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Abstract

We study a model for shape instabilities of heteroepitaxial crystalline films.
Lattice misfits between the substrate and the film induce elastic stresses in the
film, which adjusts the shape of its free surface to reduce its total energy, sum
of an elastic and a surface energy. We give a precise framework that guarantees
existence of solutions to this variational problem. We show that equilibrium states
can be approximated using a two-phase model for representing the surface energy.
Numerical results, obtained via this approximation, are presented.
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1 Introduction

This paper is a contribution to the mathematical formulation of morphological in-
stabilities of interfaces induced by stress rearrangement. Stress driven rearrangement
instabilities (SDRI) are observed in many branches of material sciences, such as frac-
ture, crystal growth or corrosion. They occur for instance in the epitaxial growth of
thin layers of highly strained hetero systems such as InGaAs/GaAs or SiGe/Si, in view
of applications to electronic device structures. Because of these instabilities, controlling
the growth of such systems is a significant challenge for the Applied Physics commu-
nity (see for instance the special issue of the MSR bulletin on this topic [17]). There
is also a big economic incentive as SiGe systems, for instance, would provide low-cost
high-performance technology.

When a epitaxial film is grown on a (flat) substrate, if kinetic effects are neglected,
the free surface of the film is flat until a critical value of the thickness is reached, after
which the free surface becomes corrugated. Atomic-force microscopy images show
ripples, or pits and islands of pyramidal shapes, depending on the type of alloy.



The basic mechanism that explains this behavior is the following. The lattice misfits
between the substrate and the film induce strains in the film. To release some of the
elastic energy due to these strains, the atoms on the free surface of the film have the
ability to move and the resulting morphology is energetically more economical.

The explanation put forward is that competition takes place between two forms
of energy, the surface energy and the bulk elastic energy. The former is roughly pro-
portional to the area of the free surface, thus favoring flat configurations. A simple
asymptotic computation [13], shows that a flat free surface is unstable with respect to
minimizing the bulk elastic energy of a linear elastic solid.

A model problem has been studied in [4], to understand how the stability of the
uniform (flat) free surface depends on the mean thickness. In this one-dimensional
formulation, the film occupies a strip @ = {0 < z < 1,0 < y < h(z)}, and stable
equilibria are defined as global minimizers of an energy functional that depends on the
thickness h and on the displacement (in the z direction) in the strip u(z). The problem
takes the form

inquV,h,GHg(uah) = inf'uEV,hGH K/Ol h(x)[u'(x)]Qdm + /01 \V 1+ [hl(x)]de : (1)

The first term in the energy expression models an elastic bulk energy induced by u(z),
while the second represents the length of the curve A. The parameter K is related
to the scalings of the physical constants (length of the specimen , mean thickness,
elasticity constants). The larger K, the larger the mean thickness (all inertial effects
have been neglected and the model is quasi-static).

One of the issues that stems from [4], is the choice of spaces of admissible displace-
ments and thicknesses. In that work, which was carried out to understand compu-
tational results obtained for the above energy [9], H was chosen to be the space of

piecewise C* positive functions, which satisfied the volume constraint

/1 h(z)de = 1, (2)
Jo

reflecting conservation of mass during the rearrangement process. The space V was
simply chosen to be xz + H!(S') (S! denotes the torus R/(0,1)). It turns out that
these spaces are not adequate neither for the analysis of the problem nor for computing
purposes. In particular, if K is large, the equilibrium configuration has a vertical crack
that runs from the free surface to the bottom of the film. The computations did not
show anything close to such a configuration, and proved (ironically) highly unstable.
A sound mathematical formulation of the minimization of the energy functional should
involve spaces of functions which can hence be somewhat rough; the difficulty lies then
in defining the corresponding energy.

These questions are at the heart of the present paper, where we study a physically
more meaningful formulation : we consider the film as a full 2-dimensional elastic solid.



Its displacement is thus a vector-valued function u(z,y). The main change concerns
the modeling of the contact between the substrate and the film. In the 1-d model,
strain was created by imposing boundary conditions on u at the endpoints. Here, the
contact affects the film in a more realistic way : a Dirichlet boundary condition is
imposed at the interface between film and substrate, which models the case of a film
growing on an infinitely rigid substrate. The enforcement of this boundary condition
is what causes the film to be strained, i.e., what generates elastic energy.

Additionally, we make the following assumptions. Firstly, we assume that the
admissible free surfaces are graphs of lower semi-continuous functions. This space is
endowed with a natural topology, for which sequences of free surfaces with uniformly
bounded length are compact.

Secondly, the configuration is supposed to be 1-periodic in the z-direction and
the displacements are periodic up to a linear displacement (the displacement in the
substrate).

Thirdly, we assume as in [4] that the film is made of a linear elastic material with
homogeneous Hooke’s law A. Finally, we assume that the substrate is infinitely large
with respect to the film and occupies the region S! x (—oo,0]. The contact between
the substrate and the film costs surface energy, and the corresponding surface tension
is denoted by oy.

This work is devoted to giving a “sound mathematical formulation” for finding
the equilibrium configuration. We define an energy E(Q,u) for graphs Q of ls.c.
functions and for displacements u. We show that a minimizer exists and that it can be
approximated by “smooth” thicknesses, namely by thicknesses which are Lipschitz. It
was observed in [4], that when piecewise smooth thicknesses converge to a configuration
with a vertical crack, the length of the crack has to be counted twice in the limiting
energy. Our present formulation conveys the same feature.

We also propose an approximation scheme for computing minimizers. It is based on
a diffusive two-phase model, one phase representing the film, while the other represents
the void above the free surface. A Cahn-Hilliard energy [1, 5, 15| approximates the
length of the free surface. The total energy E. depends on the displacement v and on a
marker function v that takes the values v ~ 1 in the film and v ~ 0 in the void. The scale
of the Cahn—Hilliard approximation € controls the width of the transition zone between
the two phases We show that, as € — (0, a minimizing graph for £ can be recovered
as the set of points where the sequence of approximate markers v, — 1. We give
some numerical examples, based on the minimization of F.. This method is inspired
by the approximation techniques introduced by [3] for a free discontinuity problem
in the context of image processing, using I' convergence [1, 6]. The computations
of elastically stressed binary alloys of Leo et al [14] use a related approach. Muller

and Grant [18] introduce a similar Ginzburg-Landau approach to study numerically,



in two and three dimensions, the Grinfeld instability of the free interface of a non-
hydrostatically stressed solid. For a concise and comprehensive review about the I'—
convergence and the I'-limit of the Cahn—Hilliard free energy we refer to [1].

We do not consider in this paper the anisotropic or so-called crystalline case, where
the surface energy also depends on the orientation of the surface of the crystal. How-
ever, this can easily be done by introducing a convex 1-homogeneous function () of
the normal vector to the interface, as a weight in the lengths in section 2.1 (i.e., for
instance, replacing H'(0Q) with [, ¢(v(z)) dH' () where v(z) is the normal vector
to J€ at x). In the same way, the approximation result of section 3 holds if we replace
Vu(z,y)|? with o(Vo(z,y))? in (10). However, performing numerical computations is
a much harder task in the crystalline case, since the physics require ¢ to be singular
(only Lipschitz continuous).

The paper is organized as follows : in Section 2 the energy functional E is defined
in details and the lower semi-continuity of the surface energy is stated (Lemma 1).
Existence of a minimizer is then proved (Theorem 1). In Section 3, we introduce the
approximating energies F. and we give the main theorem of this paper, Theorem 2,
that states ['-convergence of the energies E. towards E. Numerical examples using the
approximating energies E. are given in Section 4. The proofs of Lemma 1 and 2 fill
in Sections 5 and 6, respectively. Finally, the Appendix groups a few results about
functions with bounded variation, that are used in the text.

We do not address the issue of stability with respect to the mean thickness. These
aspects will be treated subsequently.

2 Statement of the problem and existence of a minimizer

In the whole paper, @ denotes the 2-dimensional space S! x R (S! = R/Z), Q* =
S! x (0,+0oc), and for any a > 0, Q* = S' x (0,a). The canonical projection from R?
onto ) will be denoted by 7, however, in some non ambiguous situations it will not be
explicitly mentioned.

We will denote by G the set of all open subsets 2 of Q) that are the sub-graph of a
non-negative Ls.c. function h : S'—[0, +-00):

QeG < Fh:8'50,+00) Ls.c.,Q = {(z,y) €Q : y < h(z)}.

Note that if Q € G, 90 € QT = QT U (S' x {0}). Stating that Q € G is equivalent to
saying that @~ = Q \ QT C Q and that for any (z,y) € Q, {z} x (—o00,y] C Q. We
also denote by G;, C G the sub-graphs of non-negative Lipschitz functions.

If (€2,),>1 is a sequence of open sets, we say that it converges to (2 as n goes to
infinity if it converges to Q in the Hausdor(f-complement topology, i.e. if Q¢ = Q \ Q is
the Hausdorff limit of the complements €2f. We observe that G is closed in the set of



all open subsets of @), indeed, if €),, are the sub-graphs of functions h,, and €2, converge
to 2 as n goes to infinity, then €2 is the sub-graph of the function

h(z) = inf liminfh,(z,);

Tn—T N—00

in fact we have G = G;..

2.1 The surface energy

Given o., s > 0, we define the surface energy of a regular domain Q € Gy, as
L(Q) = o, H (00N QT) + oK' (00\ Q).

(Notice that 9Q\ QT = 90N (S! x {0}).) The idea is that the part 92N Q™ represents
the free surface of the crystal, whose surface tension is 0., whereas 9Q\ Q™ is the surface
of the substratum that is not recovered by the crystal, and whose surface tension is o.

We extend L to G by setting LO(Q) =400 if Q € G\ G, and define the relaxed
surface energy L : G—[0, +0c] as the lower semicontinuous envelope of L°. We have
the following lemma:

Lemma 1 let Q € G, and let h,h be the Ls.c. functions such that

Q= {(a,y) € Q : y < h(x)} and U= {(a,y) € Q : y < h(x)}. (3)

Then

L(Q) = o, {Hl(aﬁmQﬂ +2) (E(a:) h(a:))} + (0 Ao )HH O\ Q). (4)
z€S!

The proof of Lemma 1 is given in section 5. One consequence of this lemma, in

particular, is the fact that if o5 > o, it is better to recover all of the substratum with

an infinitesimal layer of crystal atoms and pay the lower surface tension o, instead of

leaving free any part of the surface of the substratum.

2.2 The global energy functional

We now introduce the energy

E(Qu) = K - Ae(u)(z,y):e(u)(z,y) dedy + L(), (5)

defined for any Q € G and u € X (), where X () denotes the set of functions u €

2
Lloc
and such that the linear deformation tensor (the symmetrized gradient) e(u) is in

(7= 1(Q); R?), u(z,y) = x for y < 0, u(z,y) — (x,0) which are 1 periodic in =,

L2(QNnQ*;RY). The matrix A = (a;;x;) is a positive-definite symmetric tensor of



order 4 (such that a; jx; = a5 = ag;; forany 4, j, k,1 € {1,2}). The scalar parameter
K is related to the scalings of the physical constants and it balances the influence of
each term in the energy. In the rest of the paper (except in Section 4, where we

illustrate the dependence on K) for simplicity we set K = 1 without loss of generality.

2.3 The problem

We consider the following minimization problem

min  E(Q,u subject to: QN Q1| = 1. 6

L (2, u) j 2N Q7| (6)

The volume constraint reflects conservation of mass: the model assumes that the re-
laxation of the film is much faster than the rate of deposition. We prove the following

Theorem 1 Problem (6) has a solution.

Proof. Consider (9, u,) a minimizing sequence for (6). Since |Q, N QT| + L(Q,) is
bounded, Q, N Q™" is uniformly bounded. Up to a subsequence (not relabeled) we may
thus assume that it converges to a domain Q € G, with [Q N Q™| = 1 and, since L is
ls.c.,

L(Q2) < liminf L(£,). (7)

n—oo
The function e(uy), that we extend to zero outside of §2,,, is uniformly bounded
in L?(Q*;R*). We thus may assume it converges weakly to some function & €
L?(Q*;RY). In particular, we have

/ A& (z,y):E(x,y) dedy < liminf Ac(uy)(z,y)e(uy)(z,y) dedy.  (8)
QnQ+ n—=o0 JQ,nQ+

Remark. It can be shown that £ = 0 a.e. in @ \ Q. Indeed, if K is the Hausdorff
limit of some converging subsequence of (9€2,,),>1, one can prove that H'(K) < +oo,
thus |K| = 0, and that Q U K is the Hausdorff limit of 2, or equivalently that the
domains @ \ ©Q, converge to Q \ (2 U K) (see section 5.1 for details). Thus £ = 0 in
Q\ (QU K) and since |[K| =0, a.e. in @ \ .

Let A C Q be a Lipschitz sub-graph, with ANQ™ cC Q. (For simplicity we assume
A D @, although it is not essential.) For n large enough, A C Q,, and u,, is defined
on 7 '(A). By Korn’s inequality, since u, (z,y) — (z,0) = 0 for y < 0 and since 94 is
Lipschitz, there exist ¢ = ¢(A) and ¢’ = ¢/(A, A) such that

[ lumy)Pdedy < ¢ [ eun) @ yyetun) @) dedy < CE@ ).
ANQT ANQT

Thus u, is uniformly bounded on A N Q™, so that some subsequence of (u,) weakly

converges (in fact, strongly) in L?(4;R?) to some function u. Since clearly u(z,y) —



(£,0) =0 for y < 0 and e(u) = &, the limit point u is unique and the whole sequence
(up) converges to w.

Since it holds for any Lipschitz sub-graph A N QT CC €, this shows that there
exists u € L} .(r~'(Q); R?), 1 periodic in z, with u(z,y) — (z,0) = 0 for y < 0, and
such that £ = e(u) in the distributional sense in 2. With (7) and (8), we conclude that
u € X(Q) and that (£2,u) is a solution of problem (6).

3 An approximation scheme for problem (6)

Given a (small) scale parameter £ > (0, we now introduce the following approximation
of the energy E. We first choose 7. > 0 such that 7. = o(e) as € goes to zero. Then

we let
B.(v,u) = /Q (0 ) + 1) Ae) (3, ye(w) (. y) dedy + L), (9)

where
L.(v) = 20, (% /Q+ \Vv(x,y)\Qd:pdy + é/cﬁv(:v,y)(l — v(:v,y))d:vdy) , (10)

for v € HY(QT) satisfying 0 < v(z,y) < 1, dv(z,y) < 0 a.e. in QT, and v > v, on
S' x {0}, and u € H. (R x Ry;R?) such that u(z,y) — (z,0) is 1 periodic in z and
vanishes on R x {0}. The constant v, € (0,1] is given by

Vs o.Nog (1 O, Nog T
/0 V=t = 2 /Oq/t( Dt = LT (11)

On the other hand, if v,u do not satisfy these properties we set E.(v,u) = +oc.

It is well known that the Cahn Hilliard energy L. is an approximation, in the
sense of I' convergence, of the perimeter [15]. In this particular setting we show the
following result, which strictly speaking is not a result of I'-convergence, but has the
same practical consequences for the computation of minimizers of F.

Theorem 2 Let (,),>1 be an arbitrary sequence of positive numbers with €, | 0 as

n—09Q.

(i) Let (vy,uy) be functions such that
supE’E(vn,un) < +oo (12)

n>1
and supy, > [o+ vn(§) d§ < +oc. Then there exist @ € G, u € X(Q), and a
subsequence of (vn,un)n>1, still denoted by (v,,uy), such that v,—Xq a.e. in
QF, up—u in L2, (7~ 1(Q2);R?) as n goes to infinity, and
E(Q,u) < liminf E, (v, uy). (13)

n—oo



a.e.in QF, u,—u in L2 (2N QT;R?) as n goes to infinity, and

loc

limsup E;, (vp, up) < E(Q,u). (14)

n—o0

Moreover, we can assume that for all n, fQ+ vn(z,y) dedy = QN Q.

In particular, this theorem shows that if v., u. are minimizers of E., subject to the
constraint fQ+ ve(z,y) dedy = 1, then, to each limit point u of (u.).~¢ corresponds a
set Q with [Q N QT| =1, such that (,u) is a solution of problem (6).

4 Numerical examples

The purpose of this Section is purely illustrative : we present a few shapes obtained
by minimizing approximate energies

E.(v,u) = K ,/Q+(U('T’y) +ne)Ae(u)(z,y)e(u)(z,y) dedy + Le(v),  (15)

with L. given by (10). The expression (15) only differs from (9) by the presence of the
parameter K in front of the elastic energy. It is related to the scaling from the physical
dimensions to the model problem [4], and roughly measures the mean thickness of the
specimen. One expects that when K is small, the term of surface energy is dominant
and therefore films with a flat free-surface should minimize the energy. When K
becomes large, minimizers should show a corrugated free-surface.

This energy is minimized under the constraints

u(z,0) = (2,0), v(z,0) > vy
u — (x,0) and v are 1-periodic in x

0<wv <1, gyv < 0 and v =V
Jq!

(16)

For a fixed value of €, we propose an iterative algorithm, based on a finite difference
discretization, to minimize the energy (15). The computations are performed on a fixed
rectangle Q' = S' x (0,1), but the results are displayed on two periods. The domain
Q' is discretized by a cartesian mesh : a 200 x 200 mesh in the computations presented
here.

At the nth step of the algorithm, the values of u,41 are computed in a standard

manner, as approximations of the solutions to the Euler equation
div((vn, +me)Ae(uny1)) = 0,

with the boundary conditions and the periodicity given above.



For the density, our approach is inspired by algorithms for motion by mean cur-
vature described in [19, 20], where in L. a non-regular potential of the same form is
used. Minimizers of F,(.,u,11) are computed as if they were stationary states of the

parabolic problem

8
O = 20, <—§Av —1/e(1 - 21))) — Ae(uptq) : e(ups1) — A
7r
0<v <1, 9o <0,

(17)

(0)

with the initial condition v, /; = v,, and where A is a Lagrange multiplier for the

volume constraint fQ1 v = V. More precisely, we compute functions UT(LIE:F]]) 1-periodic

(k+1)

mi1 (x,0) > v,, approximate solutions to the following variational

in z and such that v

problem

(18 [ D o
Jo
8e (k+1) (k+1)
+ 20, <F/Q] Vo, V(p—l—l/e'/@(lv”H ) (18)

b O Aelun ) selu))e = 0.
\

where the test functions ¢ are 1-periodic in z and satisfy ¢(x,0) = 0. The constraints

0 < 1)&:1) < 1 and Byv,(l’f:]l)

truncation. The parameter d corresponds to an artificial time step in view of (17), and

< 0 are then enforced at each iteration by a simple

is required to be smaller than €/20.. In this manner, the variational problem above is
the Euler-Lagrange equation of a convex minimization problem, and therefore existence

(k+1)

n+1
One of the virtues of this method is that the energy E. is decreasing in the course

of the algorithm. Indeed, since (18) expresses that vfllfl]) is the minimizer of the energy

B (- uny1) +1/20 foi |- —v,(1k+)1 2, one easily checks that

of a solution v is guaranteed.

k k k k
B upyr) — B upay) < —1/20 /Q] D ) 2

When Eg(vfﬁzl, un+1) has become stationary, we assign v,41 = 1)7(1]21.

This method for computing equilibrium shapes thus depends on several parameters :
€,Me, 9, and the mesh-size h. The transition zone should be described by at least a few
mesh-points. In fact, during the computations, we let € vary from 20 mesh sizes to 3.
The parameter 7. has been chosen equal to 0.001. The Hooke’s law of the film is that
of an isotropic elastic material, with Lamé constants A = 1 and p = 2.

We first illustrate the results obtained by this algorithm when considering a one—
dimensional approximation for the elastic displacement, like in (1). The approximate



energy functionals reduce then to
B = K [ (o) +n)dum ] + L)

where uq(z) denotes the average in y of the z—component of the displacement. In
this context, it was shown in [4] that for K large, the optimal configuration of the free
surface consisted of half circles separated by cracks. Figure 1 shows that the algorithm

does capture the optimal configuration.

Figure 1: Equilibrium shape for the 1-d model.

The rest of the figures are pertinent to the energy (15). The value of the density on
the bottom of the film has been chosen to be v > v, = 0.99 unless stated otherwise, and
the volume of the film is constrained to be equal to V = 0.2. In those computations
the initial shape has the form vy (y) + asin(27nz) f(y). The function vy is the optimal
profile associated with minimizing, under the volume constraint, the energy L. only,
see (44). If the prescribed volume of the film is V', vy has the expression :

1 lfySV_Eu
voly) = 21 —sin™LY) §fV e <y<V4e .
0 ify>V+e.

The remaining term in the expression of the initial shape is a perturbation, consisting
of a sinusoidal function in z, times a function f of y whose main attribute is to be
concentrated in the transition zone of vyg. The choice of the z—dependence of the
perturbation stems from a linearized stability analysis around the shape vy, which can
be shown to be a global minimizer for the energy F., when K is small, corresponding
to the flat free-surface 2 = S! x (0, V') solution to (6). These aspects will be discussed
elsewhere, however.

Figure 2 shows the initial and final shapes for a computation with K = 0.5. The
initial shape is vg(y) plus a perturbation of amplitude a = 0.4 and frequency n = 2.

10



The resulting free surface is flat, which is consistent with the small value of K. Figure 3
shows the variations of the total energy, of its elastic and surface energy components
during this computation

Figure 2: Initial and final shapes, K=0.05

12 —

08 E

08 E

r total energy 1
0.7 surface energy -

S elastic energy |
06 E

05F E
04k E

03[ E

02 .
0 50 100 150 200

iterations

Figure 3: Energies, K=0.5, initial shape vg(y) + 0.05sin(27x) f (y)

Figure 4 shows the initial shape (with amplitude ¢ = 0.7 and frequency n = 1),
and the final shapes resulting from the algorithm when K = 6 and for three different
values of v (0.99, 0.6 and 0.4). Contrarily to the one-dimensional model, no sharp
cracks are observed, rather wide zones with a nearly barren substrate are formed,
while the film forms bumps in the shape of milestones. The width of the base of these
milestones depends on the value of v, : this reflects the fact that v, is itself a function
of the ratio o./0, and determines the cost of leaving the substrate barren. Figure 5
shows the history of energies, when v; = 0.99. Finally, we present some results that
demonstrate the unstable behavior of the system for large values of K. Figure 6 shows
various images of the configurations obtained during a computation with K = 20,
initiated with the profile vy(y) which is a local minimum. After a large number of
iterations when nothing seems to happen to the ‘flat surface’, instabilities are triggered
by round-off errors. One observes corrugations that finally merge together to form a
unique bigger milestone. Figure 7 shows the corresponding energies.

11
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Figure 5: Energies, K =6, vs = 0.99

5 Proof of Lemma 1
In order to prove Lemma 1, we need to show that
(i) given any €2, converging to Q in G,
L(Q) < liminf L°(,),
n—oo
and that

(ii) for any Q € G, there exists a sequence €, converging to €2 such that

limsup L°(Q,,) < L(Q),

n—00

where L is defined by equation (4).
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Figure 6: Shapes at iterations 1936, 1940, 1944, 1948, 2000, 2100, K=20,initial shape
vo(y)

5.1 Proof of (i)

To show (i), we consider €2, converging to € in G. Without loss of generality we can
assume that a = sup,, L°(Q,) + |Q, N Q™| < +oc (since if liminf, o L%(2y) = +o00
there is nothing to prove, and if |Q, N Q*|—oc and L°(€2,) is bounded 2, converges
to @ ¢ G). In particular, the €2, are sub-graphs of Lipschitz functions h,, : S'—[0, a).

Clearly, 0, C Q% so that we may assume (by extracting a subsequence, still
denoted by (£2,)) that the boundaries 02, converge in the Hausdorff metric to some
compact set K. Notice that we easily deduce that €,, converge to QUK in the Hausdorff
sense: indeed if £ € QU K, either ¢ € 2 and therefore ¢ € Q,, for large n, or £ € K and
there exists &, € 09, C Q, such that & = lim,,_,o &,. Conversely if &, € Q,, for all n
and converge to some £ as n goes to infinity, if £ ¢ Q then there exists &, € Q \ Q,
with £ = lim,,_, &, (since @\ ©,, converge to @ \ € in the Hausdorff sense) and there
exists £ € [£,, &) NOKY,: since € —¢, we deduce that £ € K. In a similar way we can
show that 90Q C K.

Then, invoking Golab’s theorem (see [12, 16, 8]), J€,, being a sequence of uniformly
bounded one-dimensional compact connected sets, we get that

H'(09Q) < H'(K) < liminfH' (992,) < +oo. (21)

Moreover, the proofs of Golab’s theorem based on measure density arguments

(see [16]) also show that the measures p, = H'l 9Q,, up to a subsequence (not

13
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relabeled), converge weakly-* to a measure p supported by K such that
H'LK <p. (22)

We define the Ls.c. functions h, h : S—[0,a] as h(z) = min{y : (z,y) & Q} (resp.,

h(z) = min{y : (z,y) € Q}) so that (3) holds. Since Q C Q, h < h.
We first observe that 9 is the disjoint union of 9Q and (Umey {z} x [h(:v),ﬁ(:v))

Together with (21), this implies that h(z) = h(z) except for at most countably many

r € S'. As a matter of fact, 90 = Q\ Q C Q\ Q = 9Q. Then, 9Q \ 9Q = Q\ Q, so
that by definition of A and h,

0N\ = {(z,y) €Q : hw) <y <h(®)} = U {} x [hz).h(=)),

zeS!

which proves the claim.

We now define the measures v, = 0. H' L 0Q, N Q1T + o, H' L 0Q, \ Q. Tt is not
restrictive to assume that v, converges weakly-* to a positive measure v as n goes to
infinity, and we clearly have

(Us A O'c),u <rv< (Us \ UC)U- (23)
Moreover, since Q" is open and v, L Q" = o.u, L Q™ for all n, we also have
vl QT = oeul QT (24)

To deduce (19), it remains to show that the one-dimensional density of v on the
set N\ 9Q = U,cg1 {7} X [h(z), h(z)) is at least 20,.. Indeed, since

liminf L°(Q,) = liminfr,(Q) > v(Q) = v(K)

n—0o0 n—

> p(09) = v(ENQT) + v(E\ QT) + v (99\ M),

14



it will imply together with (22), (23) and (24) that
liminf L°(Q,) >
n—oo
o H' (AN QT) + (6. Ao )H' (0Q\ QT) + 20, (89 \ aﬁ) = L(Q).

It remains therefore to show that for %' almost any ¢ = (z,y) € 98\ 09,

v(B(&, p))
p

lim sup > 20,. (25)

pL0
Choose such a &, with h(z) < y (we exclude the case h(z) = y since {(z, h(z)) : h(z) <
h(z)} is at most countable, and thus H' negligible) and p > 0 small enough, so that
h(z) <y—p,y+p<h(z), and B(£,2p) C T

For some 0 > 0 small enough, (z,y — p — d) & £, so that there exists (zy,yn) &€ Qn
such that (z,,y,)—(z,y — p— ) as n goes to infinity. If n is large enough, y, <y — p,
and hy,(z,) < y — p, where h,, is the Lipschitz function whose sub-graph is ,,.

Fix ¢ > 0 small (¢ << p) and choose z’, 2" withz—¢ < 2’ < 2z < 2" < z+¢e. Choose
also y/', 4" such that (z',v), (", y") € B(&,2p)\B(&, p) and 3y’ > y+p, y" > y+p. Since
the Q,, converge in the Hausdorff sense to QU K D Q. and since (z',4'), (z",y") € Q,
there are sequences (z,, y, ) and (z],y") converging respectively to (z',y’) and (2", y")
such that (2, y.), (z,yl) € Q, for all n.

If n is large enough, = — ¢ < !, <z, < 2! <z + ¢, and hy,(z),), hn(z]) > y + p,
hn(zn) <y — p, so that the length of the graph 9%, of h,, inside the ball B(¢, p) must
be at least 2 x 2p — O(?). We deduce that for large n, v,(B(£, p)) > 20.2p — O(?),

and therefore v(B(¢, p)) > limsup,,_, . vn(B(&,p)) > 20.2p — O(¢?). Sending ¢ to 0,
we get that for any (small) p > 0,

v(B(£p))
2p

> 20,
so that (25) clearly holds.

5.2 Proof of (ii)

We now must build, given Q € G, a sequence €2,, converging to Q satisfying (20). It is
of course not restrictive to assume that L() < +oo.

We consider the Ls.c. functions h and h as in (3). Since L(Q) < +oc, h and
h are bounded and h(z) = h(z) except for an at most countable number of points
x € S'. Moreover, h and h are functions of bounded variation, in the classical sense
(see Appendix A, and in particular section A.2.2 and inequality (53)). They thus have
a right and left limit at each point. Now, since h = h a.e., we deduce that for any
z € 8!, h(z—0) = h(z—0) and h(z+0) = h(z+0) (where h(z£0) = lim, o+ h(z+e)).

15



Now, h being considered as a 1 periodic function defined on the whole real line
(meaning that we still denote by h what should theoretically be h o 7), for all n > 1
let h,, be the n—Lipschitz 1-periodic and non-negative function defined by

hp(xz) = inf h(z') + njz — 2| (26)
r'€R

and define 2, € G as the sub-graph of h,. Notice that since A is Ls.c., the infimum
in (26) is reached. Since h,, < h, Q, C Q. It is also well-known that for all x,
hn(x) T h(x) as n—oo. Let us show that € is the limit of the sequence (£2,),>1. Let
A be the limit of some converging subsequence (£, )r>1. Since €, is increasing it
is not difficult to show that A is the limit of the whole sequence (£2,),>1. Clearly,
A C Q, and we want to show the reverse inequality. Let ¢ = (z,y) ¢ A. There exist
€n = (Tn,yn) & Qy, such that £,—€ as n—oo. Since the infimum is reached in (26),
there exist !, such that

!

Yn > hn(zn) = h(T;z) + |z, — 2,

for every n. In particular since (y,)n>1 is bounded, z;, =z as n goes to infinity. Since
h is l.s.c., we deduce that

. . / . . _
h(z) < liminfh(z,) < liminfy, =y,

so that & € Q: therefore Q C A, and we have proved that Q is the limit of €2,,.

Now, we show that (20) holds for the sequence Q,. We have 0Q, = 09, =
{(z,hn(z)) : © €S

We split 012, into two parts, 0§, N I and 02, \ 9. First notice that 92 N 98,
is essentially equal to 9Q N 0Q,. Indeed, let (z,y) € 9Q, N (00 \ 9Q). We have
y = hy(z) < h(x), and h(z) <y < h(z), thus y = h(z) and h(z) < h(z), but we know
that this happens for at most a countable number of points z. Thus, 9Q,, N (9Q\ 69)
is at most countable.

Now, suppose that h,(z) = 0: then there exists 2’ € R such that h(z')+n|z—12'| =
0. Since h is non-negative, it implies that 2’ = z and h(z) = 0. On the other hand, if
h(z) = 0, since 0 < h,, < h, hy(z) = 0. We deduce that 992, \ QT = 90\ QT for any
n > 1, moreover this set is essentially equal to 92\ Q.

We thus deduce that, for every n,

LY(Q,) = osH' (00, \QT) + o.H' (00, NQT)
= o, H' (00\ Q) + o H' (00NN, NQT) + o, H' (09, \ 09Q).
We need now to estimate (99, \ 992). Notice that clearly, 952, \ 9Q = {(z, h,(z)) :

hn(z) < h(z)}. Since 09, \ 0 is open, it can be written as a disjoint union of open

connected arcs:

00, \ 0 = U {(z,hp(z)) : € I}}

keK
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where the set K is finite or countable, and for each k, Iy = (ag,bz) C S! is an open
interval.
Fix k € K and consider such a I;;. We claim that for all z € I,

hn(xz) = min{h(ax) + n|z — ag|, h(by) + n|z — bg|}. (28)

In order to simplify the notations we temporarily drop the subscript &, and let
therefore I = (a,b) = I. We can consider (a,b) as an interval in R, with a < b. Since
hy, is n=Lipschitz, h,(z) —hy,(a) < n|z—al so that for any z, h,(z) < h,(a)+nlz—al <
h(a) + n|z — a|. Thus, hy,(z) < min{h(a) + n|z — al, h(b) + n|z — b|}.

Assume now that there exists z € I such that the inequality is strict, and let 2’ € R
be a point where the infimum is reached in (26). We have h(z') + n|z — 2’| = hy,(z) <
h(a) + n|z — al, so that if ' < a, h(z') + nla — 2’| < h(a), but this is in contradiction
with the fact that hy(a) = h(a): thus 2’ > a. In the same way, we show that z’ < b,
so that z’ € I.

But if 2" is such that h,(z') = h(z") + n|z’ — z"|, then,

hn(z) < hp(z") + n|z" — 2| (since hy, is n Lipschitz)
< h(z") + nlz" —2'| + n|z’ — x|
= hp(z') + nlz’ — z|
< W) + n|z’ — x| = hn(z),

so that h,(z') = h(z') and z’ ¢ I. Therefore x can not exist, and (28) holds for every
point in [ = Ij.

We deduce an estimate for the contribution of the interval I = Iy to the length of
0, \ 092. We consider the two cases

(a) for all z € I, hy(x) = h(a) + n(z — a) (or hy(z) = h(b) + n(b — x));

(b) there exists ¢ € I such that h,(z) = h(a) + n(z — a) for all z € (a,c] and
hn(z) = h(b) + n(b — ) for all = € [, b).

In the first case, the graph of h, in I x R is a straight line going from (a,h(a)) to
(b, h(b)), while the boundary 9Q N (I x R) contains a curve connecting these two
points. This curve is made of a possible piece of straight line going from (a, h(a)) to
(a,h(a+0)), then a curve going from (a, h(a+0)) to (b, h(b—0)), essentially contained
in 00N (I x R), and then another possible piece of straight line going from (b, h(b—0))
to (b, h(b)), so that

HL (09, N (Tp xR)) < h(ag+0)— h(ag) + h(by, —0) —h(by) + H(OQN (Ix xR)). (29)

In the case (b), the graph of h, in T x R is made of two straight lines, one going
from (a,h(a)) to (c,h,(c)) and the other from (¢, hy(c)) to (b, h(b)). The boundary
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0Q N (I x R) contains a curve connecting (a, h(a)) to (b, h(b)), and passing through
the point (c, h(c)), and since max{h(a), h(b)} < hy(c) < h(c), (29) still holds.
Summing over k € K, we deduce that

H'(09,\09) < H' (aﬁﬂ U (I, x R)) + Z h(ar+0)—h(ax) + h(br —0) — h(bg).
keK keK
(30)
Now, it is possible to show that for any z, if for instance h(z + 0) > h(z — 0), then
(recalling that h and h are l.s.c.) h(z) = h(z — 0) and

h(z +0) + h(z — 0) — 2h(z) = h(z+0) — h(z) + 2h(z) — 2h(z)

= WEN ({2} X R)) +2R() — b)),
From (30) and (31), we deduce that
H' (09, \ 09Q) < H' (aﬁm U (@5 x R)) + 2H' (902 \ 99). (32)
keK

Now, it is clear that 9Q N Ugex (I x R) is contained in @, and that, up to an at
most countable number of points, it is disjoint from 0Q N 092, N Q*. So that we can
deduce from (27) and (32) that

LY, < o1 (0Q\ QF) + 0. (M(aﬁmcﬁ) +2H1(aﬂ\aﬁ)) = L(Q),

thus (20) holds and (ii) is proved. This achieves the proof of Lemma 1. O

6 Proof of Theorem 2

6.1 Proof of point (i) of the theorem

Given a sequence (ey,)n>1 With €, | 0 as n goes to infinity, we first consider a sequence
(Un,Un)n>1 that satisfies (12).

Then, by standard results [15, 1] on the Cahn—Hilliard energy L., we know that
up to a subsequence (still denoted by vy,), there exists a Caccioppoli set F' C Q1 such
that v,—X a.e. in QT, moreover,

oH'(0*F) < lim inf L, (o), (33)

where 0*F' is the reduced boundary of F" inside Q. Since sup,,>; Jo+ vn(€) d€ < +o0
the set F' is bounded, and since dyv, < 0, F'U Q@ is Lebesgue essentially equivalent
to the sub-graph of a (non-negative) bounded variation function g : S'—[0, +-00).
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Now fix an integer k > 2 and write for every n, using the co-area formula (see (54),
Appendix A)

v ds = k(k n(€) d
Fo Do @)l = D [ (T d
< kGt D) [ 90O raO1  va(e)) e
< (k(k +1))7 2L, (va)

which by (12) is uniformly bounded by some constant c¢;. We deduce that there exist
11
a level sk ¢ (737 %) such that ‘DX{vn>sﬁ}‘(Q+) < ¢g.
Moreover, since d,v, < 0, {v, > sk} is the sub-graph of some function of bounded
variation. Thus, if we define A¥ : 81—[0, +00) to be the largest 1.s.c. representative of

this function, the open set QF = {(z,y) € Q : y < h¥(x)} € G is such that QF = QF
and is (Lebesgue-) essentially equal in Q% to {v, > sk}. In particular, v, > s* a.e.
in QF v, < 58 ae out of QF, and H'(00F N QT) = |DX{vn>sf,,}|(Q+) < ¢k so that

n’

HU(ONE) <1+ ¢
Define the sequence (n;)pzl by n;, = p for every p. For each k& = 2,3,..., we
can extract (by induction) from the sequence (n’;’]) a sequence (n’;) such that QF,
P

converges to some open set QF € G as p goes to infinity. We build in this way a family
of sets (QF)>o such that for every k, the sequence (QZ;;) converges to QF in G.

In the sequel we will relabel this subsequence and denote again by n what should
be nj.

We let Q = Jy5o QF and

N = {£€Q : va(&) A Xp(€) as n—oo}
ulJ ({1)n > sﬁ} \Qﬁ) U ({Un < 9712} N QZ) ;
k,n

and observe that |[N| = 0. Notice that € has the following characterization:
Q\Q={£€eQ : Vo> 0,nli_>rrolC infessp(¢ pyvn = 0} (34)

Indeed, consider ¢ ¢ Q, and fix p > 0. For any fixed k& > 2, there exists &, ¢ QF such
that &,—¢. But since [N| = 0 and QF = QF we have that |B(¢,, p/2) \ QK \ N| > 0. If

n?

n is large enough, (£, — &| < p/2, therefore B(, p) D B(&,,p/2) and infessp(¢ pyvn <

sk < 1/k. This shows that for every & > 2, limsup,, ., infessp(¢ syvn < 1/k: thus

n
limy, o infess (¢ ,yvn = 0. We will not need it in the sequel, but it is also easy to show

that if £ € 2, then limsup,_, . infessp(¢ ,)vn > 0.
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We will now prove that the set Q satisfies the thesis of point (i) of Theorem 2. We
will first show that
L(92) < liminf L., (vy), (35)

n— 00
in section 6.1.1 and then, in section 6.1.2, we will show that (up to a subsequence) wu,
converges to a function u such that

/QmQJr Ac(u)(z,y)e(u)(z,y) dedy
< linrg%)r.}f'/qﬁ(vn(m,y) + ne, )Ae(un)(x, y):e(uy)(z,y) dedy (36)

6.1.1 Estimate of L(Q2)

In order to show (35) we need more information on the structure of 9Q and on the
relationship of 2 with F.

Notice that if ¢ € Q\ NN Q*, € € OF for some k, and therefore ¢ € QF for
large n. In particular, v,(¢) > s& > 1/(k + 1) and since it tends either to 0 or to 1,
lim, oo v, (€) = 1 and € € F. Therefore QN QT \ N C F.

On the other hand, we claim that |[F'\ Q| = 0.

Indeed, we first notice that, given any k£ > 2, X, =X, a.e. in Q" as n—oo
(up to a subsequence) and thus, for instance, in LQ(Qnd) for every a > 0. This is
true because up to a subsequence, we can assume that BQZ tends to some compact
subset K C Q% in the Hausdorff sense: then, by Golab’s theorem (see [12, 8, 16])
HY(K) < liminf,_o H'(QF) < 400 (since H'(9QF) < 1+ ¢;, for every n) and thus
|K| = 0. Eventually, observe that if ¢ € QF, then ¢ € QF for large n and Xk &) =1,
and that if ¢ ¢ QF U K, we can easily show that ¢ ¢ QF for large n and Xop (&) =0 (see
section 5.1 for details of a similar proof).

Then, we have v,—1 a.e. in F, and in particular v, X —X in L?(Q"). Thus,

QPN = [ (1 =X (©) e

= im0 (Oxp(€) (1~ Xgx) (€) dé

n—oc /g
< lim 2 1 de = Ligrn F\ oF
< dim o [ Oxp©0 - xg(€)de = 1@ NP\

so that |Q*N F\ QF| must be zero for any a > 0. This shows that |F'\ Q| = 0, and since
QF C Q it proves the claim. We conclude that QN QT = F up to a Lebesgue negligible
set.

Recall that F is the sub-graph of a function of bounded variation g € BV (S'). Let

h be the greatest Ls.c. representative of g (h can be built, for instance, as the ls.c.
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envelope of any upper-semicontinuous representative of g). Since QN Q" = F up to a

Lebesgue—negligible set, we easily show that

Q= {(z.y) €Q : y<hx)}

and that 0Q N Q1 is H'-essentially equal to 9*F.
For any Borel set B C ) we introduce the following localization of L.

4 1
L) = 200 (5 [ [Volay)Pdady + [ owy)(1 = v(oy) dody)
72 QtNB € JQ+tNB
(37)

For any open set A, we also have 0./ H!(9* FNA) < liminf, . L., (v,, A). In particular,
if we choose d > 0, and define A° = {¢ € Q : dist(£,00N Q1) < 6}, we have that

o H (AN QT) < 1inrgi£ngn(vn,A5). (38)
Define now BY = {¢ € Q \ A% : dist(¢,00Q \ Q1) < d}: B N 9N is a finite union of

segments in S'. We want to estimate H'(0QNB?). Write 90N B° = Un_, (ax, bx) x {0}.
We have for any ¢’ < 0

N bk 5! 4 : 17 N
Lalon ) 2 3 | {2"0/ o gyl P 4 2l tn(r0) dy} &
k=1"% 0o ™ En
N by 8o, [0
> Z /k { 7T4/0 \/1)71(.71,?/)(11)n(q:,y))|ayq)n(g;’y)|dy} do.
k=1"¢ :

Recalling that v, (z,0) = vs, where vy is defined by (11), we deduce

N b Vg
e = B[ e

k=17
N by 8g vn(z,8")

= o.Nog — C/ t(1 —t)dty dx.
S oo = [ O

Since v,—0 a.e. in B N Q*, for a.e. & € (0,4], we must have that for a.e. z in
U (ag, br), vp(z,6')—=0 as n—oo. Therefore, choosing such a ¢, we have for a.e.

T € Ulicvzl(akvbk)a
] vn (2,6")
nlggo'ﬂ V(1 —t)dt =0,
so that

N
liminf L., (05, B°) > (00 Aos) D b —ax] = (0 Aa)H (XN BY).  (39)
k=1
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Now, we want to estimate the length of 9Q \ Q. As usual h : S'—=[0, +oc) will
denote the ls.c. function such that Q = {(z,y) € Q : y < h(z)}, and it has been
shown in section 5.1 that

o0\ 00 = | {2} x [h(x), h(x)).

zeS!

Given § > 0, choose 7o € S' such that h(zg) — h(zg) > d and 1 > 0, small enough to
have (since [h(zg), h(zo) — 0] C Q)

COM = [zg — 1, 20 + 1] % [h(x0), h(z0) — 8] C Q

Let p > 0, p < min{d,n}/2. Since (zg, h(zg)) ¢ Q2 and Q is characterized by (34),
lim,, oo infessB((wnyh(mo))yp)vn = 0. As v, is nonincreasing in y, there exists z, €
(zo — p,zo + p) such that v, (z,,y)—0 as n—oo for a.e. y € (h(zg) + p, +00). On the
other hand, v,—1 a.e. in €, thus a.e. in (zg — 9,20 — p) x (h(zq) — & — p, h(zg) — I)
and in (zq + p, o +n) x (h(z) —J — p, h(zo) — ), and there exist z!, € (zg — 1, 2o — p),
zl € (xo + p, o + n) such that v, (z),,y) and v, (z!,y) converge to 1 as n—oc for a.e.
y € (0,h(z0) — 0 — p).
Now, we have L., (v,, C%") >

En

> 20,

— |8 on (1, y)]? + on (2 y){L — vn(2,y)) dT} dy

En

Y

Tn

SUC T .Y)

SUC T
vp (1 1)n)8 vy, dr + / U (1 — vy) 0oy dx p dy
{ vn

7)” n,y
1—tdt+/ 1—t)dt}dy.
CL’n'l/

CL’nﬂ/

Since for a.e. y € (h(zo) + p,h(zg) — 0 — p), the terms fv"ffj/) V(1 —t)dt and

Un w:;’ VE([A —t) dt converge to [, /(1 —t)dt = 7/8 as n—so0, we get

liminf L, (v,, C%") > 20.(h(zo) — h(zo) — 6 — 2p),

n— 00

and sending p to zero,

20 (h(x0) — h(zg) — 0) < liminf L., (v,, C%"). (40)

n—o0

We now are able to show (35). Choose z1,...,7x such that h(z;) < h(zy) and
6 < ming_y__n(h(zk) — h(zk)), and choose n > 0 such that the sets Cg’" = [z —

n,xy +n] x [h(zg), h(zg) — 0] are disjoint and all included in €. Choose also §' > 0
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such that the (disjoint) sets A% BY defined as before do not touch any of the C,f’".
From (38), (39) and (40), we get that

liminf, o0 Le, (vp) > liminf L. (vn, AY) + liminf L. (v,, B®)

n—oo n—oo
N
o 8
+ kZhnrgloIéfLEH(vn,Ck )
=1

> o H' (ONQY) 4+ (0. Aoy)H'(0QN BY)

N
+ 200y (h(zy) — h(zy) — 0)
k=1
Sending first 0’ to zero, and then §, we get
N
o H (0N QY) + (0. Ao )H' (0Q) + 20, (h(zk) — h(zk)) < lim inf L., (vn)
k=1

Since this is true for any {z1,...,zx} C {z € S' : h(z) < h(z)}, we deduce (35).

6.1.2 Convergence of the sequence (u,),>1

First of all, (since (12) holds) we may extract a subsequence (still denoted by (u,,vy,))
such that \/v,e(u,) weakly converges in L?(Q%; R*) to some function .

Consider now a Lipschitz sub-graph A C Q, with AN Q% cc Q. Since AN QT+
is compact and included in Jiso Q0. there exists £ > 2 such that AN QT cc QF,
in particular, A C QF for large n. Since v, > s¥ > 1/(k + 1) a.e. in QF, 1/\/5,, is
uniformly bounded by vk + 1 in A and since it converges to 1 a.e., it follows that
e(un) = /one(un) x 1/\/vn = & weakly in L?(A N QT;R*) as n—oo. Using Korn’s
inequality and the fact that e(u,) is uniformly bounded in L?(ANQ*;R*), we deduce
(since uy, —(7,0) = 0 on {y = 0}) that (up)n>1 is also compact in Lj, (7' (ANQT); R?),
and since if u is a limit point of the sequence we must have u—(z,0) = 0 on {y = 0} and
e(u) = &£ the possible limit point is unique, therefore u,, converges in L2(A N QT; R?).

Since this holds for every Lipschitz sub-graph A with ANQ™ CC €, u,, converges in
L} (r~ (2N QT); R?) to some function u € X (), with e(u) = £ in the distributional
sense. As & is the weak limit in L2(Q*;R?) of \/une(uy), (36) follows and point (i) of
Theorem (2) is proved.

It remains to prove (ii).

6.2 Proof of point (ii) of Theorem 2
6.2.1 The optimal profile for L.

Consider the following 1 dimensional version of L.

L, 1) = 20, (% '/I|v’(t)\2dt + %/l o(t)(1 1)(t))dt> , (41)
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defined for and interval I C R and v : I—[0,1]. Consider also the two problems
min {lg(v,R) cv:R—=[0,1],v' <0,limv = 1,limv = 0} (42)
—00 +oo

and
min{lg(v, [0, +00)) : v :[0,4+00)—[0,1],v" <0,v(0) = vs,Emv = 0} . (43)

Is is known (and easy to prove) that problem (42) is solved by v.(t) = (%), where the
optimal profile v is

1 ift < -1,
y(t) =4 L1-sinT) if —1<t<1, (44)
0 ift > 1.

The value of the minimum (42) is o.. Similarly, problem (43) is solved by the function
B-(t) = (L), where for any ¢ > 0, §(t) = y(t + ;) and ¢, = Zarcsin(1 — 2v,) € [-1,1),
so that y(ts) = vs. In this case the value of the minimum (43) is o, A 0.

6.2.2 Construction of a sequence (v.,u.), for a regular (2, u)

We will first consider the case where 0f2 is regular: we assume that €2 is the sub-graph
of a Lipschitz function h, that 9Q N Q7 is a finite union of C? arcs, and that 9Q \ Q7
is a finite union of segments (ay,by) x {0} C S' x {0}, k =1,..., N. We also assume
that u € L>®(92, R?).

We define the signed distance dq to 09 as

do(€) = dist(¢, ) — dist(&,Q \ Q).

In particular, do(¢) =0 < £ € 9Q and dg(z,y) <y < 0ify < 0.
For every € > 0 (small) and £ € Q we define

ve(§) = (dQE(O +t5>

so that v, = v, on 0Q, and, in particular, v. > v, on 9Qt = S' x {0}. Notice
that Vo (&) = |y (da(€)/e + t5)Vda(E)/e] = —7'(da(§)/e + ts)/e a.e. in @, and that

Ve (§)] = ve(§) (1 —ve(§)) = 0if |da(E)] > 2e.
If ACQ is open, (L.(ve, A) defined by (37)), is bounded by

Ls(vsa A) <
2o e () o (S0 ) (1 (52 4.1

IN

1
40c4—8 HE € A |da(€)] < 2¢e}
< 4o HYOQNA) + ¢,
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with ¢, = ¢.(A,0) converging to 0 as £—0, since, as 99 is closed, the Minkowski
content lim. o 5-|{¢ € A : |da(€)| < e} is equal to the length H'(9Q N A) (see for
instance [10]).

Now, given § > 0 small, we let 89‘_5‘_ ={£€dNNQT : dist(£,Q7) > 8}, 99 =
{6 €00\ QT : dist(£,00NQT) > 6}, and A% = {€ 4+ (w(€) : € € 0Q%, -6 < ¢ < 6},
where v/(€) is the normal to 9Q at &, A) = {£ + (0,¢) : € € 90),0 < ¢ < §}. Notice
that A% U A3 C Q1. We let B = {¢ € Q : dist(¢,0Q\ (995 U9QY)) < 24}

If § is small enough, {¢£ € QT : dist(£,0Q) < 6} C AU A% U B°, and if 2¢ < 6,

L.(v.) < LE(UE,Ag) + LE(UE,Ai) + LE(UE,B(S).
The last quantity is
L.(v.,B%) < 40, H"(8Q N B%) + .
by (45). It is easy to check that
IONB° C C° = (ANNQ*) U ((0Q\ QT) \ dom3?),
so that the previous inequality yields
L.(v., B%) < 40,H'(C%) + c.. (46)

We estimate the two other integrals:
L.(v., A)) =
= 3 [ [ et 0 oG )

k=17 art0 €

N 8/ 4 47
- (Z by g 2Na> 0 [ S 0+ A1~ (D) )
k=1 v
< (oo Aoy) (H'(02\ Q") — 2N
by definition of ¢;. On the other hand,
Lg(vg,Ai) =

o 1)
- / CdH(2) (2 / J(z,C)iﬂ'(g+ts)2+7(§+ts)(1—7(§+ts))dC>
BQ+ £ -0 77

= /{mé+ dH'(z) <2ac /1] J(z,e(t —ts))%cos2 (%) dt>a

where J(z,() is the Jacobian of the transformation ¢ € A‘_SI_ — (2,0) : z € 891,{ =
24 (v(z), which is well-defined if § is small since 32N Q* is C2. It can be shown that
J is continuous and J(z,0) = 1, therefore

—1

1
: 5y 1 9 (Tt _ 1/ 906
ln . (0., 47) = /89‘.1 M (z) <0/ cos (2) dt) — o HU(O9).  (48)
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Equations (46), (47) and (48) yield

limsup L(v.) < (0.A0y) (7—[] 00\ Q") — 2N(5) + 087-[1(89‘1) + 4o H(C?)
el0

< L(Q) — 2N(o. A os)d + 4o, HH(C?)

so that, sending § to zero,
limsup L(v.) < L(Q). (49)
€l0
Indeed, NgsoC® = Up_,{ak, bp} and the latter set has length zero, thus #'(C?) tends
to zero.

We now build the associated functions u.. Let ¢ > 0 be the Lipschitz constant
of h, we assume ¢ > 1. If £ = (z,y) € Q\ Q, and & = (¢/,h(z")) € 9Q, |h(z) —
h(z')| < ¢lz — 2|, so that y — h(z) < cjz — 2'| + |h(2") — y|, and we deduce that
y — h(z) < edist(&, ). Thus, if in addition v.(§) > 0, we have dist(£,Q) < 2¢ so
that y — h(z) < 2ce, and (z,y — 2ce) € Q. We define for all (z,y) € @ the function
we(z,y) = 1A (ve(z,y — 2c€)/vs) € HL (Q): v-(z,y) > 0 implies w.(z,y) = 1 (since
(z,y — 2ce) € Q and v, > vg in Q), and w.(z,y) > 0 implies (z,y — 4ce) € Q.

We can define, for all (z,y) € Q7,

e (z,y) = u(z,y —dee)we (z,y)  if we(z,y) >0 (= (z,y — 4dce) € ),
Le ./’y - 0 lf 11)5(:1:’:1/) _ 0

The function u.(z,y) — (z,0) is 1-periodic in 2 and vanishes for y = 0, and u.(z,y) =
u(z,y — 4ce) as soon as v.(z,y) > 0. We have

e(u)(z,y — dce)we (z, y)
e(us)(z,y) = +u(z,y — 4ce) © Vwe(z,y)
0 if we(z,y) =0,

if we(z,y) >0,

where a ©® b denotes the symmetrized tensor product, and e(u.)(z,y) = e(u)(z,y —4ce)
if v.(z,y) > 0. Thus, for some constant C' > 0,

/Q+(Ug(§) + n:)Ae(us)(€):e(ug) (&) dé

< (1+n.) / Ac(u.)(z,y — dce)e(u) (z,y — Ace) dzdy
{ve>0}

+Cn. / le(u)(z,y — 4ce)|? + |u(z,y — 4ce)|?|Vwe(z,y)|? dzdy
J{0<we<1}

IN

(14n) | Ae(u)(w.y)e(w)(z.y) drdy

+on. [ le(w)(,y — 262)* + [ula, y — 2c2) 2|V (@, y) /o, dzdy
J{0<ve<vs}
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We claim that this last integral goes to zero as € | 0, so that

timsup [ (0.(€) + ) Ac(uc) €ie(u) (€)df < | Ae(u)(©re(u) () d
QF Q

€l0
and in view of with (49), inequality (14) holds in this case.
Clearly, lim. 07 [1gp. <o,y le(w)(@,y — 2ce)|? dzdy = 0. Then,

) (e, y — 202) |V (2, ) /v, * dady
J{0<v:<vs}

< Ml 17 1% {6 € QF 0 < () <}
. ‘2 112 1
< (1) Il L e e @ - pant) < 263 = o)

. z
€ U 3

since 7. = o(e) and 1|{|dg| < 2¢}| tends to 4H'(09).
Therefore point (ii) of Theorem (2) is proved in the case where 992 and u have some

regularity.

6.2.3 Construction of (v.,u.) in the general case

Now, for an arbitrary Q € G and u in X (Q2), suppose we are able to build a sequence
(Q)n>1 converging to Q and u, € X(Q,) N L>¥(£y,) such that u,—u in L*(A;R?)
for every A CC Q. each Q,, is the sub-graph of a Lipschitz function, 0Q, N Q% is C?,
90, \ QT is a finite union of segments, and that satisfies

limsup E(Q,, up) < E(Q,u).

n—0o0

Then a simple diagonalization argument will lead to the result. Indeed, if we consider
(Un,e, Une)e>0 Obtained for each n as described in section 6.2.2, we first build by in-
duction a sequence e(n) such that for every n, £(n) < min{e(n — 1),1/n}, and such
that

1
e = unllz2 (qaisse.@\0n)>1/m)m2) <

and v, . =1 on {£ : dist(&,Q \ €2,) > 1/n} as soon as € < ¢(n), and

1
sup Ea(“n,aa“n,a) < E(“naQn) + —.
e<e(n) n

Then, we let u. = u, ., v = v, whenever ¢(n + 1) < e < e(n). We have v.—Xq,
limsup, o E(ve, ue) < E(u,), and if A CC €, for large n we have A C {{ € Q
dist(&,Q \ Q) > 1/n} so that for small ¢,

Jue —ull2are)y < e = un(e)ll2are) + lune) — vllL2are)
< 1/n(e) + llupe) — ullr2(ar2) =0
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as e—0, where n(e) is defined by e(n(e) + 1) < e < e(n(e)) and goes to +oo as e—0.

In order to build the sequence (€,,u,), we first assume we can find for every n
a n—Lipschitz function h,, < h, where h satisfies Q = {(z,y) € Q : y < h(z)}.
This is proved in section 5.2 (h, is given by equation (26)), and it is established
that the sets ), = {(z,y) € Q : y < hy(z)} converge to © and that L(],)—L().
Now, if p is a 1-dimensional smoothing kernel (p € C*(R), [gp = 1, p > 1 and
suppp C [-1/2,1/2]), and p,(t) = n?p(n’t) for every n > 1, we let g, = hy, * py
and Qp, = {(z,y) € Q : y < gn(x)}. It is not difficult to see that Q,—€Q, that 0%,
is smooth (in fact, C*>), and that 99, \ QT is a finite union of segments. We also
have that L(Q,) ~ L(Q,)—L(Q). Moreover, g, is Lipschitz (g, € C*(S')) so that
Q,, is a Lipschitz sub-graph. Eventually it is easy to check that g, < hy, + ¢/n (where
the constant ¢ = [g |t|p(t) dt), so that {(z,y — 2¢/n) : (z,y) € Q,} CC Q, C
therefore, we can build u, € X(£,) N L*(£2,) as a suitable regularization of the
function u(x,y — 2¢/n), which is defined in a neighborhood of €2,,.

6.2.4 A remark on the integral of v,

We now know how to build a family (v.,u.).~¢ for an arbitrary domain Q € G and
u € X(£2). In order to achieve the proof of Theorem 2 it remains to show that we can
also impose that for every €, [+ v-(§) d§ = [Q].

We have that [o40:(§) d{—[Qf as € | 0. Let now a. =[5+ v:(£) d€/|Q, that
converges to 1. We define a new family (v’,u.).~¢ by

U’s(xa y) = ’UE(.’E, agy),

(W2 (@, y),u'(2,y)) = (uf(z, 0ey), ceul (z, aey))

for every (z,y) € Q™. Tt is not difficult to show that this family still satisfies point (ii)
of Theorem 2, and that [+ v.(£) d€ = |Q] for every e > 0.

6.2.5 A link between (i) and (ii) in Theorem 2

The (ve,ue)eso constructed in section 6.2 have the property that the set 2 would be
the set obtained from any subsequence (v,, ),>1 by the method described in section 6.1.

In particular, we deduce that, for this family (v., u.),

lim E. (ve,u:) = E(Q,u). (50)
el0

A Functions of bounded variation, Caccioppoli sets

We review in this appendix some standard definitions and properties of the functions
of bounded variation. For more details, the reader should consult [11, 7, 10, 2].
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A.1 Definitions

A.1.1 Classical and measure theoretical total variation

In the classical sense, the variation of a real-valued function f : I—R, defined on an
interval I C R, is given by

m

Var(f,I) = Sup{z i) — f(tic1)] : meNtg,.. .t e Litg<t1 <--- < tm} .
i=1
(51)
The definition for a function f : S' =R is similar. The function f has bounded variation
on I in the classical sense if Var(f, ) < +o0.

In the measure theoretical sense, on the other hand, a function f is said to belong
to BV (Q), the space of functions of bounded variation on the open domain Q C RV,
N > 1, if and only if f € L'(R") and its distributional gradient Df is a bounded
vector measure on 2. In this case, the total variation of f is the mass |Df|(£2) of the
measure D f. The definition is similar if @ C S' x R, which is usually the case in this

paper.

A.1.2 Sets with finite perimeter

A Caccioppoli set, or set with finite perimeter in €2, is a set £ C € such that the
distributional gradient DX, of its characteristic function is a bounded vector measure
on Q. (If E is bounded we thus have X, € BV (Q2)). In this definition, a set F is of
course identified with all sets E' such that |E'AE| = 0. The perimeter of E in  is
the total variation |DX|(€2) < +oc.

A.2 Properties of functions with bounded variation

A.2.1 Links between both definitions

If I CR (or I CS")is an open interval, then
/ ()| dt < +00 and Var(f, 1) < 400 = f € BV(I).
J1

More precisely, the equivalence class of functions almost everywhere equal to f is an
element of BV (I).

On the other hand, every f € BV (I) has a representative g (g = f a.e.) such that
Var(g,I) = |Df|(I) < +oc. In fact, one can prove that
\Df|(I) = min{Var(g,I) : g = f a.e.}.

Moreover, f always have representatives g’ with Var(g', I) = +oc: for instance the
characteristic function of Q belongs to BV (R), but in the BV sense Xq = 0, whereas
in the classical sense Var(Xq,R) = 2§Q = +oo.
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A.2.2 Continuity properties

If f € BVj(Q2) we can define at each point 2 € Q the approximate lower limit of f by

1S < #10 Blw.p) :0}

f(z) = sup{t € R : limsup ~

p40 p
and the approximate upper limit f*(z) in the same way (f*(z) = —(—f) (z)). If
fT(z) = f () # +oo (this is true almost everywhere in Q), we set f(z) = f+(z) =
f~(z) and say that the precise representative f is approximately continuous at z.

IfN=1,Q=I1ICR (or I CS'), and f € BV(I), for any g representative of f we
have
Var(g, ) = [DSI(I) & g(x) € [f (), /*(x)] for every 5 € T.

Moreover, in the 1-dimensional case, f also has an approximate left limit at each

point
tt N —
f@—0) — suplteR : limsup L <HOE@ZpOl
pd0 P
t xr— p,T
= inf tER:limsup‘{f> pN (=~ p ) -0,
pd0 P

and a right limit f(z + 0) similarly defined. For every z € I, {f(z —0), f(z +0)} =
{f (z),f"(z)}. Notice that if I = (a,b), then up to a constant f(z—0) = |Df|((a,x))
and f(z+40) = |[Df|((a,z]). In particular, f(z=+0) is continuous at each point of '\ Sy,
where S; = {f(z—0) # f(z+0)} = {f (z) < fT(z)} is the (at most countable) set of
essential discontinuities of f. The representative f~ of f is lower semi-continuous: it

is the largest l.s.c. representative of f. Similarly, fT is the lowest u.s.c. representative
of f.

If g is a representative of f € BV (I) such that Var(g,I) < +o0, at each zy € I the
(classical) left and right limits exist and we have

lim g(z) = g(xzg —0) = f(zg—0), and
T—T0
r < To

lim g(z) = g(zo +0) = f(zo +0).
T—T0
T > To

A.2.3 Sets and sub-graphs

In the case where f = X, we let EY = {f =0}, E' = {f =1}, and define a reduced
boundary by 0*E = Q\ (E° U E'). Tt is known that the measure DX, is supported
by the set 0*E, and that |DXp| = HY 11 0*E, thus |DXxy|(Q) = HNYL(0*E) is the

perimeter of E.
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If I CR (or I C8S'), let f € BV(I). Then, the set E = {(z,y) € [ xR :y <
f(z)} C I xR has finite perimeter. This can been shown for instance by approximating
/ by a sequence of regular functions f, such that [;|f, (¢)|dt—|Df|(I), and invoking
the lower semi-continuity of the total variation. We get

IDXg/(Q) < liminf DXy g 0y ](Q) = hmmf/,/u\f' ()2 dt < |I)+ |Df|(]).

In fact, one can show that [D,Xy|(I) = |Df|(I) and |DyX|(I) = |I], so that the fact
that the sub-graph E has finite perimeter yields that f € BV (I), and

IDfI(I) < H'(O"E) < 1| + |DfI(D). (52)

We define the open sets A = {y < f (z)} and B = {y > f*(z)}. It is not hard
to see that A = B° (and, equivalently, B = A¢), so that A=TF = (A°)¢ = A, and
0A = 0A. We can check easily from the definitions that A C E' and B ¢ EY, and in
particular *E C 0A = 0B = {(z,y) e I x R: f(z) <y < fT(z)}. This last set can
be shown to have finite length: in fact H'(0A) = H'(0*E). In particular, A = B = E
Lebesgue-essentially, and A = 0*E H'-essentially.

One last result we want to state is a “classical” equivalent of (52). We claim that,
if g is a Ls.c. function, and if we consider the open set Q = {(z,y) € I x R: y < g(z)},
then

%Var(g,]) < HNO9) < [T+ Var(g, I). (53)

Indeed, if we consider m € N and ty,...,t, € I, tg < t; < -+ < t,,, then
g(ti) — g(ti-1)| < VI]ti —ti—1]? + |g(t;) — g(ti—1)|? which is the length of the segment
joining (t;—1,9(ti—1)) to (ti,g(t;)). But 0Q N ([ti—1,t] x R) contains at least a path
connecting these to points, therefore this length is smaller than H!(9QN([t; 1, ;] xR)).

Summing over i we get

Z|g —g(tiy)] < Z?—l (0N ([ti1,t] x R)) < 2H1(09),
i=1
thus the left inequality in (53) holds.

To show the other inequality, we refer the reader to the techniques used in section 5.
Basically, one considers g such that 6 ={(z,y) € I xR,y < g(z)}. One then can split
HY(0Q) = H(OQ) + H' (09 \ 99Q). We get H'(0Q) < |I| + |Dg|(I) = |I| + Var(g, I)
by (53), and we then show that 9Q \ 9Q = Ugg<gi{z} % [9(2).9(z)). We deduce that
2H (90 09) = 23,5 (G(2) — g(x)) = Var(g, I) — Var(g, I), hence the result.
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A.2.4 Co-area formula

We eventually state the co-area formula: for every f € BV(Q) (2 C RN, or, as is
common in this paper, @ C S' x R),

+oo
DA = [ DX @) d. (54)
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