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Computing the equilibrium 
on�gurationof epitaxially strained 
rystalline �lmsEri
 BonnetierCentre de Math�ematiques Appliqu�ees, CNRS UMR 7641E
ole Polyte
hnique, 91128 Palaiseau, Fran
eeopus�
mapx.polyte
hnique.frAntonin ChambolleCEREMADE, CNRS UMR 7534Universit�e de Paris-DauphinePla
e de Lattre de Tassigny, 75775 Paris Cedex 16, Fran
eantonin.
hambolle�
eremade.dauphine.frAbstra
tWe study a model for shape instabilities of heteroepitaxial 
rystalline �lms.Latti
e mis�ts between the substrate and the �lm indu
e elasti
 stresses in the�lm, whi
h adjusts the shape of its free surfa
e to redu
e its total energy, sumof an elasti
 and a surfa
e energy. We give a pre
ise framework that guaranteesexisten
e of solutions to this variational problem. We show that equilibrium states
an be approximated using a two-phase model for representing the surfa
e energy.Numeri
al results, obtained via this approximation, are presented.Key words. �{
onvergen
e, epitaxially stressed �lms, shape instabilitiesAMS subje
t 
lassi�
ations. 49J45, 74N201 Introdu
tionThis paper is a 
ontribution to the mathemati
al formulation of morphologi
al in-stabilities of interfa
es indu
ed by stress rearrangement. Stress driven rearrangementinstabilities (SDRI) are observed in many bran
hes of material s
ien
es, su
h as fra
-ture, 
rystal growth or 
orrosion. They o

ur for instan
e in the epitaxial growth ofthin layers of highly strained hetero systems su
h as InGaAs/GaAs or SiGe/Si, in viewof appli
ations to ele
troni
 devi
e stru
tures. Be
ause of these instabilities, 
ontrollingthe growth of su
h systems is a signi�
ant 
hallenge for the Applied Physi
s 
ommu-nity (see for instan
e the spe
ial issue of the MSR bulletin on this topi
 [17℄). Thereis also a big e
onomi
 in
entive as SiGe systems, for instan
e, would provide low-
osthigh-performan
e te
hnology.When a epitaxial �lm is grown on a (
at) substrate, if kineti
 e�e
ts are negle
ted,the free surfa
e of the �lm is 
at until a 
riti
al value of the thi
kness is rea
hed, afterwhi
h the free surfa
e be
omes 
orrugated. Atomi
-for
e mi
ros
opy images showripples, or pits and islands of pyramidal shapes, depending on the type of alloy.1



The basi
 me
hanism that explains this behavior is the following. The latti
e mis�tsbetween the substrate and the �lm indu
e strains in the �lm. To release some of theelasti
 energy due to these strains, the atoms on the free surfa
e of the �lm have theability to move and the resulting morphology is energeti
ally more e
onomi
al.The explanation put forward is that 
ompetition takes pla
e between two formsof energy, the surfa
e energy and the bulk elasti
 energy. The former is roughly pro-portional to the area of the free surfa
e, thus favoring 
at 
on�gurations. A simpleasymptoti
 
omputation [13℄, shows that a 
at free surfa
e is unstable with respe
t tominimizing the bulk elasti
 energy of a linear elasti
 solid.A model problem has been studied in [4℄, to understand how the stability of theuniform (
at) free surfa
e depends on the mean thi
kness. In this one-dimensionalformulation, the �lm o

upies a strip 
 = f0 < x < 1; 0 < y < h(x)g, and stableequilibria are de�ned as global minimizers of an energy fun
tional that depends on thethi
kness h and on the displa
ement (in the x dire
tion) in the strip u(x). The problemtakes the forminfu2V;h2HE(u; h) = infu2V;h2H K Z 10 h(x)[u0(x)℄2dx+ Z 10 q1 + [h0(x)℄2dx : (1)The �rst term in the energy expression models an elasti
 bulk energy indu
ed by u(x),while the se
ond represents the length of the 
urve h. The parameter K is relatedto the s
alings of the physi
al 
onstants (length of the spe
imen , mean thi
kness,elasti
ity 
onstants). The larger K, the larger the mean thi
kness (all inertial e�e
tshave been negle
ted and the model is quasi-stati
).One of the issues that stems from [4℄, is the 
hoi
e of spa
es of admissible displa
e-ments and thi
knesses. In that work, whi
h was 
arried out to understand 
ompu-tational results obtained for the above energy [9℄, H was 
hosen to be the spa
e ofpie
ewise C1 positive fun
tions, whi
h satis�ed the volume 
onstraintZ 10 h(x)dx = 1 ; (2)re
e
ting 
onservation of mass during the rearrangement pro
ess. The spa
e V wassimply 
hosen to be x + H1(S1) (S1 denotes the torus R=(0; 1)). It turns out thatthese spa
es are not adequate neither for the analysis of the problem nor for 
omputingpurposes. In parti
ular, if K is large, the equilibrium 
on�guration has a verti
al 
ra
kthat runs from the free surfa
e to the bottom of the �lm. The 
omputations did notshow anything 
lose to su
h a 
on�guration, and proved (ironi
ally) highly unstable.A sound mathemati
al formulation of the minimization of the energy fun
tional shouldinvolve spa
es of fun
tions whi
h 
an hen
e be somewhat rough; the diÆ
ulty lies thenin de�ning the 
orresponding energy.These questions are at the heart of the present paper, where we study a physi
allymore meaningful formulation : we 
onsider the �lm as a full 2-dimensional elasti
 solid.2



Its displa
ement is thus a ve
tor-valued fun
tion u(x; y). The main 
hange 
on
ernsthe modeling of the 
onta
t between the substrate and the �lm. In the 1-d model,strain was 
reated by imposing boundary 
onditions on u at the endpoints. Here, the
onta
t a�e
ts the �lm in a more realisti
 way : a Diri
hlet boundary 
ondition isimposed at the interfa
e between �lm and substrate, whi
h models the 
ase of a �lmgrowing on an in�nitely rigid substrate. The enfor
ement of this boundary 
onditionis what 
auses the �lm to be strained, i.e., what generates elasti
 energy.Additionally, we make the following assumptions. Firstly, we assume that theadmissible free surfa
es are graphs of lower semi-
ontinuous fun
tions. This spa
e isendowed with a natural topology, for whi
h sequen
es of free surfa
es with uniformlybounded length are 
ompa
t.Se
ondly, the 
on�guration is supposed to be 1-periodi
 in the x-dire
tion andthe displa
ements are periodi
 up to a linear displa
ement (the displa
ement in thesubstrate).Thirdly, we assume as in [4℄ that the �lm is made of a linear elasti
 material withhomogeneous Hooke's law A. Finally, we assume that the substrate is in�nitely largewith respe
t to the �lm and o

upies the region S1 � (�1; 0℄. The 
onta
t betweenthe substrate and the �lm 
osts surfa
e energy, and the 
orresponding surfa
e tensionis denoted by �s.This work is devoted to giving a \sound mathemati
al formulation" for �ndingthe equilibrium 
on�guration. We de�ne an energy E(
; u) for graphs 
 of l.s.
.fun
tions and for displa
ements u. We show that a minimizer exists and that it 
an beapproximated by \smooth" thi
knesses, namely by thi
knesses whi
h are Lips
hitz. Itwas observed in [4℄, that when pie
ewise smooth thi
knesses 
onverge to a 
on�gurationwith a verti
al 
ra
k, the length of the 
ra
k has to be 
ounted twi
e in the limitingenergy. Our present formulation 
onveys the same feature.We also propose an approximation s
heme for 
omputing minimizers. It is based ona di�usive two-phase model, one phase representing the �lm, while the other representsthe void above the free surfa
e. A Cahn{Hilliard energy [1, 5, 15℄ approximates thelength of the free surfa
e. The total energy E" depends on the displa
ement u and on amarker fun
tion v that takes the values v ' 1 in the �lm and v ' 0 in the void. The s
aleof the Cahn{Hilliard approximation " 
ontrols the width of the transition zone betweenthe two phases We show that, as " ! 0, a minimizing graph for E 
an be re
overedas the set of points where the sequen
e of approximate markers v" ! 1. We givesome numeri
al examples, based on the minimization of E". This method is inspiredby the approximation te
hniques introdu
ed by [3℄ for a free dis
ontinuity problemin the 
ontext of image pro
essing, using �{
onvergen
e [1, 6℄. The 
omputationsof elasti
ally stressed binary alloys of Leo et al [14℄ use a related approa
h. Mullerand Grant [18℄ introdu
e a similar Ginzburg-Landau approa
h to study numeri
ally,3



in two and three dimensions, the Grinfeld instability of the free interfa
e of a non-hydrostati
ally stressed solid. For a 
on
ise and 
omprehensive review about the �{
onvergen
e and the �{limit of the Cahn{Hilliard free energy we refer to [1℄.We do not 
onsider in this paper the anisotropi
 or so-
alled 
rystalline 
ase, wherethe surfa
e energy also depends on the orientation of the surfa
e of the 
rystal. How-ever, this 
an easily be done by introdu
ing a 
onvex 1{homogeneous fun
tion '(�) ofthe normal ve
tor to the interfa
e, as a weight in the lengths in se
tion 2.1 (i.e., forinstan
e, repla
ing H1(�
) with R�
 '(�(x)) dH1(x) where �(x) is the normal ve
torto �
 at x). In the same way, the approximation result of se
tion 3 holds if we repla
ejrv(x; y)j2 with '(rv(x; y))2 in (10). However, performing numeri
al 
omputations isa mu
h harder task in the 
rystalline 
ase, sin
e the physi
s require ' to be singular(only Lips
hitz{
ontinuous).The paper is organized as follows : in Se
tion 2 the energy fun
tional E is de�nedin details and the lower semi-
ontinuity of the surfa
e energy is stated (Lemma 1).Existen
e of a minimizer is then proved (Theorem 1). In Se
tion 3, we introdu
e theapproximating energies E" and we give the main theorem of this paper, Theorem 2,that states �-
onvergen
e of the energies E" towards E. Numeri
al examples using theapproximating energies E" are given in Se
tion 4. The proofs of Lemma 1 and 2 �llin Se
tions 5 and 6, respe
tively. Finally, the Appendix groups a few results aboutfun
tions with bounded variation, that are used in the text.We do not address the issue of stability with respe
t to the mean thi
kness. Theseaspe
ts will be treated subsequently.2 Statement of the problem and existen
e of a minimizerIn the whole paper, Q denotes the 2-dimensional spa
e S1 � R (S1 = R=Z), Q+ =S1 � (0;+1), and for any a > 0, Qa = S1 � (0; a). The 
anoni
al proje
tion from R2onto Q will be denoted by �, however, in some non ambiguous situations it will not beexpli
itly mentioned.We will denote by G the set of all open subsets 
 of Q that are the sub-graph of anon-negative l.s.
. fun
tion h : S1![0;+1):
 2 G () 9h : S1![0;+1) l.s.
.;
 = f(x; y) 2 Q : y < h(x)g:Note that if 
 2 G, �
 � Q+ = Q+ [ (S1 � f0g). Stating that 
 2 G is equivalent tosaying that Q� = Q n Q+ � 
 and that for any (x; y) 2 
, fxg � (�1; y℄ � 
. Wealso denote by GL � G the sub-graphs of non-negative Lips
hitz fun
tions.If (
n)n�1 is a sequen
e of open sets, we say that it 
onverges to 
 as n goes toin�nity if it 
onverges to 
 in the Hausdor�-
omplement topology, i.e. if 

 = Q n
 isthe Hausdor� limit of the 
omplements 

n. We observe that G is 
losed in the set of4



all open subsets of Q, indeed, if 
n are the sub-graphs of fun
tions hn and 
n 
onvergeto 
 as n goes to in�nity, then 
 is the sub-graph of the fun
tionh(x) = infxn!x lim infn!1 hn(xn);in fa
t we have G = GL.2.1 The surfa
e energyGiven �
, �s > 0, we de�ne the surfa
e energy of a regular domain 
 2 GL asL0(
) = �
H1(�
 \Q+) + �sH1(�
 nQ+):(Noti
e that �
nQ+ = �
\ (S1�f0g).) The idea is that the part �
\Q+ representsthe free surfa
e of the 
rystal, whose surfa
e tension is �
, whereas �
nQ+ is the surfa
eof the substratum that is not re
overed by the 
rystal, and whose surfa
e tension is �s.We extend L0 to G by setting L0(
) = +1 if 
 2 G n GL, and de�ne the relaxedsurfa
e energy L : G![0;+1℄ as the lower semi
ontinuous envelope of L0. We havethe following lemma:Lemma 1 let 
 2 G, and let h; h be the l.s.
. fun
tions su
h that
 = f(x; y) 2 Q : y < h(x)g and Æ
 = f(x; y) 2 Q : y < h(x)g: (3)ThenL(
) = �
8<:H1(�
 \Q+) + 2 Xx2S1 �h(x)� h(x)�9=; + (�
 ^ �s)H1(�
 nQ+): (4)The proof of Lemma 1 is given in se
tion 5. One 
onsequen
e of this lemma, inparti
ular, is the fa
t that if �s > �
, it is better to re
over all of the substratum withan in�nitesimal layer of 
rystal atoms and pay the lower surfa
e tension �
 instead ofleaving free any part of the surfa
e of the substratum.2.2 The global energy fun
tionalWe now introdu
e the energyE(
; u) = K Z
\Q+Ae(u)(x; y):e(u)(x; y) dxdy + L(
); (5)de�ned for any 
 2 G and u 2 X(
), where X(
) denotes the set of fun
tions u 2L2lo
(��1(
);R2), u(x; y) � x for y � 0, u(x; y) � (x; 0) whi
h are 1{periodi
 in x,and su
h that the linear deformation tensor (the symmetrized gradient) e(u) is inL2(
 \ Q+;R4). The matrix A = (ai j k l) is a positive-de�nite symmetri
 tensor of5



order 4 (su
h that ai j k l = aj i k l = ak l i j for any i; j; k; l 2 f1; 2g). The s
alar parameterK is related to the s
alings of the physi
al 
onstants and it balan
es the in
uen
e ofea
h term in the energy. In the rest of the paper (ex
ept in Se
tion 4, where weillustrate the dependen
e on K) for simpli
ity we set K = 1 without loss of generality.2.3 The problemWe 
onsider the following minimization problemmin
2G;u2X(
)E(
; u) subje
t to: j
 \Q+j = 1: (6)The volume 
onstraint re
e
ts 
onservation of mass: the model assumes that the re-laxation of the �lm is mu
h faster than the rate of deposition. We prove the followingTheorem 1 Problem (6) has a solution.Proof. Consider (
n; un) a minimizing sequen
e for (6). Sin
e j
n \ Q+j + L(
n) isbounded, 
n\Q+ is uniformly bounded. Up to a subsequen
e (not relabeled) we maythus assume that it 
onverges to a domain 
 2 G, with j
 \ Q+j = 1 and, sin
e L isl.s.
., L(
) � lim infn!1 L(
n): (7)The fun
tion e(un), that we extend to zero outside of 
n, is uniformly boundedin L2(Q+;R4). We thus may assume it 
onverges weakly to some fun
tion E 2L2(Q+;R4). In parti
ular, we haveZ
\Q+AE(x; y):E(x; y) dxdy � lim infn!1 Z
n\Q+Ae(un)(x; y):e(un)(x; y) dxdy: (8)Remark. It 
an be shown that E = 0 a.e. in Q n 
. Indeed, if K is the Hausdor�limit of some 
onverging subsequen
e of (�
n)n�1, one 
an prove that H1(K) < +1,thus jKj = 0, and that 
 [ K is the Hausdor� limit of 
n, or equivalently that thedomains Q n 
n 
onverge to Q n (
 [K) (see se
tion 5.1 for details). Thus E = 0 inQ n (
 [K) and sin
e jKj = 0, a.e. in Q n 
.Let A � 
 be a Lips
hitz sub-graph, with A\Q+ �� 
. (For simpli
ity we assumeA � Q�, although it is not essential.) For n large enough, A � 
n and un is de�nedon ��1(A). By Korn's inequality, sin
e un(x; y)� (x; 0) � 0 for y � 0 and sin
e �A isLips
hitz, there exist 
 = 
(A) and 
0 = 
0(A;A) su
h thatZA\Q+ jun(x; y)j2 dxdy � 
 ZA\Q+ e(un)(x; y):e(un)(x; y) dxdy � 
0E(
n; un):Thus un is uniformly bounded on A \ Q+, so that some subsequen
e of (un) weakly
onverges (in fa
t, strongly) in L2(A;R2) to some fun
tion u. Sin
e 
learly u(x; y) �6



(x; 0) � 0 for y � 0 and e(u) = E , the limit point u is unique and the whole sequen
e(un) 
onverges to u.Sin
e it holds for any Lips
hitz sub-graph A \ Q+ �� 
, this shows that thereexists u 2 L2lo
(��1(
);R2), 1{periodi
 in x, with u(x; y) � (x; 0) � 0 for y � 0, andsu
h that E = e(u) in the distributional sense in 
. With (7) and (8), we 
on
lude thatu 2 X(
) and that (
; u) is a solution of problem (6).3 An approximation s
heme for problem (6)Given a (small) s
ale parameter " > 0, we now introdu
e the following approximationof the energy E. We �rst 
hoose �" > 0 su
h that �" = o(") as " goes to zero. Thenwe let E"(v; u) = ZQ+(v(x; y) + �")Ae(u)(x; y):e(u)(x; y) dxdy + L"(v); (9)whereL"(v) = 2�
 �4"�2 ZQ+ jrv(x; y)j2 dxdy + 1" ZQ+ v(x; y)(1 � v(x; y)) dxdy� ; (10)for v 2 H1(Q+) satisfying 0 � v(x; y) � 1, �yv(x; y) � 0 a.e. in Q+, and v � vs onS1 � f0g, and u 2 H1lo
(R �R+;R2) su
h that u(x; y) � (x; 0) is 1{periodi
 in x andvanishes on R� f0g. The 
onstant vs 2 (0; 1℄ is given byZ vs0 qt(1� t) dt = �
 ^ �s�
 Z 10 qt(1� t) dt = �
 ^ �s�
 �8 : (11)On the other hand, if v; u do not satisfy these properties we set E"(v; u) = +1.It is well known that the Cahn{Hilliard energy L" is an approximation, in thesense of �{
onvergen
e, of the perimeter [15℄. In this parti
ular setting we show thefollowing result, whi
h stri
tly speaking is not a result of �{
onvergen
e, but has thesame pra
ti
al 
onsequen
es for the 
omputation of minimizers of E.Theorem 2 Let ("n)n�1 be an arbitrary sequen
e of positive numbers with "n # 0 asn!1.(i) Let (vn; un) be fun
tions su
h thatsupn�1E"(vn; un) < +1 (12)and supn�1 RQ+ vn(�) d� < +1. Then there exist 
 2 G, u 2 X(
), and asubsequen
e of (vn; un)n�1, still denoted by (vn; un), su
h that vn!�
 a.e. inQ+, un!u in L2lo
(��1(
);R2) as n goes to in�nity, andE(
; u) � lim infn!1 E"n(vn; un): (13)7



(ii) Let 
 2 G, u 2 X(
). Then there exists a sequen
e (vn; un)n�1 su
h that vn!�
a.e. in Q+, un!u in L2lo
(
 \Q+;R2) as n goes to in�nity, andlim supn!1 E"n(vn; un) � E(
; u): (14)Moreover, we 
an assume that for all n, RQ+ vn(x; y) dxdy = j
 \Q+j.In parti
ular, this theorem shows that if v"; u" are minimizers of E", subje
t to the
onstraint RQ+ v"(x; y) dxdy = 1, then, to ea
h limit point u of (u")">0 
orresponds aset 
 with j
 \Q+j = 1, su
h that (
; u) is a solution of problem (6).4 Numeri
al examplesThe purpose of this Se
tion is purely illustrative : we present a few shapes obtainedby minimizing approximate energiesE"(v; u) = K ZQ+(v(x; y) + �")Ae(u)(x; y):e(u)(x; y) dxdy + L"(v); (15)with L" given by (10). The expression (15) only di�ers from (9) by the presen
e of theparameter K in front of the elasti
 energy. It is related to the s
aling from the physi
aldimensions to the model problem [4℄, and roughly measures the mean thi
kness of thespe
imen. One expe
ts that when K is small, the term of surfa
e energy is dominantand therefore �lms with a 
at free-surfa
e should minimize the energy. When Kbe
omes large, minimizers should show a 
orrugated free-surfa
e.This energy is minimized under the 
onstraints8>><>>: u(x; 0) = (x; 0); v(x; 0) � vsu� (x; 0) and v are 1-periodi
 in x0 � v � 1; �yv � 0 and ZQ1 v = V: (16)For a �xed value of ", we propose an iterative algorithm, based on a �nite di�eren
edis
retization, to minimize the energy (15). The 
omputations are performed on a �xedre
tangle Q1 = S1 � (0; 1), but the results are displayed on two periods. The domainQ1 is dis
retized by a 
artesian mesh : a 200�200 mesh in the 
omputations presentedhere.At the nth step of the algorithm, the values of un+1 are 
omputed in a standardmanner, as approximations of the solutions to the Euler equationdiv((vn + �")Ae(un+1)) = 0 ;with the boundary 
onditions and the periodi
ity given above.8



For the density, our approa
h is inspired by algorithms for motion by mean 
ur-vature des
ribed in [19, 20℄, where in L" a non-regular potential of the same form isused. Minimizers of E"(:; un+1) are 
omputed as if they were stationary states of theparaboli
 problem8<: �tv = 2�
 � 8"�2�v � 1="(1 � 2v)� �Ae(un+1) : e(un+1)� �0 � v � 1 ; �yv � 0 ; (17)with the initial 
ondition v(0)n+1 = vn, and where � is a Lagrange multiplier for thevolume 
onstraint RQ1 v = V . More pre
isely, we 
ompute fun
tions v(k+1)n+1 1{periodi
in x and su
h that v(k+1)n+1 (x; 0) � vs, approximate solutions to the following variationalproblem 8>>>>>>>><>>>>>>>>:
1=Æ ZQ1(v(k+1)n+1 � v(k)n+1)'+ 2�
 � 8"�2 ZQ1 rv(k+1)n+1 r'+ 1=" ZQ1(1� v(k+1)n+1 )'�+ ZQ1(�+Ae(un+1) : e(un+1))' = 0 ; (18)where the test fun
tions ' are 1{periodi
 in x and satisfy '(x; 0) = 0. The 
onstraints0 � v(k+1)n+1 � 1 and �yv(k+1)n+1 � 0 are then enfor
ed at ea
h iteration by a simpletrun
ation. The parameter Æ 
orresponds to an arti�
ial time step in view of (17), andis required to be smaller than "=2�
. In this manner, the variational problem above isthe Euler-Lagrange equation of a 
onvex minimization problem, and therefore existen
eof a solution v(k+1)n+1 is guaranteed.One of the virtues of this method is that the energy E" is de
reasing in the 
ourseof the algorithm. Indeed, sin
e (18) expresses that v(k+1)n+1 is the minimizer of the energyE"(�; un+1) + 1=2Æ RQ1 j � �v(k)n+1j2, one easily 
he
ks thatE"(v(k+1)n+1 ; un+1)�E"(v(k)n+1; un+1) � �1=2Æ ZQ1 jv(k+1)n+1 � v(k)n+1j2 :When E"(v(k)n+1; un+1) has be
ome stationary, we assign vn+1 = v(k)n+1.This method for 
omputing equilibrium shapes thus depends on several parameters :"; �"; Æ, and the mesh-size h. The transition zone should be des
ribed by at least a fewmesh-points. In fa
t, during the 
omputations, we let " vary from 20 mesh sizes to 3.The parameter �" has been 
hosen equal to 0:001. The Hooke's law of the �lm is thatof an isotropi
 elasti
 material, with Lam�e 
onstants � = 1 and � = 2.We �rst illustrate the results obtained by this algorithm when 
onsidering a one{dimensional approximation for the elasti
 displa
ement, like in (1). The approximate9



energy fun
tionals redu
e then toE"(v; u) = K ZQ1(v(x; y) + �")j�xu1j2 + L"(v);where u1(x) denotes the average in y of the x�
omponent of the displa
ement. Inthis 
ontext, it was shown in [4℄ that for K large, the optimal 
on�guration of the freesurfa
e 
onsisted of half 
ir
les separated by 
ra
ks. Figure 1 shows that the algorithmdoes 
apture the optimal 
on�guration.

Figure 1: Equilibrium shape for the 1-d model.The rest of the �gures are pertinent to the energy (15). The value of the density onthe bottom of the �lm has been 
hosen to be v � vs = 0:99 unless stated otherwise, andthe volume of the �lm is 
onstrained to be equal to V = 0:2. In those 
omputationsthe initial shape has the form v0(y) + a sin(2�nx)f(y). The fun
tion v0 is the optimalpro�le asso
iated with minimizing, under the volume 
onstraint, the energy L" only,see (44). If the pres
ribed volume of the �lm is V , v0 has the expression :v0(y) = 8><>: 1 if y � V � ";12 (1� sin �(y�V )2" ) if V � " � y � V + " :0 if y � V + ":The remaining term in the expression of the initial shape is a perturbation, 
onsistingof a sinusoidal fun
tion in x, times a fun
tion f of y whose main attribute is to be
on
entrated in the transition zone of v0. The 
hoi
e of the x�dependen
e of theperturbation stems from a linearized stability analysis around the shape v0, whi
h 
anbe shown to be a global minimizer for the energy E", when K is small, 
orrespondingto the 
at free-surfa
e 
 = S1� (0; V ) solution to (6). These aspe
ts will be dis
ussedelsewhere, however.Figure 2 shows the initial and �nal shapes for a 
omputation with K = 0:5. Theinitial shape is v0(y) plus a perturbation of amplitude a = 0:4 and frequen
y n = 2.10



The resulting free surfa
e is 
at, whi
h is 
onsistent with the small value of K. Figure 3shows the variations of the total energy, of its elasti
 and surfa
e energy 
omponentsduring this 
omputation
Figure 2: Initial and �nal shapes, K=0.05
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Figure 3: Energies, K=0.5, initial shape v0(y) + 0:05 sin(2�x)f(y)Figure 4 shows the initial shape (with amplitude a = 0:7 and frequen
y n = 1),and the �nal shapes resulting from the algorithm when K = 6 and for three di�erentvalues of vs (0:99, 0:6 and 0:4). Contrarily to the one-dimensional model, no sharp
ra
ks are observed, rather wide zones with a nearly barren substrate are formed,while the �lm forms bumps in the shape of milestones. The width of the base of thesemilestones depends on the value of vs : this re
e
ts the fa
t that vs is itself a fun
tionof the ratio �
=�s, and determines the 
ost of leaving the substrate barren. Figure 5shows the history of energies, when vs = 0:99. Finally, we present some results thatdemonstrate the unstable behavior of the system for large values of K. Figure 6 showsvarious images of the 
on�gurations obtained during a 
omputation with K = 20,initiated with the pro�le v0(y) whi
h is a lo
al minimum. After a large number ofiterations when nothing seems to happen to the `
at surfa
e', instabilities are triggeredby round-o� errors. One observes 
orrugations that �nally merge together to form aunique bigger milestone. Figure 7 shows the 
orresponding energies.11



Figure 4: Initial and �nal shapes, K=6
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Figure 5: Energies, K = 6, vs = 0:995 Proof of Lemma 1In order to prove Lemma 1, we need to show that(i) given any 
n 
onverging to 
 in G,L(
) � lim infn!1 L0(
n); (19)and that(ii) for any 
 2 G, there exists a sequen
e 
n 
onverging to 
 su
h thatlim supn!1 L0(
n) � L(
); (20)where L is de�ned by equation (4). 12



Figure 6: Shapes at iterations 1936, 1940, 1944, 1948, 2000, 2100, K=20,initial shapev0(y)5.1 Proof of (i)To show (i), we 
onsider 
n 
onverging to 
 in G. Without loss of generality we 
anassume that a = supn L0(
n) + j
n \ Q+j < +1 (sin
e if lim infn!1 L0(
n) = +1there is nothing to prove, and if j
n \Q+j!1 and L0(
n) is bounded 
n 
onvergesto Q 62 G). In parti
ular, the 
n are sub-graphs of Lips
hitz fun
tions hn : S1![0; a).Clearly, �
n � Qa, so that we may assume (by extra
ting a subsequen
e, stilldenoted by (
n)) that the boundaries �
n 
onverge in the Hausdor� metri
 to some
ompa
t set K. Noti
e that we easily dedu
e that 
n 
onverge to 
[K in the Hausdor�sense: indeed if � 2 
[K, either � 2 
 and therefore � 2 
n for large n, or � 2 K andthere exists �n 2 �
n � 
n su
h that � = limn!1 �n. Conversely if �n 2 
n for all nand 
onverge to some � as n goes to in�nity, if � 62 
 then there exists �0n 2 Q n 
nwith � = limn!1 �0n (sin
e Q n
n 
onverge to Q n
 in the Hausdor� sense) and thereexists �00n 2 [�n; �0n)\ �
n: sin
e �00n!�, we dedu
e that � 2 K. In a similar way we 
anshow that �
 � K.Then, invoking Go lab's theorem (see [12, 16, 8℄), �
n being a sequen
e of uniformlybounded one-dimensional 
ompa
t 
onne
ted sets, we get thatH1(�
) � H1(K) � lim infn!1 H1(�
n) < +1: (21)Moreover, the proofs of Go lab's theorem based on measure density arguments(see [16℄) also show that the measures �n = H1 �
n, up to a subsequen
e (not13
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Figure 7: Energies, K=20, initial shape y(x) = 1relabeled), 
onverge weakly-� to a measure � supported by K su
h thatH1 K � �: (22)We de�ne the l.s.
. fun
tions h; h : S![0; a℄ as h(x) = minfy : (x; y) 62 
g (resp.,h(x) = minfy : (x; y) 62 Æ
g) so that (3) holds. Sin
e 
 � Æ
, h � h.We �rst observe that �
 is the disjoint union of �
 and �Sx2S1fxg � [h(x); h(x)�.Together with (21), this implies that h(x) = h(x) ex
ept for at most 
ountably manyx 2 S1. As a matter of fa
t, �
 = 
 n Æ
 � 
 n 
 = �
. Then, �
 n �
 = Æ
 n 
, sothat by de�nition of h and h,�
 n �
 = n(x; y) 2 Q : h(x) � y < h(x)o = [x2S1fxg � hh(x); h(x)� ;whi
h proves the 
laim.We now de�ne the measures �n = �
H1 �
n \Q+ + �sH1 �
n nQ+. It is notrestri
tive to assume that �n 
onverges weakly-� to a positive measure � as n goes toin�nity, and we 
learly have(�s ^ �
)� � � � (�s _ �
)�: (23)Moreover, sin
e Q+ is open and �n Q+ = �
�n Q+ for all n, we also have� Q+ = �
� Q+ (24)To dedu
e (19), it remains to show that the one-dimensional density of � on theset �
 n �
 = Sx2S1fxg � [h(x); h(x)) is at least 2�
. Indeed, sin
elim infn!1 L0(
n) = lim infn!1 �n(Q) � �(Q) = �(K)� �(�
) = �(�
 \Q+) + �(�
 nQ+) + � ��
 n �
�;14



it will imply together with (22), (23) and (24) thatlim infn!1 L0(
n) ��
H1(�
 \Q+) + (�
 ^ �s)H1(�
 nQ+) + 2�
H1 ��
 n �
� = L(
):It remains therefore to show that for H1{almost any � = (x; y) 2 �
 n �
,lim sup�#0 �(B(�; �))2� � 2�
: (25)Choose su
h a �, with h(x) < y (we ex
lude the 
ase h(x) = y sin
e f(x; h(x)) : h(x) <h(x)g is at most 
ountable, and thus H1{negligible) and � > 0 small enough, so thath(x) < y � �, y + � < h(x), and B(�; 2�) � Æ
.For some Æ > 0 small enough, (x; y � �� Æ) 62 
, so that there exists (xn; yn) 62 
nsu
h that (xn; yn)!(x; y� �� Æ) as n goes to in�nity. If n is large enough, yn < y� �,and hn(xn) < y � �, where hn is the Lips
hitz fun
tion whose sub-graph is 
n.Fix " > 0 small (" << �) and 
hoose x0; x00 with x�" < x0 < x < x00 < x+". Choosealso y0; y00 su
h that (x0; y0); (x00; y00) 2 B(�; 2�)nB(�; �) and y0 > y+�, y00 > y+�. Sin
ethe 
n 
onverge in the Hausdor� sense to 
 [K � 
, and sin
e (x0; y0); (x00; y00) 2 
,there are sequen
es (x0n; y0n) and (x00n; y00n) 
onverging respe
tively to (x0; y0) and (x00; y00)su
h that (x0n; y0n); (x00n; y00n) 2 
n for all n.If n is large enough, x � " < x0n < xn < x00n < x + ", and hn(x0n), hn(x00n) > y + �,hn(xn) < y� �, so that the length of the graph �
n of hn inside the ball B(�; �) mustbe at least 2 � 2�� O("2). We dedu
e that for large n, �n(B(�; �)) � 2�
 2� � O("2),and therefore �(B(�; �)) � lim supn!1 �n(B(�; �)) � 2�
 2� � O("2). Sending " to 0,we get that for any (small) � > 0, �(B(�; �))2� � 2�
;so that (25) 
learly holds.5.2 Proof of (ii)We now must build, given 
 2 G, a sequen
e 
n 
onverging to 
 satisfying (20). It isof 
ourse not restri
tive to assume that L(
) < +1.We 
onsider the l.s.
. fun
tions h and h as in (3). Sin
e L(
) < +1, h andh are bounded and h(x) = h(x) ex
ept for an at most 
ountable number of pointsx 2 S1. Moreover, h and h are fun
tions of bounded variation, in the 
lassi
al sense(see Appendix A, and in parti
ular se
tion A.2.2 and inequality (53)). They thus havea right and left limit at ea
h point. Now, sin
e h = h a.e., we dedu
e that for anyx 2 S1, h(x�0) = h(x�0) and h(x+0) = h(x+0) (where h(x�0) = lim"#0+ h(x�")).15



Now, h being 
onsidered as a 1{periodi
 fun
tion de�ned on the whole real line(meaning that we still denote by h what should theoreti
ally be h Æ �), for all n � 1let hn be the n{Lips
hitz 1{periodi
 and non-negative fun
tion de�ned byhn(x) = infx02Rh(x0) + njx� x0j (26)and de�ne 
n 2 G as the sub-graph of hn. Noti
e that sin
e h is l.s.
., the in�mumin (26) is rea
hed. Sin
e hn � h, 
n � 
. It is also well-known that for all x,hn(x) " h(x) as n!1. Let us show that 
 is the limit of the sequen
e (
n)n�1. LetA be the limit of some 
onverging subsequen
e (
nk)k�1. Sin
e 
n is in
reasing itis not diÆ
ult to show that A is the limit of the whole sequen
e (
n)n�1. Clearly,A � 
, and we want to show the reverse inequality. Let � = (x; y) 62 A. There exist�n = (xn; yn) 62 
n, su
h that �n!� as n!1. Sin
e the in�mum is rea
hed in (26),there exist x0n su
h that yn � hn(xn) = h(x0n) + njxn � x0njfor every n. In parti
ular sin
e (yn)n�1 is bounded, x0n!x as n goes to in�nity. Sin
eh is l.s.
., we dedu
e thath(x) � lim infn!1 h(x0n) � lim infn!1 yn = y;so that � 62 
: therefore 
 � A, and we have proved that 
 is the limit of 
n.Now, we show that (20) holds for the sequen
e 
n. We have �
n = �
n =f(x; hn(x)) : x 2 S1g.We split �
n into two parts, �
n \ �
 and �
n n �
. First noti
e that �
 \ �
nis essentially equal to �
 \ �
n. Indeed, let (x; y) 2 �
n \ (�
 n �
). We havey = hn(x) � h(x), and h(x) � y < h(x), thus y = h(x) and h(x) < h(x), but we knowthat this happens for at most a 
ountable number of points x. Thus, �
n \ (�
 n �
)is at most 
ountable.Now, suppose that hn(x) = 0: then there exists x0 2 R su
h that h(x0)+njx�x0j =0. Sin
e h is non-negative, it implies that x0 = x and h(x) = 0. On the other hand, ifh(x) = 0, sin
e 0 � hn � h, hn(x) = 0. We dedu
e that �
n nQ+ = �
 nQ+ for anyn � 1, moreover this set is essentially equal to �
 nQ+.We thus dedu
e that, for every n,L0(
n) = �sH1(�
n nQ+) + �
H1(�
n \Q+)= �sH1(�
 nQ+) + �
H1(�
 \ �
n \Q+) + �
H1(�
n n �
): (27)We need now to estimate H1(�
n n �
). Noti
e that 
learly, �
n n �
 = f(x; hn(x)) :hn(x) < h(x)g. Sin
e �
n n �
 is open, it 
an be written as a disjoint union of open
onne
ted ar
s: �
n n �
 = [k2Kf(x; hn(x)) : x 2 Ikg16



where the set K is �nite or 
ountable, and for ea
h k, Ik = (ak; bk) � S1 is an openinterval.Fix k 2 K and 
onsider su
h a Ik. We 
laim that for all x 2 Ik,hn(x) = minfh(ak) + njx� akj; h(bk) + njx� bkjg: (28)In order to simplify the notations we temporarily drop the subs
ript k, and lettherefore I = (a; b) = Ik. We 
an 
onsider (a; b) as an interval in R, with a < b. Sin
ehn is n{Lips
hitz, hn(x)�hn(a) � njx�aj so that for any x, hn(x) � hn(a)+njx�aj �h(a) + njx� aj. Thus, hn(x) � minfh(a) + njx� aj; h(b) + njx� bjg.Assume now that there exists x 2 I su
h that the inequality is stri
t, and let x0 2 Rbe a point where the in�mum is rea
hed in (26). We have h(x0) + njx� x0j = hn(x) <h(a) + njx� aj, so that if x0 � a, h(x0) + nja� x0j < h(a), but this is in 
ontradi
tionwith the fa
t that hn(a) = h(a): thus x0 > a. In the same way, we show that x0 < b,so that x0 2 I.But if x00 is su
h that hn(x0) = h(x00) + njx0 � x00j, then,hn(x) � hn(x00) + njx00 � xj (sin
e hn is n{Lips
hitz)� h(x00) + njx00 � x0j + njx0 � xj= hn(x0) + njx0 � xj� h(x0) + njx0 � xj = hn(x);so that hn(x0) = h(x0) and x0 62 I. Therefore x 
an not exist, and (28) holds for everypoint in I = Ik.We dedu
e an estimate for the 
ontribution of the interval I = Ik to the length of�
n n �
. We 
onsider the two 
ases(a) for all x 2 I, hn(x) = h(a) + n(x� a) (or hn(x) = h(b) + n(b� x));(b) there exists 
 2 I su
h that hn(x) = h(a) + n(x � a) for all x 2 (a; 
℄ andhn(x) = h(b) + n(b� x) for all x 2 [
; b).In the �rst 
ase, the graph of hn in I � R is a straight line going from (a; h(a)) to(b; h(b)), while the boundary �
 \ (I � R) 
ontains a 
urve 
onne
ting these twopoints. This 
urve is made of a possible pie
e of straight line going from (a; h(a)) to(a; h(a+0)), then a 
urve going from (a; h(a+0)) to (b; h(b�0)), essentially 
ontainedin �
\ (I�R), and then another possible pie
e of straight line going from (b; h(b�0))to (b; h(b)), so thatH1(�
n\(Ik�R)) � h(ak+0)�h(ak) + h(bk�0)�h(bk) + H1(�
\(Ik�R)): (29)In the 
ase (b), the graph of hn in I �R is made of two straight lines, one goingfrom (a; h(a)) to (
; hn(
)) and the other from (
; hn(
)) to (b; h(b)). The boundary17



�
 \ (I � R) 
ontains a 
urve 
onne
ting (a; h(a)) to (b; h(b)), and passing throughthe point (
; h(
)), and sin
e maxfh(a); h(b)g < hn(
) < h(
), (29) still holds.Summing over k 2 K, we dedu
e thatH1(�
n n�
) � H10��
 \ [k2K(Ik �R)1A + Xk2K h(ak+0)�h(ak) + h(bk�0)�h(bk):(30)Now, it is possible to show that for any x, if for instan
e h(x + 0) � h(x � 0), then(re
alling that h and h are l.s.
.) h(x) = h(x� 0) andh(x+ 0) + h(x� 0)� 2h(x) = h(x+ 0)� h(x) + 2h(x)� 2h(x)= H1(�
 \ (fxg �R)) + 2(h(x)� h(x)): (31)From (30) and (31), we dedu
e thatH1(�
n n �
) � H10��
 \ [k2K(Ik �R)1A + 2H1(�
 n �
): (32)Now, it is 
lear that �
 \ Sk2K(Ik � R) is 
ontained in Q+, and that, up to an atmost 
ountable number of points, it is disjoint from �
 \ �
n \ Q+. So that we 
andedu
e from (27) and (32) thatL0(
n) � �sH1(�
 nQ+) + �
 �H1(�
 \Q+) + 2H1(�
 n �
)� = L(
);thus (20) holds and (ii) is proved. This a
hieves the proof of Lemma 1.6 Proof of Theorem 26.1 Proof of point (i) of the theoremGiven a sequen
e ("n)n�1 with "n # 0 as n goes to in�nity, we �rst 
onsider a sequen
e(vn; un)n�1 that satis�es (12).Then, by standard results [15, 1℄ on the Cahn{Hilliard energy L", we know thatup to a subsequen
e (still denoted by vn), there exists a Ca

ioppoli set F � Q+ su
hthat vn!�F a.e. in Q+, moreover,�
H1(��F ) � lim infn!1 L"n(vn); (33)where ��F is the redu
ed boundary of F inside Q+. Sin
e supn�1 RQ+ vn(�) d� < +1the set F is bounded, and sin
e �yvn � 0, F [ Q� is Lebesgue{essentially equivalentto the sub-graph of a (non-negative) bounded variation fun
tion g : S1![0;+1).18



Now �x an integer k � 2 and write for every n, using the 
o-area formula (see (54),Appendix A)�Z 1k1k+1 jD�fvn>sgj(Q+) ds = k(k + 1) Zf�2Q+: 1k+1<vn(�)< 1k g jrvn(�)j d�� (k(k + 1)) 32 ZQ+ jrvn(�)jqvn(�)(1 � vn(�)) d�� (k(k + 1)) 32 �8�
L"n(vn)whi
h by (12) is uniformly bounded by some 
onstant 
k. We dedu
e that there exista level skn 2 ( 1k+1 ; 1k ) su
h that jD�fvn>skngj(Q+) � 
k.Moreover, sin
e �yvn � 0, fvn > skng is the sub-graph of some fun
tion of boundedvariation. Thus, if we de�ne hkn : S1![0;+1) to be the largest l.s.
. representative ofthis fun
tion, the open set 
kn = f(x; y) 2 Q : y < hkn(x)g 2 G is su
h that Æ
kn = 
knand is (Lebesgue{) essentially equal in Q+ to fvn > skng. In parti
ular, vn > skn a.e.in 
kn, vn � skn a.e. out of 
kn, and H1(�
kn \ Q+) = jD�fvn>skngj(Q+) � 
k so thatH1(�
kn) � 1 + 
k.De�ne the sequen
e (n1p)p�1 by n1p = p for every p. For ea
h k = 2; 3; : : :, we
an extra
t (by indu
tion) from the sequen
e (nk�1p ) a sequen
e (nkp) su
h that 
knkp
onverges to some open set 
k 2 G as p goes to in�nity. We build in this way a familyof sets (
k)k�2 su
h that for every k, the sequen
e (
knpp) 
onverges to 
k in G.In the sequel we will relabel this subsequen
e and denote again by n what shouldbe npp.We let 
 = Sk�2
k andN = �� 2 Q+ : vn(�) 6! �F (�) as n!1	[[k;n�nvn > skno n 
kn� [ �nvn � skno \ 
kn� ;and observe that jN j = 0. Noti
e that 
 has the following 
hara
terization:Q n 
 = f� 2 Q : 8� > 0; limn!1 inf essB(�;�)vn = 0g (34)Indeed, 
onsider � 62 
, and �x � > 0. For any �xed k � 2, there exists �n 62 
kn su
hthat �n!�. But sin
e jN j = 0 and 
kn = Æ
kn, we have that jB(�n; �=2) n
kn nN j > 0. Ifn is large enough, j�n � �j < �=2, therefore B(�; �) � B(�n; �=2) and inf essB(�;�)vn �skn < 1=k. This shows that for every k � 2, lim supn!1 inf essB(�;�)vn � 1=k: thuslimn!1 inf essB(�;�)vn = 0. We will not need it in the sequel, but it is also easy to showthat if � 2 
, then lim supn!1 inf essB(�;�)vn > 0.19



We will now prove that the set 
 satis�es the thesis of point (i) of Theorem 2. Wewill �rst show that L(
) � lim infn!1 L"n(vn); (35)in se
tion 6.1.1 and then, in se
tion 6.1.2, we will show that (up to a subsequen
e) un
onverges to a fun
tion u su
h thatZ
\Q+Ae(u)(x; y):e(u)(x; y) dxdy� lim infn!1 ZQ+(vn(x; y) + �"n)Ae(un)(x; y):e(un)(x; y) dxdy (36)6.1.1 Estimate of L(
)In order to show (35) we need more information on the stru
ture of �
 and on therelationship of 
 with F .Noti
e that if � 2 
 n N \ Q+, � 2 
k for some k, and therefore � 2 
kn forlarge n. In parti
ular, vn(�) > skn > 1=(k + 1) and sin
e it tends either to 0 or to 1,limn!1 vn(�) = 1 and � 2 F . Therefore 
 \Q+ nN � F .On the other hand, we 
laim that jF n 
j = 0.Indeed, we �rst noti
e that, given any k � 2, �
kn!�
k a.e. in Q+ as n!1(up to a subsequen
e) and thus, for instan
e, in L2(Qa) for every a > 0. This istrue be
ause up to a subsequen
e, we 
an assume that �
kn tends to some 
ompa
tsubset K � Q+ in the Hausdor� sense: then, by Go lab's theorem (see [12, 8, 16℄)H1(K) � lim infn!1H1(�
kn) < +1 (sin
e H1(�
kn) � 1 + 
k for every n) and thusjKj = 0. Eventually, observe that if � 2 
k, then � 2 
kn for large n and �
kn(�) = 1,and that if � 62 
k [K, we 
an easily show that � 62 
kn for large n and �
kn(�) = 0 (seese
tion 5.1 for details of a similar proof).Then, we have vn!1 a.e. in F , and in parti
ular vn�F!�F in L2(Q+). Thus,jQa \ F n 
kj = ZQa �F (�)(1 � �
k)(�) d�= limn!1 ZQa vn(�)�F (�)(1 � �
kn)(�) d�= limn!1 ZQa vn(�)�F (�)�fvn�skng(�) d�� limn!1 1k ZQa �F (�)(1� �
kn)(�) d� = 1k jQa \ F n 
kj;so that jQa\F n
kj must be zero for any a > 0. This shows that jF n
kj = 0, and sin
e
k � 
 it proves the 
laim. We 
on
lude that 
\Q+ = F up to a Lebesgue{negligibleset.Re
all that F is the sub-graph of a fun
tion of bounded variation g 2 BV (S1). Leth be the greatest l.s.
. representative of g (h 
an be built, for instan
e, as the l.s.
.20



envelope of any upper-semi
ontinuous representative of g). Sin
e 
 \Q+ = F up to aLebesgue{negligible set, we easily show thatÆ
 = f(x; y) 2 Q : y < h(x)g;and that �
 \Q+ is H1{essentially equal to ��F .For any Borel set B � Q we introdu
e the following lo
alization of L"L"(v;B) = 2�
 � 4"�2 ZQ+\B jrv(x; y)j2 dxdy + 1" ZQ+\B v(x; y)(1 � v(x; y)) dxdy� :(37)For any open set A, we also have �
H1(��F\A) � lim infn!1 L"n(vn; A). In parti
ular,if we 
hoose Æ > 0, and de�ne AÆ = f� 2 Q : dist(�; �
 \Q+) < Æg, we have that�
H1(�
 \Q+) � lim infn!1 L"n(vn; AÆ): (38)De�ne now BÆ = f� 2 Q n AÆ : dist(�; �
 n Q+) < Æg: BÆ \ �
 is a �nite union ofsegments in S1. We want to estimate H1(�
\BÆ). Write �
\BÆ = SNk=1(ak; bk)�f0g.We have for any Æ0 � ÆL"n(vn; BÆ) � NXk=1 Z bkak (2�
 Z Æ00 4"n�2 j�yvn(x; y)j2 + vn(x; y)(1 � vn(x; y))"n dy) dx� NXk=1 Z bkak (8�
� Z Æ00 qvn(x; y)(1 � vn(x; y))j�yvn(x; y)j dy) dx:Re
alling that vn(x; 0) = vs, where vs is de�ned by (11), we dedu
eL"n(vn; BÆ) � NXk=1 Z bkak (8�
� Z vsvn(x;Æ0)qt(1� t) dt) dx= NXk=1 Z bkak (�
 ^ �s � 8�
� Z vn(x;Æ0)0 qt(1� t) dt) dx:Sin
e vn!0 a.e. in BÆ \ Q+, for a.e. Æ0 2 (0; Æ℄, we must have that for a.e. x inSNk=1(ak; bk), vn(x; Æ0)!0 as n!1. Therefore, 
hoosing su
h a Æ0, we have for a.e.x 2 SNk=1(ak; bk), limn!1 Z vn(x;Æ0)0 qt(1� t) dt = 0;so that lim infn!1 L"n(vn; BÆ) � (�
 ^ �s) NXk=1 jbk � akj = (�
 ^ �s)H1(�
 \BÆ): (39)21



Now, we want to estimate the length of �
 n �
. As usual h : S1![0;+1) willdenote the l.s.
. fun
tion su
h that 
 = f(x; y) 2 Q : y < h(x)g, and it has beenshown in se
tion 5.1 that �
 n �
 = [x2S1fxg � [h(x); h(x)):Given Æ > 0, 
hoose x0 2 S1 su
h that h(x0) � h(x0) > Æ and � > 0, small enough tohave (sin
e [h(x0); h(x0)� Æ℄ � Æ
)CÆ;� = [x0 � �; x0 + �℄� [h(x0); h(x0)� Æ℄ � 
Let � > 0, � < minfÆ; �g=2. Sin
e (x0; h(x0)) 62 
 and 
 is 
hara
terized by (34),limn!1 inf essB((x0;h(x0));�)vn = 0. As vn is nonin
reasing in y, there exists xn 2(x0 � �; x0 + �) su
h that vn(xn; y)!0 as n!1 for a.e. y 2 (h(x0) + �;+1). On theother hand, vn!1 a.e. in 
, thus a.e. in (x0 � �; x0 � �) � (h(x0) � Æ � �; h(x0) � Æ)and in (x0+�; x0+ �)� (h(x0)� Æ��; h(x0)� Æ), and there exist x0n 2 (x0� �; x0��),x00n 2 (x0 + �; x0 + �) su
h that vn(x0n; y) and vn(x00n; y) 
onverge to 1 as n!1 for a.e.y 2 (0; h(x0)� Æ � �).Now, we have L"n(vn; CÆ;�) �� 2�
 Z h(x0)�Æ��h(x0)+� (Z x00nx0n 4"n�2 j�xvn(x; y)j2 + vn(x; y)(1 � vn(x; y))"n dx) dy� 8�
� Z h(x0)�Æ��h(x0)+� (� Z xnx0n qvn(1� vn)�xvn dx + Z x00nxn qvn(1� vn)�xvn dx) dy= 8�
� Z h(x0)�Æ��h(x0)+� (Z vn(x00n;y)vn(xn;y) qt(1� t) dt + Z vn(x0n;y)vn(xn;y) qt(1� t) dt) dy:Sin
e for a.e. y 2 (h(x0) + �; h(x0) � Æ � �), the terms R vn(x00n;y)vn(xn;y) pt(1� t) dt andR vn(x0n;y)vn(xn;y) pt(1� t) dt 
onverge to R 10 pt(1� t) dt = �=8 as n!1, we getlim infn!1 L"n(vn; CÆ;�) � 2�
(h(x0)� h(x0)� Æ � 2�);and sending � to zero,2�
(h(x0)� h(x0)� Æ) � lim infn!1 L"n(vn; CÆ;�): (40)We now are able to show (35). Choose x1; : : : ; xN su
h that h(xk) < h(xk) andÆ < mink=1;:::;N (h(xk) � h(xk)), and 
hoose � > 0 su
h that the sets CÆ;�k = [xk ��; xk + �℄ � [h(xk); h(xk) � Æ℄ are disjoint and all in
luded in Æ
. Choose also Æ0 > 022



su
h that the (disjoint) sets AÆ0 ; BÆ0 de�ned as before do not tou
h any of the CÆ;�k .From (38), (39) and (40), we get thatlim infn!1 L"n(vn) � lim infn!1 L"n(vn; AÆ0) + lim infn!1 L"n(vn; BÆ0)+ NXk=1 lim infn!1 L"n(vn; CÆ;�k )� �
H1(�
 \Q+) + (�
 ^ �s)H1(�
 \BÆ0)+ 2�
 NXk=1(h(xk)� h(xk)� Æ)Sending �rst Æ0 to zero, and then Æ, we get�
H1(�
 \Q+) + (�
 ^ �s)H1(�
) + 2�
 NXk=1(h(xk)� h(xk)) � lim infn!1 L"n(vn)Sin
e this is true for any fx1; : : : ; xNg � fx 2 S1 : h(x) < h(x)g, we dedu
e (35).6.1.2 Convergen
e of the sequen
e (un)n�1First of all, (sin
e (12) holds) we may extra
t a subsequen
e (still denoted by (un; vn))su
h that pvne(un) weakly 
onverges in L2(Q+;R4) to some fun
tion E .Consider now a Lips
hitz sub-graph A � 
, with A \ Q+ �� 
. Sin
e A \Q+is 
ompa
t and in
luded in Sk�2
k, there exists k � 2 su
h that A \ Q+ �� 
k,in parti
ular, A � 
kn for large n. Sin
e vn > skn > 1=(k + 1) a.e. in 
kn, 1=pvn isuniformly bounded by pk + 1 in A and sin
e it 
onverges to 1 a.e., it follows thate(un) = pvne(un) � 1=pvn * E weakly in L2(A \ Q+;R4) as n!1. Using Korn'sinequality and the fa
t that e(un) is uniformly bounded in L2(A\Q+;R4), we dedu
e(sin
e un�(x; 0) � 0 on fy = 0g) that (un)n�1 is also 
ompa
t in L2lo
(��1(A\Q+);R2),and sin
e if u is a limit point of the sequen
e we must have u�(x; 0) � 0 on fy = 0g ande(u) = E the possible limit point is unique, therefore un 
onverges in L2(A \Q+;R2).Sin
e this holds for every Lips
hitz sub-graph A with A\Q+ �� 
, un 
onverges inL2lo
(��1(
\Q+);R2) to some fun
tion u 2 X(
), with e(u) = E in the distributionalsense. As E is the weak limit in L2(Q+;R4) of pvne(un), (36) follows and point (i) ofTheorem (2) is proved.It remains to prove (ii).6.2 Proof of point (ii) of Theorem 26.2.1 The optimal pro�le for L"Consider the following 1{dimensional version of L"l"(v; I) = 2�
 � 4"�2 ZI jv0(t)j2 dt + 1" ZI v(t)(1 � v(t)) dt� ; (41)23



de�ned for and interval I � R and v : I![0; 1℄. Consider also the two problemsmin�l"(v;R) : v : R![0; 1℄; v0 � 0; lim�1 v = 1; lim+1 v = 0� (42)and min�l"(v; [0;+1)) : v : [0;+1)![0; 1℄; v0 � 0; v(0) = vs; lim+1 v = 0� : (43)Is is known (and easy to prove) that problem (42) is solved by v"(t) = 
( t"), where theoptimal pro�le 
 is 
(t) = 8><>: 1 if t � �1;12(1� sin �t2 ) if � 1 � t � 1;0 if t � 1: (44)The value of the minimum (42) is �
. Similarly, problem (43) is solved by the fun
tion~v"(t) = ~
( t"), where for any t � 0, ~
(t) = 
(t+ ts) and ts = 2�ar
 sin(1� 2vs) 2 [�1; 1),so that 
(ts) = vs. In this 
ase the value of the minimum (43) is �
 ^ �s.6.2.2 Constru
tion of a sequen
e (v"; u"), for a regular (
; u)We will �rst 
onsider the 
ase where �
 is regular: we assume that 
 is the sub-graphof a Lips
hitz fun
tion h, that �
 \Q+ is a �nite union of C2 ar
s, and that �
 nQ+is a �nite union of segments (ak; bk) � f0g � S1 � f0g, k = 1; : : : ; N . We also assumethat u 2 L1(
;R2).We de�ne the signed distan
e d
 to �
 asd
(�) = dist(�;
) � dist(�;Q n 
):In parti
ular, d
(�) = 0, � 2 �
 and d
(x; y) � y < 0 if y < 0.For every " > 0 (small) and � 2 Q we de�nev"(�) = 
 �d
(�)" + ts�so that v" � vs on �
, and, in parti
ular, v" � vs on �Q+ = S1 � f0g. Noti
ethat jrv"(�)j = j
0(d
(�)=" + ts)rd
(�)="j = �
0(d
(�)=" + ts)=" a.e. in Q, and thatjrv"(�)j = v"(�)(1 � v"(�)) = 0 if jd
(�)j > 2".If A � Q is open, (L"(v"; A) de�ned by (37)), is bounded byL"(v"; A) �� 2�
" ZQ+\A 4�2
0 �d
(�)" + ts�2 + 
 �d
(�)" + ts��1� 
 �d
(�)" + ts�� d�� 4�
 14" jf� 2 A : jd
(�)j < 2"gj� 4�
H1(�
 \A) + 
"; (45)24



with 
" = 
"(A; Æ) 
onverging to 0 as "!0, sin
e, as �
 is 
losed, the Minkowski
ontent lim"#0 12" jf� 2 A : jd
(�)j < "gj is equal to the length H1(�
 \ A) (see forinstan
e [10℄).Now, given Æ > 0 small, we let �
Æ+ = f� 2 �
 \ Q+ : dist(�;Q�) > Æg, �
Æ0 =f� 2 �
 nQ+ : dist(�; �
 \Q+) > Æg, and AÆ+ = f� + ��(�) : � 2 �
Æ+;�Æ < � < Æg,where �(�) is the normal to �
 at �, AÆ0 = f� + (0; �) : � 2 �
Æ0; 0 < � < Æg. Noti
ethat AÆ+ [AÆ0 � Q+. We let BÆ = f� 2 Q : dist(�; �
 n (�
Æ+ [ �
Æ0)) < 2Æg.If Æ is small enough, f� 2 Q+ : dist(�; �
) < Æg � AÆ0 [AÆ+ [BÆ, and if 2" < Æ,L"(v") � L"(v"; AÆ0) + L"(v"; AÆ+) + L"(v"; BÆ):The last quantity is L"(v"; BÆ) � 4�
H1(�
 \BÆ) + 
"by (45). It is easy to 
he
k that�
 \BÆ � CÆ = (�
 \Q3Æ) [ ((�
 nQ+) n dom3Æ0 );so that the previous inequality yieldsL"(v"; BÆ) � 4�
H1(CÆ) + 
": (46)We estimate the two other integrals:L"(v"; AÆ0) == NXk=1 Z bk�Æak+Æ  2�
" Z Æ0 4�2 
0( �" + ts)2 + 
( �" + ts)(1 � 
( �" + ts)) d�! dx=  NXk=1 jbk � akj � 2NÆ! 2�
 Z Æ="ts 4�2 
0(t)2 + 
(t)(1 � 
(t)) dt� (�
 ^ �s)�H1(�
 nQ+)� 2NÆ� (47)
by de�nition of ts. On the other hand,L"(v"; AÆ+) == Z�
Æ+ dH1(z) 2�
" Z Æ�Æ J(z; �) 4�2 
0( �" + ts)2 + 
( �" + ts)(1 � 
( �" + ts)) d�!= Z�
Æ+ dH1(z)�2�
 Z 1�1 J(z; "(t � ts))12 
os2 ��t2 � dt� ;where J(z; �) is the Ja
obian of the transformation � 2 AÆ+ 7! (z; �) : z 2 �
Æ+; � =z+ ��(z), whi
h is well-de�ned if Æ is small sin
e �
\Q+ is C2. It 
an be shown thatJ is 
ontinuous and J(z; 0) � 1, thereforelim"#0 L"(v"; AÆ+) = Z�
Æ+ dH1(z)��
 Z 1�1 
os2 ��t2 � dt� = �
H1(�
Æ+): (48)25



Equations (46), (47) and (48) yieldlim sup"#0 L(v") � (�
 ^ �s)�H1(�
 nQ+)� 2NÆ� + �
H1(�
Æ+) + 4�
H1(CÆ)� L(
) � 2N(�
 ^ �s)Æ + 4�
H1(CÆ)so that, sending Æ to zero, lim sup"#0 L(v") � L(
): (49)Indeed, \Æ>0CÆ = SNk=1fak; bkg and the latter set has length zero, thus H1(CÆ) tendsto zero.We now build the asso
iated fun
tions u". Let 
 > 0 be the Lips
hitz 
onstantof h, we assume 
 � 1. If � = (x; y) 2 Q n 
, and �0 = (x0; h(x0)) 2 �
, jh(x) �h(x0)j � 
jx � x0j, so that y � h(x) � 
jx � x0j + jh(x0) � yj, and we dedu
e thaty � h(x) � 
dist(�;
). Thus, if in addition v"(�) > 0, we have dist(�;
) < 2" sothat y � h(x) < 2
", and (x; y � 2
") 2 
. We de�ne for all (x; y) 2 Q the fun
tionw"(x; y) = 1 ^ (v"(x; y � 2
")=vs) 2 H1lo
(Q): v"(x; y) > 0 implies w"(x; y) = 1 (sin
e(x; y � 2
") 2 
 and v" � vs in 
), and w"(x; y) > 0 implies (x; y � 4
") 2 
.We 
an de�ne, for all (x; y) 2 Q+,u"(x; y) = ( u(x; y � 4
")w"(x; y) if w"(x; y) > 0 () (x; y � 4
") 2 
);0 if w"(x; y) = 0:The fun
tion u"(x; y)� (x; 0) is 1-periodi
 in x and vanishes for y = 0, and u"(x; y) =u(x; y � 4
") as soon as v"(x; y) > 0. We havee(u")(x; y) = 8><>: e(u)(x; y � 4
")w"(x; y)+u(x; y � 4
") �rw"(x; y) if w"(x; y) > 0;0 if w"(x; y) = 0;where a� b denotes the symmetrized tensor produ
t, and e(u")(x; y) = e(u)(x; y�4
")if v"(x; y) > 0. Thus, for some 
onstant C > 0,ZQ+(v"(�) + �")Ae(u")(�):e(u")(�) d�� (1 + �") Zfv">0gAe(u")(x; y � 4
"):e(u")(x; y � 4
") dxdy+C�" Zf0<w"<1g je(u)(x; y � 4
")j2 + ju(x; y � 4
")j2jrwe(x; y)j2 dxdy� (1 + �") Z
Ae(u)(x; y):e(u)(x; y) dxdy+C�" Zf0<v"<vsg je(u)(x; y � 2
")j2 + ju(x; y � 2
")j2jrv"(x; y)=vsj2 dxdy26



We 
laim that this last integral goes to zero as " # 0, so thatlim sup"#0 ZQ+(v"(�) + �")Ae(u")(�):e(u")(�) d� � Z
Ae(u)(�):e(u)(�) d�and in view of with (49), inequality (14) holds in this 
ase.Clearly, lim"#0 �" Rf0<v"<vsg je(u)(x; y � 2
")j2 dxdy = 0. Then,�" Zf0<v"<vsg ju(x; y � 2
")j2jrv"(x; y)=vsj2 dxdy� kuk21 �"v2s"2 k
0k21 ���� 2 Q+ : 0 < v"(�) < vs	��� ��"" � kuk21k
0k21v2s 1" ���� 2 Q+ : jd
(�)j < 2"	�� = o(1)sin
e �" = o(") and 1" jfjd
j < 2"gj tends to 4H1(�
).Therefore point (ii) of Theorem (2) is proved in the 
ase where �
 and u have someregularity.6.2.3 Constru
tion of (v"; u") in the general 
aseNow, for an arbitrary 
 2 G and u in X(
), suppose we are able to build a sequen
e(
n)n�1 
onverging to 
 and un 2 X(
n) \ L1(
n) su
h that un!u in L2(A;R2)for every A �� 
, ea
h 
n is the sub-graph of a Lips
hitz fun
tion, �
n \Q+ is C2,�
n nQ+ is a �nite union of segments, and that satis�eslim supn!1 E(
n; un) � E(
; u):Then a simple diagonalization argument will lead to the result. Indeed, if we 
onsider(vn;"; un;")">0 obtained for ea
h n as des
ribed in se
tion 6.2.2, we �rst build by in-du
tion a sequen
e "(n) su
h that for every n, "(n) < minf"(n � 1); 1=ng, and su
hthat kun;" � unkL2(fdist(�;Qn
n)>1=ng;R2) < 1nand vn;" � 1 on f� : dist(�;Q n 
n) > 1=ng as soon as " < "(n), andsup"<"(n)E"(vn;"; un;") � E(un;
n) + 1n:Then, we let u" = un;", v" = vn;" whenever "(n + 1) � " < "(n). We have v"!�
,lim sup"#0E(v"; u") � E(u;
), and if A �� 
, for large n we have A � f� 2 Q :dist(�;Q n 
n) > 1=ng so that for small ",ku" � ukL2(A;R2) � ku" � un(")kL2(A;R2) + kun(") � ukL2(A;R2)� 1=n(") + kun(") � ukL2(A;R2)! 027



as "!0, where n(") is de�ned by "(n(") + 1) � " < "(n(")) and goes to +1 as "!0.In order to build the sequen
e (
n; un), we �rst assume we 
an �nd for every na n{Lips
hitz fun
tion hn � h, where h satis�es 
 = f(x; y) 2 Q : y < h(x)g.This is proved in se
tion 5.2 (hn is given by equation (26)), and it is establishedthat the sets 
0n = f(x; y) 2 Q : y < hn(x)g 
onverge to 
 and that L(
0n)!L(
).Now, if � is a 1{dimensional smoothing kernel (� 2 C1(R), RR � = 1, � � 1 andsupp� � [�1=2; 1=2℄), and �n(t) = n2�(n2t) for every n � 1, we let gn = hn � �nand 
n = f(x; y) 2 Q : y < gn(x)g. It is not diÆ
ult to see that 
n!
, that �
nis smooth (in fa
t, C1), and that �
n n Q+ is a �nite union of segments. We alsohave that L(
n) ' L(
0n)!L(
). Moreover, gn is Lips
hitz (gn 2 C1(S1)) so that
n is a Lips
hitz sub-graph. Eventually it is easy to 
he
k that gn � hn + 
=n (wherethe 
onstant 
 = RR jtj�(t) dt), so that f(x; y � 2
=n) : (x; y) 2 
ng �� 
0n � 
:therefore, we 
an build un 2 X(
n) \ L1(
n) as a suitable regularization of thefun
tion u(x; y � 2
=n), whi
h is de�ned in a neighborhood of 
n.6.2.4 A remark on the integral of v"We now know how to build a family (v"; u")">0 for an arbitrary domain 
 2 G andu 2 X(
). In order to a
hieve the proof of Theorem 2 it remains to show that we 
analso impose that for every ", RQ+ v"(�) d� = j
j.We have that RQ+ v"(�) d�!j
j as " # 0. Let now �" = RQ+ v"(�) d�=j
j, that
onverges to 1. We de�ne a new family (v0"; u0")">0 byv0"(x; y) = v"(x; �"y);(u0x" (x; y); u0y"(x; y)) = (ux" (x; �"y); �"uy"(x; �"y))for every (x; y) 2 Q+. It is not diÆ
ult to show that this family still satis�es point (ii)of Theorem 2, and that RQ+ v0"(�) d� = j
j for every " > 0.6.2.5 A link between (i) and (ii) in Theorem 2The (v"; u")">0 
onstru
ted in se
tion 6.2 have the property that the set 
 would bethe set obtained from any subsequen
e (v"n)n�1 by the method des
ribed in se
tion 6.1.In parti
ular, we dedu
e that, for this family (v"; u"),lim"#0 E"(v"; u") = E(
; u): (50)A Fun
tions of bounded variation, Ca

ioppoli setsWe review in this appendix some standard de�nitions and properties of the fun
tionsof bounded variation. For more details, the reader should 
onsult [11, 7, 10, 2℄.28



A.1 De�nitionsA.1.1 Classi
al and measure theoreti
al total variationIn the 
lassi
al sense, the variation of a real{valued fun
tion f : I!R, de�ned on aninterval I � R, is given byVar(f; I) = sup( mXi=1 jf(ti)� f(ti�1)j : m 2 N; t0; : : : ; tm 2 I; t0 < t1 < � � � < tm) :(51)The de�nition for a fun
tion f : S1!R is similar. The fun
tion f has bounded variationon I in the 
lassi
al sense if Var(f; I) < +1.In the measure theoreti
al sense, on the other hand, a fun
tion f is said to belongto BV (
), the spa
e of fun
tions of bounded variation on the open domain 
 � RN ,N � 1, if and only if f 2 L1(RN ) and its distributional gradient Df is a boundedve
tor measure on 
. In this 
ase, the total variation of f is the mass jDf j(
) of themeasure Df . The de�nition is similar if 
 � S1 �R, whi
h is usually the 
ase in thispaper.A.1.2 Sets with �nite perimeterA Ca

ioppoli set, or set with �nite perimeter in 
, is a set E � 
 su
h that thedistributional gradient D�E of its 
hara
teristi
 fun
tion is a bounded ve
tor measureon 
. (If E is bounded we thus have �E 2 BV (
)). In this de�nition, a set E is of
ourse identi�ed with all sets E0 su
h that jE04Ej = 0. The perimeter of E in 
 isthe total variation jD�Ej(
) < +1.A.2 Properties of fun
tions with bounded variationA.2.1 Links between both de�nitionsIf I � R (or I � S1) is an open interval, thenZI jf(t)j dt < +1 and Var(f; I) < +1 ) f 2 BV (I):More pre
isely, the equivalen
e 
lass of fun
tions almost everywhere equal to f is anelement of BV (I).On the other hand, every f 2 BV (I) has a representative g (g = f a.e.) su
h thatVar(g; I) = jDf j(I) < +1. In fa
t, one 
an prove thatjDf j(I) = min fVar(g; I) : g = f a.e.g :Moreover, f always have representatives g0 with Var(g0; I) = +1: for instan
e the
hara
teristi
 fun
tion of Q belongs to BV (R), but in the BV sense �Q = 0, whereasin the 
lassi
al sense Var(�Q;R) = 2℄Q = +1.29



A.2.2 Continuity propertiesIf f 2 BVlo
(
) we 
an de�ne at ea
h point x 2 
 the approximate lower limit of f byf�(x) = sup(t 2 R : lim sup�#0 jff < tg \B(x; �)j�N = 0)and the approximate upper limit f+(x) in the same way (f+(x) = �(�f)�(x)). Iff+(x) = f�(x) 6= �1 (this is true almost everywhere in 
), we set ~f(x) = f+(x) =f�(x) and say that the pre
ise representative ~f is approximately 
ontinuous at x.If N = 1, 
 = I � R (or I � S1), and f 2 BV (I), for any g representative of f wehave Var(g; I) = jDf j(I) , g(x) 2 [f�(x); f+(x)℄ for every x 2 I.Moreover, in the 1{dimensional 
ase, f also has an approximate left limit at ea
hpoint f(x� 0) = sup(t 2 R : lim sup�#0 jff < tg \ (x� �; x)j� = 0)= inf (t 2 R : lim sup�#0 jff > tg \ (x� �; x)j� = 0);and a right limit f(x + 0) similarly de�ned. For every x 2 I, ff(x � 0); f(x + 0)g =ff�(x); f+(x)g. Noti
e that if I = (a; b), then up to a 
onstant f(x�0) = jDf j((a; x))and f(x+0) = jDf j((a; x℄). In parti
ular, f(x�0) is 
ontinuous at ea
h point of I nSf ,where Sf = ff(x�0) 6= f(x+0)g = ff�(x) < f+(x)g is the (at most 
ountable) set ofessential dis
ontinuities of f . The representative f� of f is lower semi-
ontinuous: itis the largest l.s.
. representative of f . Similarly, f+ is the lowest u.s.
. representativeof f .If g is a representative of f 2 BV (I) su
h that Var(g; I) < +1, at ea
h x0 2 I the(
lassi
al) left and right limits exist and we havelimx!x0x < x0 g(x) = g(x0 � 0) = f(x0 � 0); andlimx!x0x > x0 g(x) = g(x0 + 0) = f(x0 + 0):A.2.3 Sets and sub-graphsIn the 
ase where f = �E , we let E0 = f ~f = 0g, E1 = f ~f = 1g, and de�ne a redu
edboundary by ��E = 
 n (E0 [ E1). It is known that the measure D�E is supportedby the set ��E, and that jD�E j = HN�1 ��E, thus jD�E j(
) = HN�1(��E) is theperimeter of E. 30



If I � R (or I � S1), let f 2 BV (I). Then, the set E = f(x; y) 2 I � R : y <f(x)g � I�R has �nite perimeter. This 
an been shown for instan
e by approximatingf by a sequen
e of regular fun
tions fn su
h that RI jf 0n(t)jdt!jDf j(I), and invokingthe lower semi-
ontinuity of the total variation. We getjD�Ej(
) � lim infn!1 jD�fy<fn(x)gj(
) = lim infn!1 ZIq1 + jf 0n(t)j2 dt � jIj+ jDf j(I):In fa
t, one 
an show that jDx�E j(I) = jDf j(I) and jDy�E j(I) = jIj, so that the fa
tthat the sub-graph E has �nite perimeter yields that f 2 BV (I), andjDf j(I) � H1(��E) � jIj+ jDf j(I): (52)We de�ne the open sets A = fy < f�(x)g and B = fy > f+(x)g. It is not hardto see that A = B
 (and, equivalently, B = A
), so that ÆA = B
 = (A
)
 = A, and�A = �A. We 
an 
he
k easily from the de�nitions that A � E1 and B � E0, and inparti
ular ��E � �A = �B = f(x; y) 2 I �R : f�(x) � y � f+(x)g. This last set 
anbe shown to have �nite length: in fa
t H1(�A) = H1(��E). In parti
ular, A = B
 = ELebesgue{essentially, and �A = ��E H1{essentially.One last result we want to state is a \
lassi
al" equivalent of (52). We 
laim that,if g is a l.s.
. fun
tion, and if we 
onsider the open set 
 = f(x; y) 2 I �R : y < g(x)g,then 12Var(g; I) � H1(�
) � jIj+Var(g; I): (53)Indeed, if we 
onsider m 2 N and t0; : : : ; tm 2 I, t0 < t1 < � � � < tm, thenjg(ti) � g(ti�1)j � pjti � ti�1j2 + jg(ti)� g(ti�1)j2 whi
h is the length of the segmentjoining (ti�1; g(ti�1)) to (ti; g(ti)). But �
 \ ([ti�1; ti℄ � R) 
ontains at least a path
onne
ting these to points, therefore this length is smaller thanH1(�
\([ti�1; ti℄�R)).Summing over i we getmXi=1 jg(ti)� g(ti�1)j � mXi=1H1(�
 \ ([ti�1; ti℄�R)) � 2H1(�
);thus the left inequality in (53) holds.To show the other inequality, we refer the reader to the te
hniques used in se
tion 5.Basi
ally, one 
onsiders g su
h that Æ
 = f(x; y) 2 I�R; y < g(x)g. One then 
an splitH1(�
) = H1(�
) +H1(�
 n �
). We get H1(�
) � jIj + jDgj(I) = jIj + Var(g; I)by (53), and we then show that �
 n �
 = Sfg<ggfxg � [g(x); g(x)). We dedu
e that2H1(�
 n �
) = 2Pfg<gg(g(x)� g(x)) = Var(g; I) �Var(g; I), hen
e the result.
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A.2.4 Co-area formulaWe eventually state the 
o-area formula: for every f 2 BV (
) (
 � RN , or, as is
ommon in this paper, 
 � S1 �R),jDf j(
) = Z +1�1 jD�ff>tgj(
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