2 S1. Moreover, h and h are funtions of bounded variation, in the lassial sense(see Appendix A, and in partiular setion A.2.2 and inequality (53)). They thus havea right and left limit at eah point. Now, sine h = h a.e., we dedue that for anyx 2 S1, h(x�0) = h(x�0) and h(x+0) = h(x+0) (where h(x�0) = lim"#0+ h(x�")).15



Now, h being onsidered as a 1{periodi funtion de�ned on the whole real line(meaning that we still denote by h what should theoretially be h Æ �), for all n � 1let hn be the n{Lipshitz 1{periodi and non-negative funtion de�ned byhn(x) = infx02Rh(x0) + njx� x0j (26)and de�ne 
n 2 G as the sub-graph of hn. Notie that sine h is l.s.., the in�mumin (26) is reahed. Sine hn � h, 
n � 
. It is also well-known that for all x,hn(x) " h(x) as n!1. Let us show that 
 is the limit of the sequene (
n)n�1. LetA be the limit of some onverging subsequene (
nk)k�1. Sine 
n is inreasing itis not diÆult to show that A is the limit of the whole sequene (
n)n�1. Clearly,A � 
, and we want to show the reverse inequality. Let � = (x; y) 62 A. There exist�n = (xn; yn) 62 
n, suh that �n!� as n!1. Sine the in�mum is reahed in (26),there exist x0n suh that yn � hn(xn) = h(x0n) + njxn � x0njfor every n. In partiular sine (yn)n�1 is bounded, x0n!x as n goes to in�nity. Sineh is l.s.., we dedue thath(x) � lim infn!1 h(x0n) � lim infn!1 yn = y;so that � 62 
: therefore 
 � A, and we have proved that 
 is the limit of 
n.Now, we show that (20) holds for the sequene 
n. We have �
n = �
n =f(x; hn(x)) : x 2 S1g.We split �
n into two parts, �
n \ �
 and �
n n �
. First notie that �
 \ �
nis essentially equal to �
 \ �
n. Indeed, let (x; y) 2 �
n \ (�
 n �
). We havey = hn(x) � h(x), and h(x) � y < h(x), thus y = h(x) and h(x) < h(x), but we knowthat this happens for at most a ountable number of points x. Thus, �
n \ (�
 n �
)is at most ountable.Now, suppose that hn(x) = 0: then there exists x0 2 R suh that h(x0)+njx�x0j =0. Sine h is non-negative, it implies that x0 = x and h(x) = 0. On the other hand, ifh(x) = 0, sine 0 � hn � h, hn(x) = 0. We dedue that �
n nQ+ = �
 nQ+ for anyn � 1, moreover this set is essentially equal to �
 nQ+.We thus dedue that, for every n,L0(
n) = �sH1(�
n nQ+) + �H1(�
n \Q+)= �sH1(�
 nQ+) + �H1(�
 \ �
n \Q+) + �H1(�
n n �
): (27)We need now to estimate H1(�
n n �
). Notie that learly, �
n n �
 = f(x; hn(x)) :hn(x) < h(x)g. Sine �
n n �
 is open, it an be written as a disjoint union of openonneted ars: �
n n �
 = [k2Kf(x; hn(x)) : x 2 Ikg16



where the set K is �nite or ountable, and for eah k, Ik = (ak; bk) � S1 is an openinterval.Fix k 2 K and onsider suh a Ik. We laim that for all x 2 Ik,hn(x) = minfh(ak) + njx� akj; h(bk) + njx� bkjg: (28)In order to simplify the notations we temporarily drop the subsript k, and lettherefore I = (a; b) = Ik. We an onsider (a; b) as an interval in R, with a < b. Sinehn is n{Lipshitz, hn(x)�hn(a) � njx�aj so that for any x, hn(x) � hn(a)+njx�aj �h(a) + njx� aj. Thus, hn(x) � minfh(a) + njx� aj; h(b) + njx� bjg.Assume now that there exists x 2 I suh that the inequality is strit, and let x0 2 Rbe a point where the in�mum is reahed in (26). We have h(x0) + njx� x0j = hn(x) <h(a) + njx� aj, so that if x0 � a, h(x0) + nja� x0j < h(a), but this is in ontraditionwith the fat that hn(a) = h(a): thus x0 > a. In the same way, we show that x0 < b,so that x0 2 I.But if x00 is suh that hn(x0) = h(x00) + njx0 � x00j, then,hn(x) � hn(x00) + njx00 � xj (sine hn is n{Lipshitz)� h(x00) + njx00 � x0j + njx0 � xj= hn(x0) + njx0 � xj� h(x0) + njx0 � xj = hn(x);so that hn(x0) = h(x0) and x0 62 I. Therefore x an not exist, and (28) holds for everypoint in I = Ik.We dedue an estimate for the ontribution of the interval I = Ik to the length of�
n n �
. We onsider the two ases(a) for all x 2 I, hn(x) = h(a) + n(x� a) (or hn(x) = h(b) + n(b� x));(b) there exists  2 I suh that hn(x) = h(a) + n(x � a) for all x 2 (a; ℄ andhn(x) = h(b) + n(b� x) for all x 2 [; b).In the �rst ase, the graph of hn in I � R is a straight line going from (a; h(a)) to(b; h(b)), while the boundary �
 \ (I � R) ontains a urve onneting these twopoints. This urve is made of a possible piee of straight line going from (a; h(a)) to(a; h(a+0)), then a urve going from (a; h(a+0)) to (b; h(b�0)), essentially ontainedin �
\ (I�R), and then another possible piee of straight line going from (b; h(b�0))to (b; h(b)), so thatH1(�
n\(Ik�R)) � h(ak+0)�h(ak) + h(bk�0)�h(bk) + H1(�
\(Ik�R)): (29)In the ase (b), the graph of hn in I �R is made of two straight lines, one goingfrom (a; h(a)) to (; hn()) and the other from (; hn()) to (b; h(b)). The boundary17



�
 \ (I � R) ontains a urve onneting (a; h(a)) to (b; h(b)), and passing throughthe point (; h()), and sine maxfh(a); h(b)g < hn() < h(), (29) still holds.Summing over k 2 K, we dedue thatH1(�
n n�
) � H10��
 \ [k2K(Ik �R)1A + Xk2K h(ak+0)�h(ak) + h(bk�0)�h(bk):(30)Now, it is possible to show that for any x, if for instane h(x + 0) � h(x � 0), then(realling that h and h are l.s..) h(x) = h(x� 0) andh(x+ 0) + h(x� 0)� 2h(x) = h(x+ 0)� h(x) + 2h(x)� 2h(x)= H1(�
 \ (fxg �R)) + 2(h(x)� h(x)): (31)From (30) and (31), we dedue thatH1(�
n n �
) � H10��
 \ [k2K(Ik �R)1A + 2H1(�
 n �
): (32)Now, it is lear that �
 \ Sk2K(Ik � R) is ontained in Q+, and that, up to an atmost ountable number of points, it is disjoint from �
 \ �
n \ Q+. So that we andedue from (27) and (32) thatL0(
n) � �sH1(�
 nQ+) + � �H1(�
 \Q+) + 2H1(�
 n �
)� = L(
);thus (20) holds and (ii) is proved. This ahieves the proof of Lemma 1.6 Proof of Theorem 26.1 Proof of point (i) of the theoremGiven a sequene ("n)n�1 with "n # 0 as n goes to in�nity, we �rst onsider a sequene(vn; un)n�1 that satis�es (12).Then, by standard results [15, 1℄ on the Cahn{Hilliard energy L", we know thatup to a subsequene (still denoted by vn), there exists a Caioppoli set F � Q+ suhthat vn!�F a.e. in Q+, moreover,�H1(��F ) � lim infn!1 L"n(vn); (33)where ��F is the redued boundary of F inside Q+. Sine supn�1 RQ+ vn(�) d� < +1the set F is bounded, and sine �yvn � 0, F [ Q� is Lebesgue{essentially equivalentto the sub-graph of a (non-negative) bounded variation funtion g : S1![0;+1).18



Now �x an integer k � 2 and write for every n, using the o-area formula (see (54),Appendix A)�Z 1k1k+1 jD�fvn>sgj(Q+) ds = k(k + 1) Zf�2Q+: 1k+1<vn(�)< 1k g jrvn(�)j d�� (k(k + 1)) 32 ZQ+ jrvn(�)jqvn(�)(1 � vn(�)) d�� (k(k + 1)) 32 �8�L"n(vn)whih by (12) is uniformly bounded by some onstant k. We dedue that there exista level skn 2 ( 1k+1 ; 1k ) suh that jD�fvn>skngj(Q+) � k.Moreover, sine �yvn � 0, fvn > skng is the sub-graph of some funtion of boundedvariation. Thus, if we de�ne hkn : S1![0;+1) to be the largest l.s.. representative ofthis funtion, the open set 
kn = f(x; y) 2 Q : y < hkn(x)g 2 G is suh that Æ
kn = 
knand is (Lebesgue{) essentially equal in Q+ to fvn > skng. In partiular, vn > skn a.e.in 
kn, vn � skn a.e. out of 
kn, and H1(�
kn \ Q+) = jD�fvn>skngj(Q+) � k so thatH1(�
kn) � 1 + k.De�ne the sequene (n1p)p�1 by n1p = p for every p. For eah k = 2; 3; : : :, wean extrat (by indution) from the sequene (nk�1p ) a sequene (nkp) suh that 
knkponverges to some open set 
k 2 G as p goes to in�nity. We build in this way a familyof sets (
k)k�2 suh that for every k, the sequene (
knpp) onverges to 
k in G.In the sequel we will relabel this subsequene and denote again by n what shouldbe npp.We let 
 = Sk�2
k andN = �� 2 Q+ : vn(�) 6! �F (�) as n!1	[[k;n�nvn > skno n 
kn� [ �nvn � skno \ 
kn� ;and observe that jN j = 0. Notie that 
 has the following haraterization:Q n 
 = f� 2 Q : 8� > 0; limn!1 inf essB(�;�)vn = 0g (34)Indeed, onsider � 62 
, and �x � > 0. For any �xed k � 2, there exists �n 62 
kn suhthat �n!�. But sine jN j = 0 and 
kn = Æ
kn, we have that jB(�n; �=2) n
kn nN j > 0. Ifn is large enough, j�n � �j < �=2, therefore B(�; �) � B(�n; �=2) and inf essB(�;�)vn �skn < 1=k. This shows that for every k � 2, lim supn!1 inf essB(�;�)vn � 1=k: thuslimn!1 inf essB(�;�)vn = 0. We will not need it in the sequel, but it is also easy to showthat if � 2 
, then lim supn!1 inf essB(�;�)vn > 0.19



We will now prove that the set 
 satis�es the thesis of point (i) of Theorem 2. Wewill �rst show that L(
) � lim infn!1 L"n(vn); (35)in setion 6.1.1 and then, in setion 6.1.2, we will show that (up to a subsequene) unonverges to a funtion u suh thatZ
\Q+Ae(u)(x; y):e(u)(x; y) dxdy� lim infn!1 ZQ+(vn(x; y) + �"n)Ae(un)(x; y):e(un)(x; y) dxdy (36)6.1.1 Estimate of L(
)In order to show (35) we need more information on the struture of �
 and on therelationship of 
 with F .Notie that if � 2 
 n N \ Q+, � 2 
k for some k, and therefore � 2 
kn forlarge n. In partiular, vn(�) > skn > 1=(k + 1) and sine it tends either to 0 or to 1,limn!1 vn(�) = 1 and � 2 F . Therefore 
 \Q+ nN � F .On the other hand, we laim that jF n 
j = 0.Indeed, we �rst notie that, given any k � 2, �
kn!�
k a.e. in Q+ as n!1(up to a subsequene) and thus, for instane, in L2(Qa) for every a > 0. This istrue beause up to a subsequene, we an assume that �
kn tends to some ompatsubset K � Q+ in the Hausdor� sense: then, by Go lab's theorem (see [12, 8, 16℄)H1(K) � lim infn!1H1(�
kn) < +1 (sine H1(�
kn) � 1 + k for every n) and thusjKj = 0. Eventually, observe that if � 2 
k, then � 2 
kn for large n and �
kn(�) = 1,and that if � 62 
k [K, we an easily show that � 62 
kn for large n and �
kn(�) = 0 (seesetion 5.1 for details of a similar proof).Then, we have vn!1 a.e. in F , and in partiular vn�F!�F in L2(Q+). Thus,jQa \ F n 
kj = ZQa �F (�)(1 � �
k)(�) d�= limn!1 ZQa vn(�)�F (�)(1 � �
kn)(�) d�= limn!1 ZQa vn(�)�F (�)�fvn�skng(�) d�� limn!1 1k ZQa �F (�)(1� �
kn)(�) d� = 1k jQa \ F n 
kj;so that jQa\F n
kj must be zero for any a > 0. This shows that jF n
kj = 0, and sine
k � 
 it proves the laim. We onlude that 
\Q+ = F up to a Lebesgue{negligibleset.Reall that F is the sub-graph of a funtion of bounded variation g 2 BV (S1). Leth be the greatest l.s.. representative of g (h an be built, for instane, as the l.s..20



envelope of any upper-semiontinuous representative of g). Sine 
 \Q+ = F up to aLebesgue{negligible set, we easily show thatÆ
 = f(x; y) 2 Q : y < h(x)g;and that �
 \Q+ is H1{essentially equal to ��F .For any Borel set B � Q we introdue the following loalization of L"L"(v;B) = 2� � 4"�2 ZQ+\B jrv(x; y)j2 dxdy + 1" ZQ+\B v(x; y)(1 � v(x; y)) dxdy� :(37)For any open set A, we also have �H1(��F\A) � lim infn!1 L"n(vn; A). In partiular,if we hoose Æ > 0, and de�ne AÆ = f� 2 Q : dist(�; �
 \Q+) < Æg, we have that�H1(�
 \Q+) � lim infn!1 L"n(vn; AÆ): (38)De�ne now BÆ = f� 2 Q n AÆ : dist(�; �
 n Q+) < Æg: BÆ \ �
 is a �nite union ofsegments in S1. We want to estimate H1(�
\BÆ). Write �
\BÆ = SNk=1(ak; bk)�f0g.We have for any Æ0 � ÆL"n(vn; BÆ) � NXk=1 Z bkak (2� Z Æ00 4"n�2 j�yvn(x; y)j2 + vn(x; y)(1 � vn(x; y))"n dy) dx� NXk=1 Z bkak (8�� Z Æ00 qvn(x; y)(1 � vn(x; y))j�yvn(x; y)j dy) dx:Realling that vn(x; 0) = vs, where vs is de�ned by (11), we dedueL"n(vn; BÆ) � NXk=1 Z bkak (8�� Z vsvn(x;Æ0)qt(1� t) dt) dx= NXk=1 Z bkak (� ^ �s � 8�� Z vn(x;Æ0)0 qt(1� t) dt) dx:Sine vn!0 a.e. in BÆ \ Q+, for a.e. Æ0 2 (0; Æ℄, we must have that for a.e. x inSNk=1(ak; bk), vn(x; Æ0)!0 as n!1. Therefore, hoosing suh a Æ0, we have for a.e.x 2 SNk=1(ak; bk), limn!1 Z vn(x;Æ0)0 qt(1� t) dt = 0;so that lim infn!1 L"n(vn; BÆ) � (� ^ �s) NXk=1 jbk � akj = (� ^ �s)H1(�
 \BÆ): (39)21



Now, we want to estimate the length of �
 n �
. As usual h : S1![0;+1) willdenote the l.s.. funtion suh that 
 = f(x; y) 2 Q : y < h(x)g, and it has beenshown in setion 5.1 that �
 n �
 = [x2S1fxg � [h(x); h(x)):Given Æ > 0, hoose x0 2 S1 suh that h(x0) � h(x0) > Æ and � > 0, small enough tohave (sine [h(x0); h(x0)� Æ℄ � Æ
)CÆ;� = [x0 � �; x0 + �℄� [h(x0); h(x0)� Æ℄ � 
Let � > 0, � < minfÆ; �g=2. Sine (x0; h(x0)) 62 
 and 
 is haraterized by (34),limn!1 inf essB((x0;h(x0));�)vn = 0. As vn is noninreasing in y, there exists xn 2(x0 � �; x0 + �) suh that vn(xn; y)!0 as n!1 for a.e. y 2 (h(x0) + �;+1). On theother hand, vn!1 a.e. in 
, thus a.e. in (x0 � �; x0 � �) � (h(x0) � Æ � �; h(x0) � Æ)and in (x0+�; x0+ �)� (h(x0)� Æ��; h(x0)� Æ), and there exist x0n 2 (x0� �; x0��),x00n 2 (x0 + �; x0 + �) suh that vn(x0n; y) and vn(x00n; y) onverge to 1 as n!1 for a.e.y 2 (0; h(x0)� Æ � �).Now, we have L"n(vn; CÆ;�) �� 2� Z h(x0)�Æ��h(x0)+� (Z x00nx0n 4"n�2 j�xvn(x; y)j2 + vn(x; y)(1 � vn(x; y))"n dx) dy� 8�� Z h(x0)�Æ��h(x0)+� (� Z xnx0n qvn(1� vn)�xvn dx + Z x00nxn qvn(1� vn)�xvn dx) dy= 8�� Z h(x0)�Æ��h(x0)+� (Z vn(x00n;y)vn(xn;y) qt(1� t) dt + Z vn(x0n;y)vn(xn;y) qt(1� t) dt) dy:Sine for a.e. y 2 (h(x0) + �; h(x0) � Æ � �), the terms R vn(x00n;y)vn(xn;y) pt(1� t) dt andR vn(x0n;y)vn(xn;y) pt(1� t) dt onverge to R 10 pt(1� t) dt = �=8 as n!1, we getlim infn!1 L"n(vn; CÆ;�) � 2�(h(x0)� h(x0)� Æ � 2�);and sending � to zero,2�(h(x0)� h(x0)� Æ) � lim infn!1 L"n(vn; CÆ;�): (40)We now are able to show (35). Choose x1; : : : ; xN suh that h(xk) < h(xk) andÆ < mink=1;:::;N (h(xk) � h(xk)), and hoose � > 0 suh that the sets CÆ;�k = [xk ��; xk + �℄ � [h(xk); h(xk) � Æ℄ are disjoint and all inluded in Æ
. Choose also Æ0 > 022



suh that the (disjoint) sets AÆ0 ; BÆ0 de�ned as before do not touh any of the CÆ;�k .From (38), (39) and (40), we get thatlim infn!1 L"n(vn) � lim infn!1 L"n(vn; AÆ0) + lim infn!1 L"n(vn; BÆ0)+ NXk=1 lim infn!1 L"n(vn; CÆ;�k )� �H1(�
 \Q+) + (� ^ �s)H1(�
 \BÆ0)+ 2� NXk=1(h(xk)� h(xk)� Æ)Sending �rst Æ0 to zero, and then Æ, we get�H1(�
 \Q+) + (� ^ �s)H1(�
) + 2� NXk=1(h(xk)� h(xk)) � lim infn!1 L"n(vn)Sine this is true for any fx1; : : : ; xNg � fx 2 S1 : h(x) < h(x)g, we dedue (35).6.1.2 Convergene of the sequene (un)n�1First of all, (sine (12) holds) we may extrat a subsequene (still denoted by (un; vn))suh that pvne(un) weakly onverges in L2(Q+;R4) to some funtion E .Consider now a Lipshitz sub-graph A � 
, with A \ Q+ �� 
. Sine A \Q+is ompat and inluded in Sk�2
k, there exists k � 2 suh that A \ Q+ �� 
k,in partiular, A � 
kn for large n. Sine vn > skn > 1=(k + 1) a.e. in 
kn, 1=pvn isuniformly bounded by pk + 1 in A and sine it onverges to 1 a.e., it follows thate(un) = pvne(un) � 1=pvn * E weakly in L2(A \ Q+;R4) as n!1. Using Korn'sinequality and the fat that e(un) is uniformly bounded in L2(A\Q+;R4), we dedue(sine un�(x; 0) � 0 on fy = 0g) that (un)n�1 is also ompat in L2lo(��1(A\Q+);R2),and sine if u is a limit point of the sequene we must have u�(x; 0) � 0 on fy = 0g ande(u) = E the possible limit point is unique, therefore un onverges in L2(A \Q+;R2).Sine this holds for every Lipshitz sub-graph A with A\Q+ �� 
, un onverges inL2lo(��1(
\Q+);R2) to some funtion u 2 X(
), with e(u) = E in the distributionalsense. As E is the weak limit in L2(Q+;R4) of pvne(un), (36) follows and point (i) ofTheorem (2) is proved.It remains to prove (ii).6.2 Proof of point (ii) of Theorem 26.2.1 The optimal pro�le for L"Consider the following 1{dimensional version of L"l"(v; I) = 2� � 4"�2 ZI jv0(t)j2 dt + 1" ZI v(t)(1 � v(t)) dt� ; (41)23



de�ned for and interval I � R and v : I![0; 1℄. Consider also the two problemsmin�l"(v;R) : v : R![0; 1℄; v0 � 0; lim�1 v = 1; lim+1 v = 0� (42)and min�l"(v; [0;+1)) : v : [0;+1)![0; 1℄; v0 � 0; v(0) = vs; lim+1 v = 0� : (43)Is is known (and easy to prove) that problem (42) is solved by v"(t) = ( t"), where theoptimal pro�le  is (t) = 8><>: 1 if t � �1;12(1� sin �t2 ) if � 1 � t � 1;0 if t � 1: (44)The value of the minimum (42) is �. Similarly, problem (43) is solved by the funtion~v"(t) = ~( t"), where for any t � 0, ~(t) = (t+ ts) and ts = 2�ar sin(1� 2vs) 2 [�1; 1),so that (ts) = vs. In this ase the value of the minimum (43) is � ^ �s.6.2.2 Constrution of a sequene (v"; u"), for a regular (
; u)We will �rst onsider the ase where �
 is regular: we assume that 
 is the sub-graphof a Lipshitz funtion h, that �
 \Q+ is a �nite union of C2 ars, and that �
 nQ+is a �nite union of segments (ak; bk) � f0g � S1 � f0g, k = 1; : : : ; N . We also assumethat u 2 L1(
;R2).We de�ne the signed distane d
 to �
 asd
(�) = dist(�;
) � dist(�;Q n 
):In partiular, d
(�) = 0, � 2 �
 and d
(x; y) � y < 0 if y < 0.For every " > 0 (small) and � 2 Q we de�nev"(�) =  �d
(�)" + ts�so that v" � vs on �
, and, in partiular, v" � vs on �Q+ = S1 � f0g. Notiethat jrv"(�)j = j0(d
(�)=" + ts)rd
(�)="j = �0(d
(�)=" + ts)=" a.e. in Q, and thatjrv"(�)j = v"(�)(1 � v"(�)) = 0 if jd
(�)j > 2".If A � Q is open, (L"(v"; A) de�ned by (37)), is bounded byL"(v"; A) �� 2�" ZQ+\A 4�20 �d
(�)" + ts�2 +  �d
(�)" + ts��1�  �d
(�)" + ts�� d�� 4� 14" jf� 2 A : jd
(�)j < 2"gj� 4�H1(�
 \A) + "; (45)24



with " = "(A; Æ) onverging to 0 as "!0, sine, as �
 is losed, the Minkowskiontent lim"#0 12" jf� 2 A : jd
(�)j < "gj is equal to the length H1(�
 \ A) (see forinstane [10℄).Now, given Æ > 0 small, we let �
Æ+ = f� 2 �
 \ Q+ : dist(�;Q�) > Æg, �
Æ0 =f� 2 �
 nQ+ : dist(�; �
 \Q+) > Æg, and AÆ+ = f� + ��(�) : � 2 �
Æ+;�Æ < � < Æg,where �(�) is the normal to �
 at �, AÆ0 = f� + (0; �) : � 2 �
Æ0; 0 < � < Æg. Notiethat AÆ+ [AÆ0 � Q+. We let BÆ = f� 2 Q : dist(�; �
 n (�
Æ+ [ �
Æ0)) < 2Æg.If Æ is small enough, f� 2 Q+ : dist(�; �
) < Æg � AÆ0 [AÆ+ [BÆ, and if 2" < Æ,L"(v") � L"(v"; AÆ0) + L"(v"; AÆ+) + L"(v"; BÆ):The last quantity is L"(v"; BÆ) � 4�H1(�
 \BÆ) + "by (45). It is easy to hek that�
 \BÆ � CÆ = (�
 \Q3Æ) [ ((�
 nQ+) n dom3Æ0 );so that the previous inequality yieldsL"(v"; BÆ) � 4�H1(CÆ) + ": (46)We estimate the two other integrals:L"(v"; AÆ0) == NXk=1 Z bk�Æak+Æ  2�" Z Æ0 4�2 0( �" + ts)2 + ( �" + ts)(1 � ( �" + ts)) d�! dx=  NXk=1 jbk � akj � 2NÆ! 2� Z Æ="ts 4�2 0(t)2 + (t)(1 � (t)) dt� (� ^ �s)�H1(�
 nQ+)� 2NÆ� (47)
by de�nition of ts. On the other hand,L"(v"; AÆ+) == Z�
Æ+ dH1(z) 2�" Z Æ�Æ J(z; �) 4�2 0( �" + ts)2 + ( �" + ts)(1 � ( �" + ts)) d�!= Z�
Æ+ dH1(z)�2� Z 1�1 J(z; "(t � ts))12 os2 ��t2 � dt� ;where J(z; �) is the Jaobian of the transformation � 2 AÆ+ 7! (z; �) : z 2 �
Æ+; � =z+ ��(z), whih is well-de�ned if Æ is small sine �
\Q+ is C2. It an be shown thatJ is ontinuous and J(z; 0) � 1, thereforelim"#0 L"(v"; AÆ+) = Z�
Æ+ dH1(z)�� Z 1�1 os2 ��t2 � dt� = �H1(�
Æ+): (48)25



Equations (46), (47) and (48) yieldlim sup"#0 L(v") � (� ^ �s)�H1(�
 nQ+)� 2NÆ� + �H1(�
Æ+) + 4�H1(CÆ)� L(
) � 2N(� ^ �s)Æ + 4�H1(CÆ)so that, sending Æ to zero, lim sup"#0 L(v") � L(
): (49)Indeed, \Æ>0CÆ = SNk=1fak; bkg and the latter set has length zero, thus H1(CÆ) tendsto zero.We now build the assoiated funtions u". Let  > 0 be the Lipshitz onstantof h, we assume  � 1. If � = (x; y) 2 Q n 
, and �0 = (x0; h(x0)) 2 �
, jh(x) �h(x0)j � jx � x0j, so that y � h(x) � jx � x0j + jh(x0) � yj, and we dedue thaty � h(x) � dist(�;
). Thus, if in addition v"(�) > 0, we have dist(�;
) < 2" sothat y � h(x) < 2", and (x; y � 2") 2 
. We de�ne for all (x; y) 2 Q the funtionw"(x; y) = 1 ^ (v"(x; y � 2")=vs) 2 H1lo(Q): v"(x; y) > 0 implies w"(x; y) = 1 (sine(x; y � 2") 2 
 and v" � vs in 
), and w"(x; y) > 0 implies (x; y � 4") 2 
.We an de�ne, for all (x; y) 2 Q+,u"(x; y) = ( u(x; y � 4")w"(x; y) if w"(x; y) > 0 () (x; y � 4") 2 
);0 if w"(x; y) = 0:The funtion u"(x; y)� (x; 0) is 1-periodi in x and vanishes for y = 0, and u"(x; y) =u(x; y � 4") as soon as v"(x; y) > 0. We havee(u")(x; y) = 8><>: e(u)(x; y � 4")w"(x; y)+u(x; y � 4") �rw"(x; y) if w"(x; y) > 0;0 if w"(x; y) = 0;where a� b denotes the symmetrized tensor produt, and e(u")(x; y) = e(u)(x; y�4")if v"(x; y) > 0. Thus, for some onstant C > 0,ZQ+(v"(�) + �")Ae(u")(�):e(u")(�) d�� (1 + �") Zfv">0gAe(u")(x; y � 4"):e(u")(x; y � 4") dxdy+C�" Zf0<w"<1g je(u)(x; y � 4")j2 + ju(x; y � 4")j2jrwe(x; y)j2 dxdy� (1 + �") Z
Ae(u)(x; y):e(u)(x; y) dxdy+C�" Zf0<v"<vsg je(u)(x; y � 2")j2 + ju(x; y � 2")j2jrv"(x; y)=vsj2 dxdy26



We laim that this last integral goes to zero as " # 0, so thatlim sup"#0 ZQ+(v"(�) + �")Ae(u")(�):e(u")(�) d� � Z
Ae(u)(�):e(u)(�) d�and in view of with (49), inequality (14) holds in this ase.Clearly, lim"#0 �" Rf0<v"<vsg je(u)(x; y � 2")j2 dxdy = 0. Then,�" Zf0<v"<vsg ju(x; y � 2")j2jrv"(x; y)=vsj2 dxdy� kuk21 �"v2s"2 k0k21 ���� 2 Q+ : 0 < v"(�) < vs	��� ��"" � kuk21k0k21v2s 1" ���� 2 Q+ : jd
(�)j < 2"	�� = o(1)sine �" = o(") and 1" jfjd
j < 2"gj tends to 4H1(�
).Therefore point (ii) of Theorem (2) is proved in the ase where �
 and u have someregularity.6.2.3 Constrution of (v"; u") in the general aseNow, for an arbitrary 
 2 G and u in X(
), suppose we are able to build a sequene(
n)n�1 onverging to 
 and un 2 X(
n) \ L1(
n) suh that un!u in L2(A;R2)for every A �� 
, eah 
n is the sub-graph of a Lipshitz funtion, �
n \Q+ is C2,�
n nQ+ is a �nite union of segments, and that satis�eslim supn!1 E(
n; un) � E(
; u):Then a simple diagonalization argument will lead to the result. Indeed, if we onsider(vn;"; un;")">0 obtained for eah n as desribed in setion 6.2.2, we �rst build by in-dution a sequene "(n) suh that for every n, "(n) < minf"(n � 1); 1=ng, and suhthat kun;" � unkL2(fdist(�;Qn
n)>1=ng;R2) < 1nand vn;" � 1 on f� : dist(�;Q n 
n) > 1=ng as soon as " < "(n), andsup"<"(n)E"(vn;"; un;") � E(un;
n) + 1n:Then, we let u" = un;", v" = vn;" whenever "(n + 1) � " < "(n). We have v"!�
,lim sup"#0E(v"; u") � E(u;
), and if A �� 
, for large n we have A � f� 2 Q :dist(�;Q n 
n) > 1=ng so that for small ",ku" � ukL2(A;R2) � ku" � un(")kL2(A;R2) + kun(") � ukL2(A;R2)� 1=n(") + kun(") � ukL2(A;R2)! 027



as "!0, where n(") is de�ned by "(n(") + 1) � " < "(n(")) and goes to +1 as "!0.In order to build the sequene (
n; un), we �rst assume we an �nd for every na n{Lipshitz funtion hn � h, where h satis�es 
 = f(x; y) 2 Q : y < h(x)g.This is proved in setion 5.2 (hn is given by equation (26)), and it is establishedthat the sets 
0n = f(x; y) 2 Q : y < hn(x)g onverge to 
 and that L(
0n)!L(
).Now, if � is a 1{dimensional smoothing kernel (� 2 C1(R), RR � = 1, � � 1 andsupp� � [�1=2; 1=2℄), and �n(t) = n2�(n2t) for every n � 1, we let gn = hn � �nand 
n = f(x; y) 2 Q : y < gn(x)g. It is not diÆult to see that 
n!
, that �
nis smooth (in fat, C1), and that �
n n Q+ is a �nite union of segments. We alsohave that L(
n) ' L(
0n)!L(
). Moreover, gn is Lipshitz (gn 2 C1(S1)) so that
n is a Lipshitz sub-graph. Eventually it is easy to hek that gn � hn + =n (wherethe onstant  = RR jtj�(t) dt), so that f(x; y � 2=n) : (x; y) 2 
ng �� 
0n � 
:therefore, we an build un 2 X(
n) \ L1(
n) as a suitable regularization of thefuntion u(x; y � 2=n), whih is de�ned in a neighborhood of 
n.6.2.4 A remark on the integral of v"We now know how to build a family (v"; u")">0 for an arbitrary domain 
 2 G andu 2 X(
). In order to ahieve the proof of Theorem 2 it remains to show that we analso impose that for every ", RQ+ v"(�) d� = j
j.We have that RQ+ v"(�) d�!j
j as " # 0. Let now �" = RQ+ v"(�) d�=j
j, thatonverges to 1. We de�ne a new family (v0"; u0")">0 byv0"(x; y) = v"(x; �"y);(u0x" (x; y); u0y"(x; y)) = (ux" (x; �"y); �"uy"(x; �"y))for every (x; y) 2 Q+. It is not diÆult to show that this family still satis�es point (ii)of Theorem 2, and that RQ+ v0"(�) d� = j
j for every " > 0.6.2.5 A link between (i) and (ii) in Theorem 2The (v"; u")">0 onstruted in setion 6.2 have the property that the set 
 would bethe set obtained from any subsequene (v"n)n�1 by the method desribed in setion 6.1.In partiular, we dedue that, for this family (v"; u"),lim"#0 E"(v"; u") = E(
; u): (50)A Funtions of bounded variation, Caioppoli setsWe review in this appendix some standard de�nitions and properties of the funtionsof bounded variation. For more details, the reader should onsult [11, 7, 10, 2℄.28



A.1 De�nitionsA.1.1 Classial and measure theoretial total variationIn the lassial sense, the variation of a real{valued funtion f : I!R, de�ned on aninterval I � R, is given byVar(f; I) = sup( mXi=1 jf(ti)� f(ti�1)j : m 2 N; t0; : : : ; tm 2 I; t0 < t1 < � � � < tm) :(51)The de�nition for a funtion f : S1!R is similar. The funtion f has bounded variationon I in the lassial sense if Var(f; I) < +1.In the measure theoretial sense, on the other hand, a funtion f is said to belongto BV (
), the spae of funtions of bounded variation on the open domain 
 � RN ,N � 1, if and only if f 2 L1(RN ) and its distributional gradient Df is a boundedvetor measure on 
. In this ase, the total variation of f is the mass jDf j(
) of themeasure Df . The de�nition is similar if 
 � S1 �R, whih is usually the ase in thispaper.A.1.2 Sets with �nite perimeterA Caioppoli set, or set with �nite perimeter in 
, is a set E � 
 suh that thedistributional gradient D�E of its harateristi funtion is a bounded vetor measureon 
. (If E is bounded we thus have �E 2 BV (
)). In this de�nition, a set E is ofourse identi�ed with all sets E0 suh that jE04Ej = 0. The perimeter of E in 
 isthe total variation jD�Ej(
) < +1.A.2 Properties of funtions with bounded variationA.2.1 Links between both de�nitionsIf I � R (or I � S1) is an open interval, thenZI jf(t)j dt < +1 and Var(f; I) < +1 ) f 2 BV (I):More preisely, the equivalene lass of funtions almost everywhere equal to f is anelement of BV (I).On the other hand, every f 2 BV (I) has a representative g (g = f a.e.) suh thatVar(g; I) = jDf j(I) < +1. In fat, one an prove thatjDf j(I) = min fVar(g; I) : g = f a.e.g :Moreover, f always have representatives g0 with Var(g0; I) = +1: for instane theharateristi funtion of Q belongs to BV (R), but in the BV sense �Q = 0, whereasin the lassial sense Var(�Q;R) = 2℄Q = +1.29



A.2.2 Continuity propertiesIf f 2 BVlo(
) we an de�ne at eah point x 2 
 the approximate lower limit of f byf�(x) = sup(t 2 R : lim sup�#0 jff < tg \B(x; �)j�N = 0)and the approximate upper limit f+(x) in the same way (f+(x) = �(�f)�(x)). Iff+(x) = f�(x) 6= �1 (this is true almost everywhere in 
), we set ~f(x) = f+(x) =f�(x) and say that the preise representative ~f is approximately ontinuous at x.If N = 1, 
 = I � R (or I � S1), and f 2 BV (I), for any g representative of f wehave Var(g; I) = jDf j(I) , g(x) 2 [f�(x); f+(x)℄ for every x 2 I.Moreover, in the 1{dimensional ase, f also has an approximate left limit at eahpoint f(x� 0) = sup(t 2 R : lim sup�#0 jff < tg \ (x� �; x)j� = 0)= inf (t 2 R : lim sup�#0 jff > tg \ (x� �; x)j� = 0);and a right limit f(x + 0) similarly de�ned. For every x 2 I, ff(x � 0); f(x + 0)g =ff�(x); f+(x)g. Notie that if I = (a; b), then up to a onstant f(x�0) = jDf j((a; x))and f(x+0) = jDf j((a; x℄). In partiular, f(x�0) is ontinuous at eah point of I nSf ,where Sf = ff(x�0) 6= f(x+0)g = ff�(x) < f+(x)g is the (at most ountable) set ofessential disontinuities of f . The representative f� of f is lower semi-ontinuous: itis the largest l.s.. representative of f . Similarly, f+ is the lowest u.s.. representativeof f .If g is a representative of f 2 BV (I) suh that Var(g; I) < +1, at eah x0 2 I the(lassial) left and right limits exist and we havelimx!x0x < x0 g(x) = g(x0 � 0) = f(x0 � 0); andlimx!x0x > x0 g(x) = g(x0 + 0) = f(x0 + 0):A.2.3 Sets and sub-graphsIn the ase where f = �E , we let E0 = f ~f = 0g, E1 = f ~f = 1g, and de�ne a reduedboundary by ��E = 
 n (E0 [ E1). It is known that the measure D�E is supportedby the set ��E, and that jD�E j = HN�1 ��E, thus jD�E j(
) = HN�1(��E) is theperimeter of E. 30



If I � R (or I � S1), let f 2 BV (I). Then, the set E = f(x; y) 2 I � R : y <f(x)g � I�R has �nite perimeter. This an been shown for instane by approximatingf by a sequene of regular funtions fn suh that RI jf 0n(t)jdt!jDf j(I), and invokingthe lower semi-ontinuity of the total variation. We getjD�Ej(
) � lim infn!1 jD�fy<fn(x)gj(
) = lim infn!1 ZIq1 + jf 0n(t)j2 dt � jIj+ jDf j(I):In fat, one an show that jDx�E j(I) = jDf j(I) and jDy�E j(I) = jIj, so that the fatthat the sub-graph E has �nite perimeter yields that f 2 BV (I), andjDf j(I) � H1(��E) � jIj+ jDf j(I): (52)We de�ne the open sets A = fy < f�(x)g and B = fy > f+(x)g. It is not hardto see that A = B (and, equivalently, B = A), so that ÆA = B = (A) = A, and�A = �A. We an hek easily from the de�nitions that A � E1 and B � E0, and inpartiular ��E � �A = �B = f(x; y) 2 I �R : f�(x) � y � f+(x)g. This last set anbe shown to have �nite length: in fat H1(�A) = H1(��E). In partiular, A = B = ELebesgue{essentially, and �A = ��E H1{essentially.One last result we want to state is a \lassial" equivalent of (52). We laim that,if g is a l.s.. funtion, and if we onsider the open set 
 = f(x; y) 2 I �R : y < g(x)g,then 12Var(g; I) � H1(�
) � jIj+Var(g; I): (53)Indeed, if we onsider m 2 N and t0; : : : ; tm 2 I, t0 < t1 < � � � < tm, thenjg(ti) � g(ti�1)j � pjti � ti�1j2 + jg(ti)� g(ti�1)j2 whih is the length of the segmentjoining (ti�1; g(ti�1)) to (ti; g(ti)). But �
 \ ([ti�1; ti℄ � R) ontains at least a pathonneting these to points, therefore this length is smaller thanH1(�
\([ti�1; ti℄�R)).Summing over i we getmXi=1 jg(ti)� g(ti�1)j � mXi=1H1(�
 \ ([ti�1; ti℄�R)) � 2H1(�
);thus the left inequality in (53) holds.To show the other inequality, we refer the reader to the tehniques used in setion 5.Basially, one onsiders g suh that Æ
 = f(x; y) 2 I�R; y < g(x)g. One then an splitH1(�
) = H1(�
) +H1(�
 n �
). We get H1(�
) � jIj + jDgj(I) = jIj + Var(g; I)by (53), and we then show that �
 n �
 = Sfg<ggfxg � [g(x); g(x)). We dedue that2H1(�
 n �
) = 2Pfg<gg(g(x)� g(x)) = Var(g; I) �Var(g; I), hene the result.
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A.2.4 Co-area formulaWe eventually state the o-area formula: for every f 2 BV (
) (
 � RN , or, as isommon in this paper, 
 � S1 �R),jDf j(
) = Z +1�1 jD�ff>tgj(
) dt: (54)Referenes[1℄ G. Alberti. Variational models for phase transitions, an approah via �{onvergene. In G. Buttazzo et al, editor, Di�erential Equations and Calulus ofVariations. Springer, 1999. to appear (available at http://vgmt.sns.it/Preprints).[2℄ L. Ambrosio, N. Fuso, and D. Pallara. Speial Funtions of Bounded Variationand Free Disontinuity Problems. Oxford University Press, Oxford, 2000. (toappear).[3℄ L. Ambrosio and V. M. Tortorelli. Approximation of funtionals depending onjumps by ellipti funtionals via �-onvergene. Comm. Pure Appl. Math., 43:999{1036, 1990.[4℄ E. Bonnetier, R. S. Falk, and M. A. Grinfeld. Analysis of a one-dimensional varia-tional model of the equilibrium shape of a deformable rystal. M2AN Math. Model.Numer. Anal., 33(3):573{591, 1999.[5℄ J. W. Cahn and J. E. Hilliard. Free energy of a nonuniform system I - interfaialfree energy. J. Chem. Phys., 28:258{267, 1958.[6℄ G. Dal Maso. An introdution to �-onvergene. Progress in Nonlinear Di�erentialEquations and their Appliations. Birkh�auser, Boston, 1993.[7℄ L. C. Evans and R. F. Gariepy. Measure Theory and Fine Properties of Funtions.CRC Press, Boa Raton, 1992.[8℄ K. J. Faloner. The geometry of fratal sets. Cambridge University Press, Cam-bridge, 1985.[9℄ R.S. Falk. Personal ommuniation.[10℄ H. Federer. Geometri Measure Theory. Classis in Mathematis. Springer, 1969.[11℄ E. Giusti. Minimal surfaes and funtions of bounded variation. Birkh�auser,Boston, 1984. 32
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