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COMPUTING THE HILBERT TRANSFORM AND ITS INVERSE

SHEEHAN OLVER

Abstract. We construct a new method for approximating Hilbert transforms
and their inverse throughout the complex plane. Both problems can be for-
mulated as Riemann–Hilbert problems via Plemelj’s lemma. Using this frame-
work, we rederive existing approaches for computing Hilbert transforms over
the real line and unit interval, with the added benefit that we can compute
the Hilbert transform in the complex plane. We then demonstrate the power
of this approach by generalizing to the half line. Combining two half lines, we
can compute the Hilbert transform of a more general class of functions on the
real line than is possible with existing methods.

1. Introduction

We consider the computation of the Hilbert transform

(1.1) HΓf(z) =
1

π
−
∫
Γ

f(t)

t− z
dt,

where Γ is an oriented curve in the extended complex plane C, f : Γ → C satisfies
a Hölder condition and z ∈ C, including the possibility of z lying on Γ itself. (Note
that the Hilbert transform is often defined with the opposite sign as (1.1).) We also
consider the inverse problem, i.e., finding a continuous function u : Γ → C which
satisfies

(1.2) HΓu(z) = f(z) for z ∈ Γ,

or in other words, computing H−1
Γ f . In particular, we consider the case where Γ is

one of the following domains (using T = [−π, π) to denote the periodic interval):

unit circle U = eiT = {z : |z| = 1} ,
real line R = (−∞,∞),

unit interval I = [−1, 1],

half line R
+ = [0,∞).

We use the notation H when Γ is clear from the context.
There are many applications for the computation of (1.1) and (1.2), including

computing the analytic signal [12] and the Benjamin–Ono equation [5, 24]. Our
interest stems from the numerical solution of gravity waves and the computation

Received by the editor November 30, 2009 and, in revised form, February 7, 2010.
2010 Mathematics Subject Classification. Primary 65E05, 30E20, 32A55.
Key words and phrases. Cauchy transform, Cauchy principal value integrals, Hilbert trans-

form, Riemann–Hilbert problems, singular integral equations, quadrature.

c©2011 American Mathematical Society
Reverts to public domain 28 years from publication

1745

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1746 SHEEHAN OLVER

of solutions to matrix-valued Riemann–Hilbert problems. Gravity wave flow over a
step satisfies the equation [7]

log q(t) =
1

2
log

t+ b

t+ a
−HR+θ,

εq(t)2tq′(t) = sin θ(t).

The principal value integral in the Hilbert transform means that the solution to
this equation is global; we cannot time-step as in an ODE. If we attempt to solve
this equation using an iterative scheme, we invariably need to either compute Hθ
to determine q from θ, or compute H−1[log q − 1

2 log
t+b
t+a ] to determine θ from q.

Matrix-valued Riemann–Hilbert problems can be used to solve nonlinear ordi-
nary and partial differential equations such as the nonlinear Schrödinger equation,
the KdV equation and Painlevé equations [10, 11]. Such formulations have been
used with great success to determine the asymptotics of solutions, but, to the best
of this author’s knowledge, have not been used to compute solutions numerically.
In Section 7 we describe a possible approach in which the results of this paper can
be utilized for computing the solutions to matrix-valued Riemann–Hilbert prob-
lems, and hence to the solution of the associated nonlinear differential equations.
To accomplish this, we need to compute not the Hilbert transform itself, but its
limit as z approaches Γ from the left or right.

There are several existing methods for computingHf , with a recent review found
in [15]. The simplest method is to subtract out the singularity:

(1.3) −
∫
Γ

f(t)

t− z
dt =

∫
Γ

f(t)− f(z)

t− z
dt+ f(z)−

∫
Γ

1

t− z
dt.

The singularity in the first integral is now removable, hence — ignoring round-off
error caused by the removable singularity — it can be computed effectively using
a standard quadrature method. The latter integral, on the other hand, is typically
known in closed form. In particular [19]:

−
∫ 1

−1

1

t− x
dt = log

1− x

1 + x
for x ∈ I,(1.4)

−
∫ ∞

−∞

1

t− y
dt = 0 for y ∈ R,(1.5)

−
∫
U

1

t− z
dt = iπ for z ∈ U.

(We use the convention that x ∈ I, y ∈ R and z ∈ U, and for functions, f : I → C,
r : R → C and g : U → C. When Γ is a general curve, we use z as the variable and
f as the function.)

If Gaussian quadrature is used, each value of z for which we wish to evaluate
the Hilbert transform costs O

(
n2
)
operations [25]. Thus if we wish to compute the

Hilbert transform for n points in Γ, the total cost is O
(
n3
)
. On the other hand,

for Γ equal to R or U, the method we develop takes only O(n logn) operations to
compute the solution at n points, which is a considerable improvement. At each
additional point, including z throughout the complex plane, only an additional
O(n) operation is required. On the unit interval we could replace Gaussian quad-
rature with Clenshaw–Curtis quadrature [8] in (1.3), for a total cost of O

(
n2 log n

)
operations when evaluated at n points. However, this still suffers from issues with

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



COMPUTING THE HILBERT TRANSFORM AND ITS INVERSE 1747

removable singularities, as well as issues when x is near the endpoints of I, where
the Hilbert transform blows up.

Over the real line, an approach developed by Weideman [27] is to use the FFT
to expand f in terms of the eigenfunctions of HR, i.e., writing

r(y) =

∞∑
k=−∞

ck
(1 + iy)k

(1− iy)k+1
,

and applying the formulæ

HR

(1 + iy)k

(1− iy)k+1
= −i sgn k

(1 + iy)k

(1− iy)k+1
for k �= 0,(1.6)

HR

1

1− iy
= −i sgn

1

1− iy
[18].

Similarly, on the interval I the formula

(1.7) HI

Tk(x)√
1− x2

= −Uk−1 [15]

can be utilized to compute Hf (by expanding f(x)
√
1− x2 into Chebyshev Tk

series) or H−1f (by expanding f into Chebyshev Uk series). To compute HIf
efficiently for smooth f , the formula

(1.8) HITk(x) =
1

π
Tk(x) log

(
1 + x

1− x

)
− 1

π

� k−1
2 �∑

j=0

xk−2j−1

j∑
v=0

ck,v
2j + 1− 2v

,

can be used, where cn,v are defined so that

Tk(x) =

�k/2�∑
j=0

ck,jx
k−2j ,

or, equivalently,

c0,j = 1,

ck,j =
2k−2j−1(−1)jk(k − j − 1)!

j!(k − 2j)!
, k = 1, 2, . . . [15].

Equations (1.6) and (1.7) can also be applied to compute the Hilbert transform
globally in O(n logn) time and (1.8) in O

(
n3
)
time. Our approach is in some sense

equivalent to (1.6) throughout the complex plane, and (1.7) and (1.8) on I itself,
though our version of (1.8) requires only O(n log n) operations. Furthermore, the
known expansion in terms of Chebyshev polynomials cannot be used for x off the
interval, whereas our approach can be used throughout the complex plane in a
numerically stable manner. Moreover, the additional terms in our version of (1.8)
can be written in terms of Chebyshev series, not power series, making the method
numerically stable.

In the following section, we setup the computation of H in terms of the solution
of a Riemann–Hilbert problem. In Section 3 we construct our method for the
circle, and describe the rate of convergence, which is based on the standard FFT
convergence theory. In Section 4 we construct the method for the real line by
mapping it to the circle. In Section 5 we use the Joukowsky map to solve the
Riemann–Hilbert problem on the interval. We can then compute the semi-infinite
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Hilbert transform by mapping the half line to the interval. We can combine the
computation of two half lines to compute the Hilbert transform over the real line
efficiently, even when the behaviour at ±∞ differ. This is unlike the method of
Section 4 and [27], which requires that the function has the same asymptotic series
at both +∞ and −∞.

2. Riemann–Hilbert problems and the Plemelj lemma

To construct our method, we rewrite it as a Riemann–Hilbert problem.

Definition 2.1. Given a piecewise smooth oriented curve in the complex plane Γ
and z ∈ Γ not at any endpoint or discontinuity of Γ, Φ+(t) is the limit of Φ(p) as
p → z with p lying on the left of Γ. Likewise, Φ−(z) is the limit of y(p) as p → z
with p lying on the right of Γ. See [19] for a more detailed definition.

Problem 2.2. Suppose we are given a piecewise smooth oriented curve in the
complex plane Γ and b, f : Γ → C which satisfy a Hölder condition. Find a function
Φ which is analytic in C\Γ such that

Φ+(z) + b(z)Φ−(z) = f(z) for z ∈ Γ and Φ(∞) = 0.

We use Φ(∞) to denote the limit Φ(z) as z → ∞ from any direction, assuming it
exists. Likewise, when f is defined only on Γ containing ∞, we use f(∞) to denote
the limit as z → ∞ from any direction along Γ.

In our case, b(x) will be either 1 or −1. The following theorem follows from
Plemelj’s lemma:

Theorem 2.3 ([19]). Let Γ be a piecewise smooth oriented curve in the complex
plane and f : Γ → C a function which satisfies a Hölder condition. The function

Φ(z) =
1

2i
Hf(z) =

1

2iπ

∫
Γ

f(t)

t− z
dt

is analytic in C\Γ and satisfies Φ(∞) = 0. Let z ∈ Γ such that z is not an endpoint
or discontinuity of Γ. Then

Φ+(z)− Φ−(z) = f(z)

and

Φ+(z) + Φ−(z) = −iHf(z).

The solution to the Riemann–Hilbert problem

(2.1) Φ+ − Φ− = f and Φ(∞) = 0

is unique [19], hence solving this problem allows us to compute the Hilbert transform
of f . The solution to

(2.2) Φ+ +Φ− = f and Φ(∞) = 0

is unique on closed curves (such as U and R), but not necessarily on open curves
(such as I and R+) without additional conditions imposed. However, if Φ is a
solution to (2.2), then it has the property that the Hilbert transform of Φ+ − Φ−

is equal to f [19]. If Γ = I, then we can determine Φ uniquely if we impose that
it must be bounded at either ±1. If the zeroth Chebyshev coefficient of f is zero,
then Φ can be uniquely determined by imposing that it must be bounded at both
±1.
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Definition 2.4. We define PΓf as the equivalency class of solutions to (2.2) and
MΓf as the solution to equation (2.1), namely

MΓf =
1

2i
HΓf,

which is the Cauchy transform (cf. [10], where it is denoted C). When Γ is clear
from context, we use P and M. We also use the notation

P±f = (Pf)± and M±f = (Mf)±.

In other words, computing Mf allows us to compute the Hilbert transform of
f throughout the complex plane off Γ, and computing M±f allows us to compute
the Hilbert transform on Γ itself. Likewise, computing P±f allows us to compute
H−1f on Γ. Thus our primary goal is the computation of Pf , P±f , Mf and M±f .

When Γ is a simple closed curve — such as the unit circle or real line — we can
regard Φ+ and Φ− as independent analytic functions in the interior and exterior of
the curve; see Figure 1. Thus if Φ+ − Φ− = f , then

iH−1f = Φ+ − (−Φ−) = Φ+ +Φ− = −iHf,

which is equivalent to the well-known identity

H−1 = −H.

This is no longer the case when Γ is either not closed or not simple.
There are existing methods for solving Riemann–Hilbert problems. One ap-

proach is based on rewriting the Riemann–Hilbert problem as a principal value
integral or singular integral equation [20]. In our case, such an approach would
return us to our original problem, hence it is not useful. Another approach is
the conjugation method [26], for solving a Riemann–Hilbert problem of the form
a(z)Φ+(z) + b(z)Φ−(z) = f(z) on closed curves. Our approach is related to the
conjugation method, however, since our Riemann–Hilbert problem has constant a
and b, it is significantly simpler. Furthermore, unlike our approach, the conjugation
method has not been generalized to open curves such as the unit interval I.

3. The unit circle

We use the standard, counterclockwise orientation for the unit circle; cf. Figure
1. Consider a function g : U → C such that it is C1[U] and its first derivative has
bounded variation. Then its Fourier coefficients converge absolutely, and we can
express g in terms of its Fourier series:

g
(
eiθ
)
=

∞∑
k=−∞

ĝke
ikθ for θ ∈ T.

Alternatively, we can express g in terms of its Laurent series:

g(z) =

∞∑
k=−∞

ĝkz
k.

If g is analytic in an annulus

Aρ =

{
z :

1

ρ
< |z| < ρ

}
,
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Figure 1. Riemann–Hilbert problem on the circle

then this series is guaranteed to converge in Aρ. Otherwise, it will only converge
on U. On the other hand,

g+ =

∞∑
k=0

ĝkz
k and g− =

−1∑
k=−∞

ĝkz
k

are analytic in the interior and exterior of the unit disk, respectively, with g =
g+ + g− on U. Therefore, we obtain:

Theorem 3.1. Suppose g : U → C is C1[U] and its first derivative has bounded
variation. Then

Pg(z) =

{
g+(z) for |z| < 1,

g−(z) for |z| > 1
and Mg(z) = Pg(z)

{
1 for |z| < 1,

−1 for |z| > 1.

In other words, computing the Fourier series allows us to compute the solution
to either Riemann–Hilbert problem on the unit circle.

Computation of the Fourier series can be accomplished efficiently using the FFT.
Denote n evenly spaced points in T as

θn =

(
−π,−π +

2

n
π, . . . , π − 2

n
π

)�

and n evenly spaced points in U as

zn = (z1, . . . , zn)
� = eiθn =

(
−1, eiπ(

2
n−1), . . . , eiπ(1−

2
n )
)�

.

The sample vector of g at the points zn is g = g(zn). Let

ĝ =
(
ĝn−�n/2�, . . . , ĝ

n
0 , . . . , ĝ

n
�(n+1)/2�−1

)
so that

�(n+1)/2�−1∑
k=−�n/2�

ĝnk e
ikθ
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takes the values g at tn. Then

gn(z) =

�(n+1)/2�−1∑
k=−�n/2�

ĝnk z
k

interpolates g at zn: gn(zn) = g. The vector ĝ can be written in terms of the
trapezium rule, or computed with O(n logn) operations using the FFT.

We will express this transformation as an operator applied to g:

Definition 3.2. We denote the Laurent polynomial which takes the data g at the
points zn as

e(z)�g = gn(z) =
(
z−�n/2�, . . . , z�(n+1)/2�−1

)
ĝ =

�(n+1)/2�−1∑
k=−�n/2�

ĝnk z
k.

The nonnegative and negative components are denoted

e+(z)
�g =

�(n+1)/2�−1∑
k=0

ĝnk z
k and e−(z)

�g =
−1∑

k=−�n/2�
ĝnk z

k.

We also use g+ = e+(zn)
�g and g− = e−(zn)

�g for the values these functions
take at zn. Both of these can be computed with O(n logn) operations by applying
the FFT to compute ĝ, dropping the nonnegative/positive entries and applying the
inverse FFT.

The notation e(z) is chosen to emphasize that e(zk)
�g = e�k g, k = 1, . . . , n. In

practice, e±(z) can be evaluated efficiently and in a stable manner [13] using the
barycentric formula [6]:

e+(z)
�g =

∑n
k=1

zk
z−zk

e�k g+∑n
k=1

zk
z−zk

for z /∈ zn,

where ek is the kth basis vector of Cn. The function 1
z maps a series in inverse

polynomials to a series in polynomials, and the values of the series at zn to the
values at z̄n = (z1, zn, . . . , z2). Applying this map and then the barycentric formula,
we obtain

e−(z)
�g =

z1
z−1−z1

e�1 g− +
∑n

k=2
zk

z−1−zk
e�n−k+2g−∑n

k=1
zk

z−1−zk

for z /∈ zn.

Replacing g by its approximation e(z)�g, we can solve the Riemann–Hilbert
problem exactly:

Definition 3.3. We define approximate solutions to Pg and Mg as

Png(z) = Pe(z)�g =

{
e+(z)

�g for |z| < 1,

e−(z)
�g for |z| > 1,

and

Mng(z) = Png(z)

{
1 for |z| < 1,

−1 for |z| > 1.

For z ∈ U, we obtain

P±
n g(z) = e±(z)

�g = e(z)�g± and M±
n g(z) = ±e±(z)

�g = ±e(z)�g±.
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Let u = limn→∞ Png. From classical Fourier analysis, we know that

u+ + u− = lim
n→∞

[
P+
n g + P−

n g
]
= lim

n→∞
gn = g.

Furthermore,

Png =

�(n+1)/2�−1∑
k=0

ĝnk z
k

must converge to an analytic function inside the unit circle. Similarly, Png con-
verges to an analytic function outside the unit circle. By uniqueness, we thus obtain
Pg = u. For z ∈ U, we thus obtain the following approximations:

−iHg = iH−1g ≈ e(z)�(g+ − g−).

By utilizing results for the convergence rate of Fourier series, we find that the
convergence rate of the approximation depends on the smoothness of g:

• If g ∈ Cρ[U] such that the ρth derivative of g has bounded variation, then
the rate of convergence is algebraic, on the order of O

(
nρ+1

)
.

• If g ∈ C∞[U], then the rate of convergence is superalgebraic.
• If g is analytic in an annulus Aρ, then the rate of convergence is geometric,
on the order of O(e−ρn).

• If g is analytic everywhere, except the possible exceptions of zero and ∞,
then the rate of convergence is supergeometric.

4. The real line

We now consider the computation of MRr, where r(±∞) = 0. The Möbius
transformation

R(z) = i
1− z

1 + z
conformally maps the unit circle onto the real line with the interior of the circle
mapped to the upper half plane and the exterior mapped to the lower half plane.
We can then project r onto the unit circle as g(z) = r(R(z)). Computing MUg and
PUg allows us to compute MRr and PRr:

Theorem 4.1. Suppose that r is C1[R], its first derivative has bounded variation
and r(y) ∼ α1

y +O( 1
y2 ) as y → ±∞. Let Φ = MUg, for g(z) = r(R(z)). Then

MRr(y) = Φ(R−1(y))− Φ+(−1) and PRr(y) = MRr(y)

{
1 for 	y > 1,

−1 for 	y < 1.

Proof. The first hypothesis ensures that g is C1[U] and its first derivative has
bounded variation. Let ϕ(y) = Φ(R−1(y))− Φ+(−1). Note that, if Φ+ − Φ− = r,
then (Φ + c)+ − (Φ + c)− = r, and adding a constant to a function does not alter
its analyticity. Thus,

ϕ+(y)− ϕ−(y) = Φ+(R−1(y))− Φ+(R−1(y)) = g(R−1(y)) = r(y).

Furthermore, Φ+(−1)− Φ−(−1) = g(−1) = r(∞) = 0, hence, for y lying off R,

lim
y→∞

ϕ(y) = lim
z→−1

Φ(z)− Φ+(−1) = 0.

Thus we know that MRr = ϕ. �
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Figure 2. The maximum error in approximating the Hilbert
transform of 1−sech y

y by (4.2) at the points R(zn)

Definition 4.2. Let r = r(R(zn)) = g(zn). We can define

MR,nr(y) = MRe(R
−1(y))�r =

{
e+(R

−1(y))�r for |z| < 1,

−e−(R
−1(y))�r for |z| > 1

− e+(−1)�r,

PR,nr(y) = MR,nr(y)

{
1 for 	y > 1,

−1 for 	y < 1.

For y ∈ R, we define

M±
R,nr(y) =

[
±e±(R

−1(y))� − e+(−1)�
]
r = e(R−1(y))�(±r± − e�1 r+),

P±
R,nr(y) =

[
e±(R

−1(y))� ∓ e+(−1)�
]
r = e(R−1(y))�(r± ∓ e�1 r+).

If r(+∞) = r(−∞) �= 0, we can use the fact that H1 = 0 (cf. (1.5)) to compute

Hr = H[r − r(∞)].

Suppose that

(4.1) r(y) ∼
ρ+1∑
k=1

αk

yk

as y → ±∞. Then, if r ∈ Cρ[R], g ∈ Cρ[U]. Thus, if r ∈ C∞[R] and has the same
asymptotic series at both ±∞, then MR,n and PR,n converge superalgebraically.

As a numerical example, we consider the computation of the Hilbert transform
of

r(y) =
1− sech y

y
,

whose Hilbert transform is

Hr(y) =
i

πy

[
ψ

(
1

4
− iy

2π

)
− ψ

(
1

4
+

iy

2π

)]
− tanh y

y
[16],

where ψ is the polygamma function [2] and both r anf Hr are defined at zero by
taking their limits. In Figure 2, we compare

(4.2) i
(
M+

R,nr +M−
R,nr

)
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with the Hilbert transform computed by the exact formula using Mathematica’s
built-in PolyGamma routine. Note that (4.2) is a rederivation of Weideman’s method
[27].

5. The unit interval

We now consider the case of computing PI and MI. Unlike the previous two
cases, the unit interval I = [−1, 1] is not a simple closed curve, hence we cannot
compute one from the other. We will, however, compute both of these functions by
mapping the associated Riemann–Hilbert problems to the unit circle.

The Joukowsky map and Chebyshev series. The Joukowsky map

T (z) =
1

2

(
z +

1

z

)

maps both the upper half-circle U↑ = {z ∈ U : Im z ≥ 0} and the lower half-circle
U↓ = {z ∈ U : Im z ≤ 0} onto the unit interval, with the interior and exterior of
the circle both being mapped to C\I (z and 1

z are mapped to the same point
with zero and ∞ mapped to ∞). Let g(z) = f(T (z)), which is equivalent to
projecting f to both the upper and lower half circles simultaneously. Now on the
unit circle g(eiθ) = f(T (eiθ)) = f(cos θ) is 2π periodic, and if f ∈ Cρ[−1, 1], then
f(cos θ) ∈ Cρ[T]. Furthermore, if f is analytic in the Chebyshev ellipse

Eρ = T (Aρ),

then g is analytic in the annulus Aρ [25].
Two one-sided inverses for T (z) are

T−1
± (x) = x∓

√
x− 1

√
x+ 1,

which map points in C\I to the interior and exterior of the circle, respectively.
These satisfy T (T−1

± (x)) = x. Furthermore, T−1
+ (x) = 1

T−1
− (x)

. Taking the standard

branch cuts for the square root, these inverses have a branch cut along I and are
analytic elsewhere.

On the interval itself, with the standard choice of branch, T+ maps I onto U↓

and T− maps I onto U↑. However, since I lies on the branch cut of each of these
functions, round-off error can produce unreliable results if it introduces a nonzero
imaginary part. Thus we introduce two other choices for the inverse of T :

T−1
↑ (x) = x+ i

√
1− x

√
1 + x and T−1

↓ (x) = x− i
√
1− x

√
1 + x.

These functions have branch cuts along (−∞,−1) and (1,∞), thus are analytic for
x ∈ I. T↑ maps the unit interval to the upper half circle, with any perturbation
above or below I mapping to a perturbation above or below U↑. Likewise, T↓
reliably maps I to the lower half circle. We also use the notation 
 in the same way
as ± is used (we do not define any equivalent to ∓).

We denote the Chebyshev series of f as

f =

∞∑
k=0

f̌kTk.

From classical Chebyshev polynomial theory, we know that

ĝ0 = f̌0, ĝk = ĝ−k =
f̌k
2
.
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Let f = f(xn) = (f(x1), . . . , f(xn−1), f(xn))
�, where

xn = (x1, . . . , xn)
� =

(
−1, cosπ

(
−1 +

1

n− 1

)
, . . . , cosπ

(
1− 1

n− 1

)
, 1

)�

are the n Chebyshev–Lobatto points. Then the sample of g at 2n−2 evenly spaced
points on the circle is

g = g(z2n−2) = f(cos θ2n−2) = (f(x1), . . . , f(xn−1), f(xn), f(xn−1), . . . , f(x2))
�
.

Because g is symmetric, we can use the fast cosine transform (FCT) in place of the
FFT to compute

ĝ =
(
ĝn1−n, . . . , ĝ

n
0 , . . . ĝ

n
n−1

)�
=
(
ĝnn−1, . . . , ĝ

n
1 , ĝ

n
0 , ĝ

n
1 , . . . , ĝ

n
n−1

)�
,

which gives us the approximate Chebyshev series

f̌ =
(
f̌n
0 , f̌

n
1 , . . . , f̌

n
n−1

)�
=
(
ĝn0 , 2ĝ

n
1 , . . . , 2ĝ

n
n−1

)�
.

The barycentric formula at Chebyshev–Lobatto points, i.e., the polynomial which
takes the given data at Chebyshev–Lobatto points, can be expressed in the following
form:

eT (x)
�f =

∑′n
k=1

(−1)k

x−xk
e�k f∑′n

k=1
(−1)k

x−xk

for x /∈ xn [6],

where the prime indicates that the first and last entries of the sum are halved.
It is true that eT (x)

�f = e(T−1(x))�g for any choice of T−1. In this case, the
barycentric formula is only useful for x ∈ I.

Computation of PI. We begin with the case of computing PIf . In this case, we
have a choice of PIf , determined by its behaviour at ±1. In the following theorem,
if f̌0 = 0 and c = 0, then the solution is bounded at ±1. Otherwise, we can prescribe
that PIf is bounded at either ±1 (but not both) by choosing c = ∓f̌0.

Theorem 5.1. Suppose f is C1[I] and its first derivative has bounded variation.
Let g(z) = f(T (z)) and Φ = PUg. For constants c ∈ C,

PIf(x) =
Φ(T−1

+ (x)) + Φ(T−1
− (x))

2
− xf̌0 + c

2
√
x+ 1

√
x− 1

.

For x ∈ I,

P+
I
f(x) =

1

2

[
Φ+(T−1

↓ (x)) + Φ−(T−1
↑ (x)) + i

f̌0x+ c

2
√
1− x2

]
,

P−
I
f(x) =

1

2

[
Φ+(T−1

↑ (x)) + Φ−(T−1
↓ (x))− i

f̌0x+ c

2
√
1− x2

]
.

Proof. It follows from the hypotheses that g is C1[U] and its first derivative has
bounded variation. Let u = [Φ(T−1

+ (x)) + Φ(T−1
− (x))]/2. As p approaches x ∈ I

from above, T−1
+ (p) approaches T−1

↓ (x) from the interior and T−1
− (p) approaches

T−1
↑ (x) from the exterior. As p approaches I from below, T−1

+ (p) approaches T−1
↑ (x)

from the interior and T−1
− (p) approaches T−1

↓ (x) from the exterior. In other words,

2u+(x) = Φ+(T−1
↓ (x))+Φ−(T−1

↑ (x)) and 2u−(x) = Φ+(T−1
↑ (x))+Φ−(T−1

↓ (x)).
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Combining the above with the fact that

Φ+(T−1
↑ (x)) + Φ−(T−1

↑ (x)) = g(T−1
↑ (x)) = f(x),

Φ+(T−1
↓ (x)) + Φ−(T−1

↓ (x)) = g(T−1
↓ (x)) = f(x),

we obtain

u+(x) + u−(x) =
1

2

[
Φ+(T−1

↓ (x)) + Φ−(T−1
↑ (x)) + Φ+(T−1

↑ (x)) + Φ−(T−1
↓ (x))

]
= f(x).

We have not quite computed PIf :

u(∞) =
Φ(0) + Φ(∞)

2
=

ĝ0
2

=
f̌0
2
.

Let

ψ(x) =
xf̌0 + c

2
√
x+ 1

√
x− 1

.

By the properties of the principal branch of the square root, we find that

ψ+(x) = −i
xf̌0 + c

2
√
1− x2

and ψ−(x) = i
xf̌0 + c

2
√
1− x2

.

Clearly, ψ+ + ψ− = 0, whilst ψ(∞) = f̌0
2 . Thus u− ψ decays at ∞ and satisfies

u+ − ψ+ + u− − ψ− = u+ + u− = f.

The fact that this expression includes all possible solutions which satisfy a Hölder
condition follows from Section 84 in [19], which gives an expression for the class of
all such solutions, in terms of a contour integral. �

We therefore obtain the following, stable approximation:

Definition 5.2. Let g = (f(x1), . . . , f(xn−1), f(xn), f(xn−1), . . . , f(x2))
�
. If x ∈

C\I and c ∈ C, then, we define

PI,nf(x) =
1

2

[
e+(T

−1
+ (x))� + e−(T

−1
− (x))�

]
g − xf̌n

0 + c

2
√
x+ 1

√
x− 1

.

If x ∈ I, then we define

P+
I,nf(x) =

1

2

[
e+(T

−1
↓ (x))� + e−(T

−1
↑ (x))�

]
g + i

f̌n
0 x+ c

2
√
1− x2

,

P−
I,nf(x) =

1

2

[
e+(T

−1
↑ (x))� + e−(T

−1
↓ (x))�

]
g − i

f̌0x+ c

2
√
1− x2

.

As in the unit circle case, the convergence rate of this approximation is an
immediate consequence of the convergence of e(x)�g to g. We omit the details,
but it clearly depends on the differentiability and analyticity of f(cos θ). This is
similar to the connection between the convergence rate of the Clenshaw–Curtis
quadrature and the analyticity of f in Eρ [25].

For a vector g = (g1, . . . , g2n−2)
�, let

g↓ = (g1, . . . , gn)
� and g↑ = (gn, . . . , g2n−2, g0)

�.
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These are the values of g corresponding to the points of zn lying in U↓ and U↑,
respectively. We could approximate iH−1

n f by its values at Chebyshev points plus
the unbounded term:

(5.1) eT (x)
�
(
g−
↑ + g+

↓ − g−
↓ − g+

↑

)
+ i

f̌n
0 x+ c√
1− x2

,

where g±
↑ = (g±)↑ and g±

↓ = (g±)↓. However, g± are not necessarily symmetric,
hence a square root singularity is introduced upon projecting onto the interval.
Thus (5.1) does not converge rapidly, unlike P+

n f − P−
n f . On the other hand,

the values of the bounded part at the Chebyshev points themselves, which equal
g−
↑ + g+

↓ − g−
↓ − g+

↑ , converge rapidly.

Computation of MIf . For g(z) = f(T (z)), note that −g(z)sgn arg z is equivalent
to projecting f to the lower half circle, and−f to the upper half circle. If f(±1) �= 0,
then g(z)sgn arg z has a jump at ±1, hence does not satisfy any Hölder condition.
Therefore, for now, we assume that f(±1) = 0. In a similar manner to Theorem
4.1, we obtain the following result:

Theorem 5.3. Suppose that f(±1) = 0 and f is C1[I] and its first derivative has
bounded variation. Let g(z) = f(T (z)) and Φ = −MUg(z)sgn arg z. Then

MIf(x) =
Φ(T−1

+ (x)) + Φ(T−1
− (x))

2
.

Furthermore, for x ∈ I,

M+
I
f(x) =

Φ+(T−1
↓ (x)) + Φ−(T−1

↑ (x))

2

and

M−
I
f(x) =

Φ+(T−1
↑ (x)) + Φ−(T−1

↓ (x))

2
.

Proof. Let u = [Φ(T−1
+ (x)) + Φ(T−1

− (x))]/2 and h(z) = −g(z) sgn arg z. Now

2u+(x) = Φ+(T−1
↓ (x))+Φ−(T−1

↑ (x)) and 2u−(x) = Φ+(T−1
↑ (x))+Φ−(T−1

↓ (x)).

Therefore,

u+(x)− u−(x) =
1

2

[
h(T−1

↓ (x))− h(T−1
↑ (x))

]
=

1

2
[f(x) + f(x)] = f(x).

Furthermore,

u(∞) =
Φ(0) + Φ(∞)

2
=

ĥ0

2
= 0,

since h is symmetric. Thus MIf = u. �

Given the values of a function at Chebyshev–Lobatto points, we can successfully
approximate MI and HI:

Definition 5.4. Let g̃ = (0, f(x2), . . . , f(xn−1), 0,−f(xn−1), . . . ,−f(x2))
�. If x ∈

C\I, then we define

MI,nf(x) =
1

2

[
e+(T+(x))

� − e−(T−(x))
�] g̃.
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If x ∈ I, then we define

M+
I,nf(x) =

1

2

[
e+(T

−1
↓ (x))� − e−(T

−1
↑ (x))�

]
g̃,

M−
I,nf(x) =

1

2

[
e+(T

−1
↑ (x))� − e−(T

−1
↓ (x))�

]
g̃.

If f(x) = f̃(x)
√
1− x2, then sgn θf(cos θ)

√
1− cos2 θ = f̃(cos θ) sin θ, hence the

differentiability of g(z)sgn arg z depends on the differentiability of f̃ . If the first ρ
derivatives of f vanish at both endpoints, then f(cos θ) is Cρ at zero and π. Thus
we still achieve superalgebraic convergence whenever f ∈ C∞[−1, 1], and f and all
its derivatives go to zero at the endpoints.

It might seem odd that computing H−1 is easier than computing H. This is
the opposite of the analytic development in [1, 19], where the goal is to express
the solution to the Riemann–Hilbert problem as a contour integral. But this is a
manifestation of (1.7), since, if f is C∞[I], we can expand it in terms of the basis

Uk and f(x)√
1−x2

in terms of the basis Tk(x)√
1−x2

efficiently.

The formula (1.8) means that it is possible to compute Hf spectrally fast for
the case where f itself is C∞[I] as well, even when it does not go to zero at ±1. We
can find a related formula for the computation of Mf . We first solve the moment
problem:

Lemma 5.5. Define

ψ0(z) =
2

iπ

{
arctanh z for |z| < 1,

arctanh 1
z for |z| > 1,

μm(z) =

�m+1
2 �∑

j=1

z2j−1

2j − 1
= arctanh z − 1

2
z2�

m+1
2 �+1φ

(
z2, 1,

1

2
+

⌊
m+ 1

2

⌋)
,

where φ is the Lerch transcendental function [4]. Then

MUz
msgn arg z = ψm(z) for

ψm(z) = zm
[
ψ0(z)−

2

iπ

{
μ−m−1(z) for m < 0
μm(1/z) for m > 0

]
Proof. Note that, for z ∈ U,

ψ+
0 (z)− ψ−

0 (z) =
2

iπ

[
arctanh z − arctanh

1

z

]
= sgn arg z.

Since arctanh 1
z → 0 as z → ∞, it follows that

MU sgn arg z = ψ0(z).

A solution to the problem u+ − u− = zmsgn arg z which does not respect the
boundary condition at ∞ is

zmM sgn arg z = zmψ0(z).

But we know that arctanh z has the following Taylor series:

arctanh z = z +
z3

3
+

z5

5
+

z7

7
+ · · · [2].

The terms up to O(zm) can be written as μm(z), where the expression in terms of
φ follow from its series definition.
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Consider the case where m < 0. Now μ−m−1(z) is at most an (−m− 1)-degree
polynomial, hence zmμ−m−1(z) decays as z → ∞, and ψm is analytic at ∞. On
the other hand, by the definition of μ,

arctanh z − μ−m−1(z) = O
(
z−m

)
, z → 0;

therefore, ψm is also analytic at zero. Finally, for z ∈ U,

ψ+
m − ψ−

m =
2

iπ
zm
[
arctanh z − μ−m−1(z)− arctanh

1

z
+ μ−m−1(z)

]

=
2

iπ
zm
[
arctanh z − arctanh

1

z

]
= zm sgn arg z.

Therefore, Mzm sgn arg z = ψm(z).
By the exact same logic, when m > 0, Mzm sgn arg z = ψm(z). �

Remark. Though ψm(z) is the arctanh function plus a polynomial in z, for z off
the unit circle, ψm(z) can potentially be computed more accurately and efficiently
using methods to compute φ. One approach is to use the method developed in
[3], or the built-in Mathematica routine. Possibly, a more efficient and accurate
method could be based on the integral representation

Φ(z, s, a) =
1

Γ(s)

∫ ∞

0

ts−1e−at

1− ze−t
dt.

In our case this becomes, for a = 1
2 +
⌊
m+1
2

⌋
,

φ
(
z2, 1, a

)
=

∫ ∞

0

e−at

1− z2e−t
dt =

1

a

∫ ∞

0

e−t

1− z2e−t/a
dt.

As m becomes large, the integrand rapidly converges to one, and hence Gauss–
Laguerre quadrature is very effective. As it is outside the scope of this paper, we
simply treat each ψm as a black box special function, which we compute to ma-
chine precision using the polynomial representation with sufficient extra precision
arithmetic.

Using this equation for the moments of f , we obtain the following:

Theorem 5.6. If f is C1[I] and its first derivative has bounded variation, then

MIf(x) = −1

4

∞∑
k=0

f̌k
[
ψk(T

−1
+ (x)) + ψk(T

−1
− (x)) + ψ−k(T

−1
+ (x)) + ψ−k(T

−1
− (x))

]
,

MIf(x) ∼
x→−1

− 1

2iπ
f(−1) [log(−x− 1)− log 2]

+
1

iπ

∞∑
k=0

f̌k(−1)k [μk−1(−1) + μk(−1)] ,

MIf(x) ∼
x→1

1

2iπ
f(1) [log(x− 1)− log 2] +

1

iπ

∞∑
k=0

f̌k [μk−1(1) + μk(1)] ,
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and, for x ∈ I,

M+
I
f = −1

4

∞∑
k=0

f̌k

[
ψ+
k (T

−1
↓ (x)) + ψ−

k (T−1
↑ (x)) + ψ+

−k(T
−1
↓ (x)) + ψ−

−k(T
−1
↑ (x))

]

= − 2

iπ
f(x)arctanh T−1

↓ (x)(5.2)

+
1

2iπ

∞∑
k=0

f̌k

{
T−1
↓ (x)k

[
μk

(
T−1
↑ (x)

)
+ μk−1

(
T−1
↑ (x)

)]

+ T−1
↑ (x)k

[
μk

(
T−1
↓ (x)

)
+ μk−1

(
T−1
↓ (x)

)]}
,

M−
I
f = −1

4

∞∑
k=0

f̌k

[
ψ+
k (T

−1
↑ (x)) + ψ−

k (T−1
↓ (x)) + ψ+

−k(T
−1
↑ (x)) + ψ−

−k(T
−1
↓ (x))

]

= − 2

iπ
f(x)arctanhT−1

↑ (x)(5.3)

+
1

2iπ

∞∑
k=0

f̌k

{
T−1
↓ (x)k

[
μk

(
T−1
↑ (x)

)
+ μk−1

(
T−1
↑ (x)

)]

+ T−1
↑ (x)k

[
μk

(
T−1
↓ (x)

)
+ μk−1

(
T−1
↓ (x)

)]}
.

Proof. Let g(z) = f(T (z)). By expanding g in terms of its Laurent series, we define

Φ(z) = −MUg(z) sgn arg z = −
∞∑

k=−∞
ĝkψk(z).

Let ξ = T−1
+ (x). Then define

u(x) =
Φ(T−1

+ (x)) + Φ(T−1
− (x))

2
= −1

2

∞∑
k=−∞

ĝk
[
ψk(ξ) + ψk(ξ

−1)
]

= −1

4

∞∑
k=0

f̌k
[
ψk(ξ) + ψk(ξ

−1) + ψ−k(ξ) + ψ−k(ξ
−1)
]

= − 1

2iπ

∞∑
k=0

f̌k

{
2(ξk + ξ−k) arctanh ξ − ξk

[
μk(ξ

−1) + μk−1(ξ
−1)
]

+ ξ−k [μk(ξ) + μk−1(ξ)]
}
.

(5.4)

By the same logic as Theorem 5.3, we know that u satisfies u+ − u− = f and
u(∞) = 0. We must demonstrate that u is also analytic off the unit interval.

We first prove that this sum does indeed converge. Because each ψk is analytic
off the unit circle, we know the partial sums must take their maximum on the unit
circle. Using (5.4) with ξ = T−1

↓ (x) �= ±1 and the fact that

1

2

∞∑
k=0

f̌k
[
ξk + ξ−k

]
=

∞∑
k=0

f̌kTk(x) = f(x),

we obtain that u+ is equal to (5.2), assuming we can split the sum into two, or
in other words, as long as the sum converges absolutely. By the same logic, u− is
equivalent to (5.3), subject to the same conditions.
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From the summation definition of μ, we know it takes its maximum at z = 1, so
that, for z ∈ U, ∣∣zk [μk(z) + μk−1(z)] + z−k [μk(z) + μk−1(z)]

∣∣
≤ 4

� k+1
2 �∑

j=1

1

2j − 1
≤ 2 log

(
−1 + 2

⌊
k + 1

2

⌋)
.

Thus absolute convergence is assured whenever
∞∑
k=0

∣∣f̌k∣∣ log
(
−1 + 2

⌊
k + 1

2

⌋)

converges. It is sufficient that f̌k = O
(
k−2
)
, which is true whenever f ∈ C1[I] with

f ′ having bounded variation.
We have yet to prove the behaviour of u at the endpoints. But the behaviour as

x → 1 follows from (5.4) and the fact that

2 arctanhT−1
+ (x) = log(1 + T−1

+ (x))− log(1− T−1
+ (x))

∼ log 2− log
(√

2(x− 1) +O(x− 1)
)

∼ log 2− 1

2
log 2− 1

2
[log |x− 1|+ i arg(x− 1)]

=
log 2− log(x− 1)

2
.

Similar logic proves the expression as x → −1. �

We thus obtain the following approximations:

Definition 5.7. For f = f(xn) and Ψ = (2ψ0, ψ1 + ψ−1, . . . , ψn−1 + ψ1−n), define

MI,nf = −1

4

[
Ψ(T−1

+ (x)) + Ψ(T−1
− (x))

]
f̌

and, for

μ =
(
μ0(z

−1), z
[
μ1(z

−1) + μ0(z
−1)
]
, . . . , zn−1

[
μn−1(z

−1) + μn−2(z
−1)
])
,

define

M+
I,nf = − 2

iπ
eT (x)

�f arctanhT−1
↓ (x) +

1

2iπ

[
μ(T−1

↓ (x)) + μ(T−1
↑ (x))

]
f̌ ,

M−
I,nf = − 2

iπ
eT (x)

�f arctanhT−1
↑ (x) +

1

2iπ

[
μ(T−1

↓ (x)) + μ(T−1
↑ (x))

]
f̌ .

Consider the Hilbert transform of ex over I, which we can find in closed form:

ex

π
[Ei(1− x)− Ei(−1− x)] [16].

Figure 3 demonstrates the effectiveness of approximating this function by
2iMI,nf throughout the complex plane and i(M+

I,nf +M−
I,nf) on the unit interval.

Note that μ is a vector of polynomials, hence
[
μ(T−1

↓ (x)) + μ(T−1
↑ (x))

]
f̌ itself is

a polynomial. Depending on the application, it might be more suitable to represent
this term by its values at Chebyshev points. Denote the operator which shifts a
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Figure 3. The maximum error in approximating the Hilbert
transform of ex by 2iMI,nf over 200 evenly spaced points on circles
of radii 2 (left graph, plain), 25 (left graph, dotted) and 50 (left
graph, dashed) and by i(M+

I,nf + M−
I,nf) at 200 evenly spaced

points on the unit interval (right graph)

vector to the left by S, padding on the right by zeros. Determine the vector h such
that

ȟ =

⎛
⎜⎜⎜⎝
2

4
. . .

4

⎞
⎟⎟⎟⎠

(n+1)/2∑
j=1

1

2j − 1
S2j−1f̌

using the inverse discrete cosine transform. Then

−iHIf ≈ −2
arctanhT−1

↓ (x) + arctanhT−1
↑ (x)

iπ
eT (x)

�f +
1

iπ
eT (x)

�h.

This expression follows by rearranging the order of sums, using the definition of μ.
Constructing h requires O(n logn) operations, as the summation is equivalent to

multiplication by a Toeplitz matrix. Therefore, it will outperform the Gaussian and
Clenshaw–Curtis quadrature methods, which require O

(
n3
)
and O

(
n2 log n

)
oper-

ations, respectively, to determine Hf at xn. Moreover, these quadrature methods
cannot handle the blow-up near the endpoints of the integration interval.

6. Half line and real line revisited

We orient the half line R+ = [0,∞) from the origin to ∞. We can map the
interval to the half line using

H(x) =
1 + x

1− x
.

We then obtain the following result:

Theorem 6.1. Suppose that r(y) = α
y +O

(
1
y2

)
as y → ∞ and r is C1[R+] and its

first derivative has bounded variation. Let g(z) = r(H(Tz))) and ϕ = PUg. Then,

PR+r(y) =
ϕ(T−1

+ (H−1(y))) + ϕ(T−1
− (H−1(y)))

2

and, for Φ = MIf ,

MR+r(y) = Φ(H−1(y))− Φ+(1),
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Proof. Let

u(y) =
ϕ(T−1

+ (H−1(y))) + ϕ(T−1
− (H−1(y)))

2
.

By the same logic as Theorem 5.1,

u+(y) + u−1(y) =
g(T−1

↓ (H−1(y))) + g(T−1
↑ (H−1(y)))

2
= r(y).

Furthermore,

2u±(∞) = ϕ+(1) + ϕ−(1) = g(1) = r(H(T (1))) = r(∞) = 0,

hence

PR+r(y) = u(y).

Now consider the second part of the theorem, where we define Φ = MIf . Since
f(1) = r(∞) = 0, the logarithmic term in Theorem 5.6 vanishes, and we are left
with

Φ+(1) = Φ−(1) =
1

iπ

∞∑
k=0

f̌k [μk−1(1) + μk(1)] .

Therefore, Φ− Φ+(1) goes to zero at one, and hence

MR+r(y) = Φ(H−1(y))− Φ+(1). �

We thus obtain the following approximations:

Definition 6.2. Let f(x) = r(H(x)) and g(z) = f(T (z)). If y ∈ C\R+, then define

PR+,nr(y) =
1

2
[PU,ng(T

−1
+ (H−1(y))) + PU,ng(T

−1
− (H−1(y)))]

and

MR+,nr(y) = MI,nf(H
−1(y))− 1

iπ
μ(1)f̌ .

If y ∈ R+, then define

P+
R+,nr(y) =

1

2
[P+

U,ng(T
−1
↓ (H−1(y))) + PU,ng(T

−1
↑ (H−1(y)))],

P−
R+,nr(y) =

1

2
[P+

U,ng(T
−1
↑ (H−1(y))) + PU,ng(T

−1
↓ (H−1(y)))],

and

M±
R+,nr(y) = M±

I,nf(H
−1(y))− 1

iπ
μ(1)f̌ .

Similar to Section 4, the convergence rate of this approximation depends on
the differentiability of f in R+, and the existence of an asymptotic expansion of
f at ∞. When applied to computing the Hilbert transform over R+, it converges
more rapidly than the method proposed in [9], which requires exponential decay at
infinity to achieve superalgebraic convergence.
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Computation over two half lines. Let q(y) = r(−y). It is clear thatMR−r(y) =
−MR+q(−y), where R− is oriented from −∞ to zero. Because it is analytic every-
where off R

+, M+
R+f −M−

R+f = 0 along (−∞, 0). Likewise, M+
R−f −M−

R−f = 0
on [0,∞). Therefore,

MRf = (MR+ +MR−)f.

Whereas Section 4 required that f had the same asymptotic series at ±∞ to obtain
fast convergence, by splitting the real line into two half lines, we can drop this
requirement. Furthermore, computation of MR±f only requires that f is C1[R±]
and its first derivative has bounded variation for each choice of ± separately, hence
does not require continuity at zero.

There is one concern which must be addressed, however. We know that MRf
is bounded, whereas MR+ and MR− have singularities at zero. But we find that
H−1(y) = −1 + 2y +O

(
y2
)
, therefore, for p(x) = r(−H(x)) and f(x) = r(H(x)),

MR−r(y) ∼
y→0

1

2iπ
r(0) log y

− 1

iπ

∞∑
k=0

p̌k
{
(−1)k [μk−1(1) + μk(1)]− μk−1(1)− μk(1)

}
,

MR+r(y) ∼
y→0

− 1

2iπ
r(0) log(−y)

+
1

iπ

∞∑
k=0

f̌k
{
(−1)k [μk−1(1) + μk(1)]− μk−1(1)− μk(1)

}
.

Thus

MRr(y) = MR+r(y) +MR−r(y)

∼
y→0

1

2iπ
r(0)(log y − log(−y))

+
1

iπ

∞∑
k=0

(
f̌k − p̌k

) {
(−1)k [μk−1(1) + μk(1)]− μk−1(1)− μk(1)

}

=
1

2π
r(0)(arg y − arg(−y)) + · · · = 1

2
r(0)

{
1 for 	y > 1,

−1 for 	y < 1
+ · · · ,

whose limit is bounded at zero from both above and below the real line.
Defining MR−,nr(y) = −MR+,nq(−y), we obtain MRr ≈ MR−,nr + MR+,nr.

This approximation is more computationally intensive then the method proposed
in Section 4: it takes O

(
n2
)
operations to compute at the 2n− 1 points ±H(xn),

versus O(n logn) operations to evaluate at the 2n − 1 points R(z2n−1). However,
it has the benefit of obtaining spectral convergence for a more general class of
functions. For example, consider the function

r(y) =
arctan y

y
,

whose Hilbert transform is

Hr(y) = − log(1 + y2)

2y
[16].
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Figure 4. The maximum error over the points R(‡10) of (6.1)
(left graph) and (4.2) (right graph) for approximating the Hilbert
transform of arctan y

y . Note that the value on the bottom axis cor-

responds to the total number of function evaluations

Unlike the example in Section 4, this does not have the same asymptotic series at
±∞. Figure 4 demonstrates that, for r = r(H(xn)) and p = r(−H(xn)),

(6.1) i

⎧⎪⎪⎨
⎪⎪⎩

(
MR+,n +M+

R−,n +M−
R−,n

)
r(z) for z < 0,(

M+
R+,n +M−

R+,n +MR−,n

)
r(z) for z > 0,

2(μ(1)− μ(−1))(p̌− ř) for z = 0,

is a superalgebraic convergent approximation of Hr, whereas (4.2) converges only
algebraically.

Without delving into details, we note that this approach also applies to combi-
nation of intervals, and even combination of intervals and half lines. Thus we can
successfully compute the Hilbert transform over R of any piecewise smooth function
with finitely many pieces. As a result, this approach could potentially be used to
construct an adaptive scheme for computing the Hilbert transform.

7. Future work

The solution to the gravity wave equation is periodic as t → ∞, thus we need to
compute the oscillatory Hilbert transform

H[f(t)eiωg(t)].

An asymptotic expansion for such transforms was found in [28] and a method based
on series acceleration methods was constructed in [17]. In recent years, there has
been significant progress on the computation of oscillatory integrals of the form∫ 1

−1

f(t)eiωg(t) dt,

using asymptotic information as ω → ∞ [14, 21, 22]. It remains to be seen if such
methods can be generalized for the oscillatory Hilbert transform.

Consider the matrix-valued Riemann–Hilbert problem of finding an analytic
function Φ : C\Γ → Cd×d such that

(7.1) Φ+(z) = Φ−(z)G(z) for z ∈ Γ, and Φ(∞) = I,
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where G : Γ → Cd×d. This can be reformulated as an inhomogenuous linear
equation:

LU = U+ − U−G = G− I and U(∞) = 0,

where Φ = U + I. The linear operator L maps functions analytic in C\Γ to
functions defined in Γ. But M can be viewed as a one-to-one map from Γ to C\Γ.
This applies equally well to matrix-valued functions in a componentwise manner.
Thus by combining the two linear operators as LM, we obtain a linear operator
that maps the class of Hölder continuous matrix-valued functions on Γ to itself.
In other words, solving LMV = G − I on Γ means that U = MV solves the
original matrix-valued Riemann–Hilbert problem. Immediately, this opens up the
possibility of constructing spectral methods for solving (7.1).

A particular example is the homogeneous Painlevé II transcendental, which can
be expressed as a matrix-valued Riemann–Hilbert problem on a domain consisting
of six rays originating at zero:{

z ∈ C : arg z =
π

6
+

π

3
(k − 1) for k = 1, . . . , 6

}
[11].

For other Painlevé equations, the domain consists of a combination of circles, in-
tervals, arcs and rays. Just as we combined M on two half lines to determine M
on the real line, we propose that it is possible to combine multiple half lines and
circles to compute M on such domains. We fully develop this approach for the
computation of homogeneous Painlevé II transcendentals in [23].
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