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Computing the Fast Fourier Transform
on a Vector Computer

By David G. Korn* and Jules J. Lambiotte, Jr.

Abstract.   Two algorithms are presented for performing a Fast Fourier Transform

on a vector computer and are compared on the Control Data Corporation STAR-100.

The relative merits of the two algorithms are shown to depend upon whether only a

few or many independent transforms are desired.

A theorem is proved which shows that a set of independent transforms can be

computed by performing a partial transformation on a single vector. The results of

this theorem also apply to nonvector machines and have reduced the average time per

transform by a factor of two on the CDC 6600 computer.

I.   Introduction.  The Discrete Fourier Transform of a set of TV complex num-
bers Xk, k = 0, 1, . . . , N - 1, is the set of N complex numbers,

(1.1) Oi-fZX**-'™"™'      7 = 0,1,.. .,-V-l.
' k=0

With the definition WN = e2ni/N, Eq. (1.1) becomes

1(1-2) a=Ñ TX,

where a, X G CN and T G CN x CN with Tß = WN'k.  Also,

N-l
(1.3) xk=   Y,  a/e'"(2-r/fc/iv))      *■- 0»-l,. . . ,-V- 1.

/=0

Hence, X = T*a where T* is the conjugate transpose of T.
A straightforward evaluation of (1.2) requires 0(N2) multiplications and additions.

However, Cooley and Tukey [1] proposed an algorithm, now called the Fast Fourier
Transform (FFT), which considerably reduces the operation count when N is a highly
composite integer.   In fact, when N - 2q the FFT requires 0(Nq) operations.  There
are many variants of the Cooley-Tukey FFT, but they all basically take advantage of
the periodicity properties of the powers of W to factor out common quantities in the
evaluation of a.  Many of these algorithms do not compute a, but Rex where, when N
is a power of two, R is a permutation matrix representing the permutation mapping
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978 DAVID G. KORN AND JULES J. LAMBIOTTE, JR.

aR such that aR :  / —► i, and /' is the integer obtained by reversing the binary represen-
tation of /.  In this case a bit reversal permutation is performed after the FFT has been
applied to the data. It is, however, possible to maintain the natural ordering throughout
the algorithm at the expense of requiring an extra storage array.

This paper considers the implementation of the FFT on a vector computer. The
STAR-100 is used as the model. The requirement for efficient computation on a vector
computer (see Section 2) is such that existing programs to perform the FFT cannot be
used in their usual form. Two algorithms are presented. One is an adaptation and exten-
sion of an algorithm proposed by Pease [2] for transforming a single data set on a parallel
computer which he describes. The other algorithm is a variant of the Cooley-Tukey
algorithm specifically designed for the case when one désires to transform M independent
sets of data.

Section 2 describes the characteristics of the STAR-100 computer and gives the
timing for the pertinent vector instructions. Section 3 discusses the timing considerations
with regard to the calculation of the FFT. The implementation based on Pease's algo-
rithm is presented in Section 4. The algorithm designed for many transforms is described
in Section 5. Timing comparisons on the STAR-100 are given in Section 6, and Section 7
contains concluding remarks.

II. Timing Considerations for the STAR-100. A vector pipeline computer such as
the Control Data Corporation STAR-100 obtains its computational advantage over con-
ventional computers when it is required to perform some arithmetical or logical operation
on a vector; that is, a large set of data stored consecutively in memory. When any cen-
tral processing unit performs an arithmetic operation on a pair of source operands,
numerous subtasks such as exponent comparison, coefficient alignment, normalization,
etc., must be carried out. On a vector computer, these subtasks are performed in an
assembly line fashion on the vectors of source operands. Each segment of the pipeline
performs its particular subtask on one operand pair, passes the result to the next segment,
and receives the next pair of operands from the segment preceding it. The overall effect
is that there is a fairly substantial time to complete the first result, called startup or prime
time, but each succeeding result quickly follows since it is only one segment behind. The
time to complete a vector operation on vectors of length N is given by

(2-1) T= p + TN,

where

p    is the prime time (minor cycles),

T   is the result rate (minor cycles/result),

T   is the total time (minor cycles).

The values for p and T depend upon the particular vector instruction involved. Some of
the more frequently used operations are listed in Table 1. The value for T is exact where-
as the value for p is a lower bound. The STAR-100 minor cycle time is 40 nanoseconds.
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Table I
STAR-100 vector times

Operation

MULTIPLY

DIVIDE

ADD, SUBSTRACT

MERGE

COMPRESS

SCATTER

p (Minor Cycles)

159
167

71

123

92

100

UMinor Cycles
Result

1
2

1/2
3
1

19

Equation (2.1) shows that the overall result rate (T/N) decreases from approxi-
mately p cycles/result when N is small to T cycles/result when N is very large. It is ap-
parent, therefore, that the most efficient use of STAR occurs when N is large. However,
not every algorithm expresses its computation so that it naturally involves long vector
operations. Frequently, it is possible to modify an existing algorithm, which is efficient
on conventional computers, in such a way that long vector operations can be used on
STAR.  However, sometimes it may be necessary to use an alternate or even a new
algorithm which is not as efficient on a conventional computer as the algorithm it
replaces but which does allow for long vector operations.  The added complexity of the
vector algorithm may degrade it to the point that the less complex algorithm, even
with its short vector lengths, can outperform it for some problem sizes. The two
algorithms discussed here exhibit these characteristics to a degree.

III.  Timing Considerations for the Fast Fourier Transform.  The class of algo-
rithms we will consider for implementing the FFT consists of factoring /V into factors rx,
r2, . . . , r   and performing q passes over the data (for base 2 algorithms q = log2 N).
Each of the q steps requires K¡N operations, where K¡ depends on r¡ and on the algo-
rithm selected.

For a scalar machine the time for an algorithm of the type just described can be
expressed as

(3.1) T=S0 + Z  (TtN + St),i'=i
where T¡ is the time required to perform the K¡ operations at the /th step and the 5-
are startup times-S0 for the subroutine call and S¡, i > 0, for loop initializations.
Typically ■_■. and T¡ are the same order of magnitude so that we can approximate the
timing for N> 1 as

(3.2) T ~ N £ T,.
i=i

Finding a good algorithm means minimizing the above sum and since the T¡ are mono-
tonic functions of K¡, this means minimizing the number of operations.
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For a vector machine the timing becomes more complicated.  Each vector oper-
ation consists of a priming time and a rate time.  It is important to perform oper-
ations with long vectors in order not to be dominated by the large priming times needed
to initiate each vector operation.  It is convenient to look at the average length vector
used in the algorithm as a measure of the efficiency of the method.  By efficiency we
mean the percentage of time spent streaming vector results.  The length at which a
vector operation achieves a particular efficiency is larger than would be predicted from
the values in Table I.  This is primarily due to the scalar code which is generated by
the compiler to describe the length and address of the vectors involved. The additional
scalar time can be thought of as an increase in the priming time.  The efficiency in-
creases with the length of the vectors since the priming time is amortized over a large
number.

Efficiency is a guide for selecting a good vector algorithm, but the total amount
of computation involved must also be considered.  For example, if algorithm A has
longer vectors than does algorithm B but also requires more total computation than
algorithm B, then the latter algorithm becomes relatively more efficient as N, the size
of the problem (and vector lengths), increases.  There typically is some value NQ, of
TV, for which algorithm A is superior for N <NQ and inferior for N> NQ.  In fact, as
pointed out in Lambiótte and Voigt [3], there are examples of parallel algorithms
which, in an effort to maximize vector lengths, require a higher order of computation
than the serial algorithms they replace.   For large enough N, such a parallel algorithm
is inferior even to a scalar implementation of the serial algorithm it replaced.

For a single FFT of size N we can express the execution time as

(3.3) T = S0 + Sxq + S2N + S3Nq + N £  T,,
i- i

where S¡ are times consisting of scalar and priming times and T, are rate times.  We
consider only algorithms for which S3 = 0, since virtually any known FFT algorithm
can be coded that way. We also assume S0 = 0 so that

a

(3.4) T • Sxq + S2N + N £   T¡.
í=i

For N very large, the last term will dominate but for the range of N usually considered,
32 <N < 50,000, the other terms can be important also.  The Pease algorithm, dis-
cussed in the next section, has O(q) vector operations of length N. Thus, 5, reflects
the priming times and is large while S2 reflects a modest amount of scalar computation
and is effectively zero.  However, the requirement of the STAR-100 that vectors be in
contiguous locations requires the use of vector compresses and merges.   These and
other extra operations increase the value of the T¡.  The classical algorithms (Cooley-
Tukey and Sande variants) can be programmed with average vector length log2 N (that
is, S2 is large and 5, is effectively zero) and as a result are inefficient for /V in the
range of practical interest.   However, there is no need to compress or expand data sets
so the T¡ are smaller than in the Pease implementation.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE FAST FOURIER TRANSFORM ON A VECTOR COMPUTER 981

In the majority of applications for which vector computers are appropriate, M
independent transforms of size N can be taken simultaneously.  If the data is stored so
that the M corresponding data elements are in contiguous locations, then any scalar
algorithm could be encoded using vector operations of length M in place of the corre-
sponding scalar operations.  In this case, the average vector length is M, and an algor-
ithm which minimizes the values of T¡ can be chosen. The timing for such an algor-
ithm would be

Q

(3.5) T = S0 + Sxq + S2N + S3Nq + NM £  T{.
/= i

However, a theorem is presented in Section 5 which shows that the FFT of M indepen-
dent transforms of size N is related to the transform of one set of data of size MN in
such a way that average vector lengths of size M log2 N can be achieved without in-
creasing the Tf in (3.5). The time for this algorithm is then

(3.6) T~S2N + NM£Tr
i=i

IV.  Vector Implementation of the Pease Algorithm.  We consider the evaluation
of (1.3) under the assumption that only one or a few independent sets of data are to
be transformed.

Pease demonstrated that when N = 2Q, and recalling that R is the matrix repre-
sentation of the bit reversal permutation, then RX can be evaluated by factoring the
N xN matrix T'(N), defined by T'(N) = RT*(N), as

d-i
(4>1) T'(N) =  I] C(N)P(N)F(N, k - 1).

fc=0
Then

(4.2) Y=T'(N)a,

and

(4-3) X = RY.

Prior to defining the operators in (4.1), the following notation is introduced.  The
Kronecker product of the N x /V matrix A and the M x M identity matrix, denoted
I(M), is the block diagonal matrix which has A as each of its M diagonal entries.  It is
denoted here as .4 ® I(M).  With these definitions, then

C(N) = D® I(N/2),

where D = [j    j] and

(44) F(N,k)=Y\G(N,q-j-2),
V   "   ' 7=0

where for / > 0, G(N, I) is a diagonal matrix of size N which for . — 0 to N - 1 has

IV2  in the (/, .) position if both the first and 1 + 2 bits in the binary representation of
/ are 1.  Otherwise, a 1 goes in that position.  Consequently, G(N, I) is of the form

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



982 DAVID G. KORN AND JULES J. LAMBIOTTE, JR.

diag(I(N/2), S(N/2, /)), where S(N/2,1) is also a diagonal matrix.  For example,

G(8, 0) = diag(/(4), diag(l, 1, W, W)),

G(B, 1) = diag(/(4), diag(l, W2, 1, W2)).

For simplicity in notation, F(N, - 1) = I(N). Also, P(N) is a permutation matrix
which performs a perfect shuffle of the upper and lower halves of the vector on which
it operates.  Formally, the permutation a , which P(N) represents, is defined as ap:
i —► / where

/ = 2. if.<_V/2,

j = 2i-N+l    ifi>N/2.

We note for later use that P(N)~1 = PT(N) and aj is defined by oj:  j —► i where

/ = ;'/2 if/is even,

i = (N + / - l)/2    if /is odd.
4.1.   Vector Implementation of the Factorization.   We consider the implementa-

tion of (4.1) and (4.2) on the STAR-100 computer. The reference to system size, N,
will be dropped for convenience until later,  ß will refer to a vector with complex
components ß0,ßx, . . . , ßN_x-

(a) Formation of Pß.  As has been shown previously in Lambiotte and Voigt [3],
this operation can be performed easily on STAR using the MERGE instruction on the
two vectors j31 = [ß0,ßx, . . . , ßjy/2-iJ andß2= -f-/v/2- r-jv/2 + i> ■ ■ • >0;v-i- with
a bit pattern in the order vector given by

[1,0,1,0,...,1,0].

(b) Form F(k) and Compute F(k)ß.  Once F(k) is formed, F(k)ß is merely a
complex multiplication between the last N/2 diagonal elements of F(k) and the corre-
sponding elements in ß.  From (4.1) we see that we need F(t) prior to F(l +1), and
from (4.4),

F(l + 1) = F([)G(q -1-3).

The diagonal matrix G(q -1-3) can be formed easily by evaluating W2 and over-
storing this value into a vector of ones at the appropriate position.

(c) Compute Cß.  Because of the form of C, the computation Cß cannot be per-
formed very efficiently on a vector computer.  However, we observe that if we define
C = PTCP, then

/(A/2)     I(NI2)-

I(N/2) -7(iV/2). '

Therefore, letting |31 and ß2 he the upper and lower halves of ß as before, we have

Cß= [01 +ß2,ß\-ß2]T.

This computation can be performed with vectors of length N/2.  Therefore, we rewrite

■-
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THE FAST FOURIER TRANSFORM ON A VECTOR COMPUTER 983

(4.1) as
q-l

(4-5) T'(N) = TI P(N)C(N)F(N, k - 1).
k=0

Thus, with T'(N) in the form (4.5), T'(N)a can be evaluated using vectors which are
of size N or N/2.

4.2.   Computation of RY.   We present two approaches to performing the bit
reversal on a vector Y.  The first method requires q applications of the MERGE in-
struction. We first define the generalized shuffle Q(2k, N).   Q(2k,N) operates on
the vector ß by forming a new vector which consists of the first 2k elements of 01
followed by the first 2k elements of 02, followed by the second 2k elements of 01,
etc.  For example,

0(2,8)0= [0O,0.,04,05,02,03,06,07]T

and can be obtained on STAR by doing a MERGE of 01 and 02 using the bit order
vector given by [1, 1, 0, 0, 1, 1, 0, 0].

We formally define Q(2k, N) by expressing . as

i = (r-\)2k +t   where 0<. <2fc-l, 1 <r<2q~k,

then Q(2k, N) is the matrix representing the permutation On(k):  ' —* / wnere

/ = 2(r - l)2fc + t if/< A/2,

(4-6) / = (2r-l)2fc-A + f   if i > N/2.

We note that Q(\, N) = P(N).  For later use, we observe that Q~1(2k, N)a is a vector
composed first of all the odd groups of size 2k from a, followed by all the even groups.
On STAR this can be implemented by a COMPRESS with the bit pattern just described
to obtain the odd groups followed by another COMPRESS using the logical "not" of
that bit pattern to obtain the even groups.

With Q(2k, N) defined, the following theorem can be proved:

Theorem.   The bit reversal permutation X = RY can be expressed as

(4.7) X=  n  ß(2\-V)K
fc=0

Proof.   Let a     x2q~1 ■+■ a    22q~2 + • • • + a.2 + a0 he the binary expansion
of /' and represented by the ¿/-tuple [a     ., a    2, . . . , ax, aQ].  It is easy to see that
one could obtain the bit reversed _7-tuple/ = [a0,ax, . . . ,a    2,a     x] by the
following simple algorithm:

For/= 0, 1, ... ,q - 2
Replace present ¿7-tuple by doing a left end around shift involving the q -j
leftmost bits.

The proof of the theorem then is to show that o-Q,k):   i —►/ where / is obtained from
. by doing a left end around shift of the leftmost q - k components of the »/-tuple
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984 DAVID G. KORN AND JULES J. LAMBIOTTE, JR.

representing i.  To show this, let

i = (r- 1)2* +t,   where 0 < t < 2k, 1 <r<2q-k,

so that r tells which group of size 2k that i is in and t gives its position within that
group.  Then let the ¿/-tuple for. be

/=   laq-k-\>aq-k-2> ■ ■ ■ >a\>a0>bk-\'bk-2> ■ ■ ■ -¿I'^O-'

so that the leftmost q - k components are the q - k tuple for (r - \)2k and the
rightmost k-tuple represents t.  Then

(r - 1)2* = aq_k_x2q-i + »-(?„t_22<?-2 + • ■ • + aQ2k.

Now, if i < A/2, by definition of oQ{k), j = 2(r - 1)2* + t. Then,

(4.8) 2(r-l)2k=aq_k_x2q +aq_k_22q-1 +---+a02k + \

However, since i < A/2, we have a    -,_. = 0 so we can write

/ = «c-k-22í?-1+a(7_fc_32«'-2 + --- + ao2fc + 1+a(?_k_12fc+í.

Thus, / is represented by the ¿/-tuple

(4.9) /= [aq_k_2,aq_k_3, . . . ,a0,aq_k_x,bk_x,-i-,-*0]-

which is the stated end around shift.  Now, if i > A/2

/ = (2r - 1)2* - N + t = 2(r- 1)2* + 2* - A + t.

Then, as in (4.8),

i=aq_k_x2q +aq_k_22q-i +---+aQ2k+i + 2* - A + t.

Since / > A/2, a    fc_. = 1 so / can be rewritten

/ = aq_k_22q-1 +■■■+ a02*+1 + aq_k_x2k + t,

which again is represented as the ¿/-tuple in (4.9).
The implementation of (4.7) then involves q - 1 MERGE instructions of length A.
4.3. Alternate Bit Reversal Implementation.   Another approach to performing

the bit reversal on the vector Y is to form a vector of indices which define the permu-
tation and then to use the STAR SCATTER instruction to disperse the elements of Y
to their appropriate positions in X. One must, however, be able to generate the indexing
vector, called I'N here, for any value of A.   To do this, we define 1 as a vector of size
L containing the integer 1 in each element. Then, if one knows l'L, the vector I2L can
be generated by

t*L
\2% + lj

A data set such as l'x 6 can be preset initially and l'N generated using the recursion shown.
4.4.  The FFT on M Vectors.   The algorithm defined by Eqs. (4.5) and (4.7) can

be performed on STAR with vector operations of length A or A/2.  We now generalize
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the algorithm to transform M vectors at a time with vectors of length NM or AM/2.
Let r(/) = T'(N)a(i) for i = 1,2, ... ,M.  Now, let a be the NM vector a =
[a*1-1, oS2', . . . , c¿M^]T. The M transforms can be expressed as

(T'(N) ® I(M))a

(4.10) lq-l i
=  j  II   [GO. N) ®I(M)] [C(N)®KM)] [F(N, k-\) ®I(M)] [ a.

Now, inserting Q(N/2, NM)Q(N/2, NM)'1 between each factor in (4.10) and regroup-
ing yields

(T'(N)®I(M))a = \   n   [(Q(\,N)®I(M))Q(N/2,NM)]
( k=0

[Q-\NI2,NM) (C(N) ®I(M))Q(N/2, NM)]
(4.11) Jß-1(-V/2,AM) (F(N, k-l) ®I(M))Q(N/2,NM)]

Q-l(N/2,NM) ! a.

Equation (4.11) can be simplified through the following identities which can be
easily, though tediously, verified for A a power of 2:

Identity 1.

(Q(j, A) ®I(M))Q(N/2,NM) = Q(j, NM).

Identity 2.

Q~l(N/2, NM) (C(N) ®I(M))Q(N/2, NM) = C(NM).

Identity 3.

Q'x(N/2, NM) (F(N, I) ® I(M))Q(N/2, NM) = F (AM, /),

where if we denote

F(N, I) = diag(/(A/2), £>(A/2, /)),

then

F(AM, /) = diag(/(AM/2), D(N/2,1) ®I(M)).

Inserting these three identities into (4.11) yields

(4.12)    (T'(N) ®I(M))a
c-i _ "I

[ 0(1, NM)C(NM)F(NM, k)Q~l(A/2, AM)  a.
k=0

Similarly, (4.7) can be modified to yield

q-2
(4-13) (i.®/(M))= n  Q(2k,NM)Q~1(N/2,NM).

fc=0

Equations (4.12) and (4.13) are similar to (4.5) and (4.7) except that from an im-
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plementation point of view, the vector lengths are of size AM and the logic must

be included to apply the ß_1 operator q times when M > 1.   The advantage of
using vectors of length AM comes, however, at the expense of doing the extra work
associated with Q~x.   This advantage becomes smaller as A gets larger since little is
gained by increasing already large vector lengths.

V.   Vector Implementation of the Stockham Algorithm. As discussed in Sec-
tion 3, a straightforward implementation of a standard FFT algorithm on a vector
computer would yield vectors with average length only log2 A and, thus, be less
efficient than the Pease algorithm discussed in Section 4.   However, many scientific
applications require the computation of more than one transform of size A.   In
this section a theorem is proved which indicates that M independent transforms can
be computed with vectors of average length M log2 A.   The particular algorithm
discussed in this section avoids the time consuming bit reversal at the expense of
extra storage.   This idea has been attributed to Stockham in a paper by
Cochran et al. [4].

The key to generating an efficient algorithm is contained in the following
theorem.

Theorem.  Let the MN complex elements, Xjk, j = 0, . . . , M - 1; k = 0,
. . . , A - 1 for M Fourier transforms each of size A be stored by column.   Let
A = n?=1r..   Then, applying the FFT algorithm to an array of size MN using M
as the first factor and stopping the algorithm after q steps yields the M Fourier
transforms of size N to within a scale factor.

Proof.   Let Yß, p. = 0, . . . , MA - 1, be the one-dimensional array of x-k
where p. = kM + j and

i       MN-l
B¿=MN     £     YßWMN\       3 = 0,1,...,MA-1,

M=0

be its transform.   Now let

d = yN + v,    7 = 0, . . . ,M- 1, v = 0, . . . ,A- 1.

Then

.      „ ,      M-\ N-\
(5.1) B   = —    V    V    Y w-HkM+j).
V      ' °       MN     L     2-     IkM+jWMN

/=0  fc=0
But

^•£) WMN       - WMN       - WN     ■

So

,      Ai-l
(5.3)    B, = —   yy'  '      3     MA   .^

¡=o

V-l "1 • 1     M~X -of
Y    YkM+jWN   l\ WMN = Tm     ¿1    ^vM+iWMÑ'
k= 0 /'= 0
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where

(5-4)  <M+f = NZ   YkM+iWÑkV,     / = 0,...,M-1,, = 0,...,A-1.
k=0

The quantities A'vM+. are the result of the first ¿7 steps of a standard FFT algorithm
and for a fixed/ the A values A'vM+ ■ ,v = 0, . . . ,N — 1, comprise the FFT of the
7 + 1st set of data to within a scale factor.  Q.E.D.

This theorem contributes to an efficient implementation in two ways.  First, as
we now show, the average vector length is proportional to the size of the system.   Let
MA = M H2_ j r¡ and consider step /, 1 </ < q, of the FFT process.  Define /, =
njL j r¡. The vectorizable operations for a typical FFT algorithm on the STAR-100 are
of the form

(5-5> ZP=Z    YkWko,      p=l,...,/,,
k=o '

where Z   and Yk are complex vectors of length MN/l- and W{ is a complex scalar.

There are /. such vectors at each step /.  Vectors range in length from M at the last
step up to MN/rx at the first.  For N = aq the average length complex vector is
qM(a - l)/a.

The second important factor resulting from viewing the M systems as one large
system is that the FFT software for computing one FFT requires only a minimal
amount of additional logic to compute the M transforms.

If we total the number of operations required to evaluate the expressions (5.5),
we find that for each value of p, r, - 1 complex vector additions and r, - 1 vector
multiplications are needed.  Summing up over the q steps we find that a total of

(5-6) ¿ /,(/, - 1)

are required.  For A = d* this yields approximately Na operations.   However, certain
symmetries of the sines and cosines can be exploited to decrease the number of multi-
plications as described by Bergland [5].  For r= = 2, half of the multiplications can
be eliminated, while for r- = 4 only 3/8 of the multiplications need be performed.
Additional multiplications can be eliminated at the first step when r. = 2 and the
first two steps when rx = r2 = 2 since the required powers of W are ± 1 and ±i.

Multiplication of a complex vector by a complex scalar can be implemented with
little overhead on the STAR-100 computer.  Let ex = a + ib be a complex scalar and
let F be a complex vector of length L stored with real and imaginary parts alternating.
To compute the complex vector cxF do the following:

1. Compute aF and bF.  (Two vector multiplications of length 2L.)
2. Subtract even elements of bF from odd elements of aF to form Re(aF).

(Vector subtract of length 2L using a control vector.)
3. Add odd elements of bF to even elements of aF to form Img (cvF).  (Vector

add of length 2L using a control vector.)
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The total number of cycles for this multiply, obtained from the timings in
Section 2, is 460 + 6L.   Since four multiplies and two additions are required for each
complex multiply the time would be at least 5L cycles even if vectors were not re-
quired to be contiguous.

For A = 2q we have 2A vector adds and A complex vector multiplies. Since the
average length complex vector is qM/2, the timing in cycles can be approximated by

(5.7) T= 620 A + 4 ¿/MA.

The coefficient of A is a lower bound and can be expected to be significantly higher
in practice.  The 4 in (5.7) is an upper bound since fewer multiplications are performed
the first two steps of the process.

The permutation or reverse binary ordering can be eliminated if a second array
is used.  At each of the q steps the array is moved from one array to the other in
such a way that natural ordering is preserved at each step. This idea has been attributed
to Stockham in a paper by Cochran et al. [4].

This investigation has also brought about the realization that even on a serial
computer there are advantages to computing the M transforms in one pass through the
subroutine.  The overhead activity associated with each entry into an FFT subroutine
is'significant and needs to be done only once when all M transforms are performed in
one call.  The results of this approach on a CDC 6600 are presented in Section 6.

VI.   Timing Results.   Subroutines for the Pease algorithm, described in Section
4, and the Stockham algorithm, described in Section 5, were written for the STAR-100
in STAR FORTRAN.   STAR FORTAN is a superset of FORTRAN with extensions to
allow the programmer to use vector instructions.  Tables II and III contain the
STAR-100 times for the two codes for several values of M and A.   As expected, the
Pease algorithm is superior only for small values of M.  In general, if M > 5 the
Stockham algorithm is preferred.  Table II is not extended beyond M = 30 since by
that time the average time per transform for the Pease algorithm is essentially at its
minimum and little could be gained from choosing M larger.  For instance, Table II
shows that the time for A = 128 and M = 30 is only 1.1 times faster than doing the trans-
forms in three groups of M = 10. Several entries have been omitted from Table III be-
cause for those size problems, paging results and the I/O time dominates the CPU time.

The average time per transform for the Stockham algorithm is plotted in Figure
2.  The plot indicates that the most dramatic improvements come from increases in M
when M is small.  In fact, when M reaches 30 to 40 the startups have been sufficiently
amortized so that the method is efficient although important gains are still made as
M increases.

A similar plot is contained in Figure 3 for an unvectorized version of this algo-
rithm on the CDC-6600.   It shows that the advantage of an implementation based on
the theorem in Section 5 carries over to a serial computer.  In fact, the overhead of
the first transform, approximately 50%, can be spread over the M transforms bringing
down the average time per transform significantly.  The asymptotic value is reached

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



THE FAST FOURIER TRANSFORM ON A VECTOR COMPUTER 989

more quickly on the 6600 than on the STAR-100 since the overhead contribution on
the serial computer is not as significant as the priming time contribution on the vector
computer.  The serial program was coded in FORTRAN and compiled using the FTN
optimizing compiler.

Table H
Time (seconds) for the Pease algorithm on the STAR-100

NUMBERS CF
TRANSFORMS

M

1

5

10

20

30

SYSTEM SIZE N

64

.0011

.0029

.0018

.0085

.0120

128

.0016

.0054

.0095

.0176

.0257

256

.0027

.0108

.019-4

.0375

.0552

512

,0050

.0228

.0-440

.0861

.1280

1024

.0094

.0492

.0961

.1900

.2840

2048

.0185

.1050

.2080

.-4150

.6200

Table HI
Time (seconds) for the Stockham algorithm on the STAR-100

NUMBER OF
TRANSFORMS

M

1

5

10

30

50

100

SYSTEM SIZE N

64

.0031

.0033

,0035

,0045

.0054

,0079

128

.0057

.0062

.0071

,0094

.0118

,0177

256

,0114

.0126

,0140

.0194

,0248

.0383

512

,0215

,0250

,0283

,0410

.0536

,0855

1024

,0455

,0502

,0573

.0855

.1141

2048

.0905

.1013

.1177

,1501

When N=2q, Eq. (3.6) becomes

(6.1) T « 52A + yMNq.

Figure 4 plots T/MNq as a function of M.  For M large enough, this value approaches
7. The upper bound on 7 from Section 5 is 160 nanoseconds.  But because several
operations are avoided as described in that section, the actual value is lower.  For the
values of A of interest 7 is approximately 3.5 minor cycles (140 nanoseconds) and
S2 is 950 minor cycles.  The value of S2 is higher than predicted in Section 5 primarily
due to scalar code required by the algorithm and by the compiler.

A base 4 algorithm was coded and found to be slower for most values of M,
M < 100.   Savings at larger values of M were not sufficient to justify its use.
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N - 2048

Time inn
(millisecs)  luu

0

N = 1024

20

N= 512

40 60 80 100 120

Number of transforms     M

Figure 1
STAR-100 complex FFT times using the minimum of the two algorithm times

Time 4
(millisecs)

N = 1024

N = 256
| N = 64

20 40 60 80
Number of transforms    M

Figure 2
STAR-100 time per transform for the Stockham algorithm

In summary, the timing for the FFT for the STAR-100 can be expressed as
approximately 640 A log2 A nanoseconds for a single large transform using the Pease
algorithm and 140 A log2 A nanoseconds per transform when enough transforms are
taken simultaneously.  The latter figure is about 35 times faster than on a CDC 6600
and 9 times faster than the CDC CYBER 175.   Since these figures are reached only
asymptotically as the effect of the priming time becomes negligible, the timing for
problems of practical size is greater.   It is found, however, that for A > 512 the
Pease algorithm requires less than 1100 A log2 A nanoseconds, and for M > 100 and
A > 64, the Stockham algorithm requires less than 200 A log2 A nanoseconds per
transform.
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Figure 3
CDC-6600 time per transform for the Stockham algorithm
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Figure 4
STAR-100 Stockham algorithm timings per MN log2A

VII.   Concluding Remarks.  Two algorithms have been presented for performing
the complex FFT on the STAR-100.  The Pease algorithm is most attractive for a
single large transform whereas the Stockham algorithm can be as much as four times
faster when many independent transforms are to be computed.  In this paper the
Pease algorithm is extended to perform M transforms but the gain from increasing the
vector lengths from A to MN is not as important as in the Stockham algorithm where
the extended algorithm increases the vector lengths from log2 A to M log2 A.

The implementation of the Stockham algorithm is based on a theorem in Sec-
tion 5. This report shows that a similar implementation on a serial computer can cut
running time by nearly a factor of two when twenty or more transforms are required.

It is evident that it is desirable to use the Stockham algorithm when many inde-
pendent transforms are required as might occur, for instance, in finite difference solu-
tions to partial differential equations where each column of grid data must be trans-
formed.   In such a case, the data should be stored consecutively by rows of the grid.
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If the transform of M columns of real data is required, then no rearrangement of the
data is necessary assuming M is even (if not, a dummy row can be added). The even
columns can be taken as the imaginary part of the M/2 complex transforms. The M
real transforms can be easily obtained from the M/2 complex transforms.

In some applications it may be required to transform data stored both by columns
and by rows of a grid, as in the two-dimensional FFT.  If the grid is stored by rows,
then the Stockham algorithm can be used to transform the column data and the Pease
algorithm to transform the row data.
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