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COMPUTING THE HILBERT TRANSFORM
ON THE REAL LINE

J.A.C. WEIDEMAN

Abstract. We introduce a new method for computing the Hubert transform
on the real line. It is a collocation method, based on an expansion in rational
eigenfunctions of the Hubert transform operator, and implemented through the
Fast Fourier Transform. An error analysis is given, and convergence rates for
some simple classes of functions are established. Numerical tests indicate that
the method compares favorably with existing methods.

1. Introduction

The Hubert transform of a function f(x) is defined as the principal value
integral

(i) ^{f}(y) = ̂ y r {^-dx.
n      J_00x-y

We consider primarily the case f(x) G L2(-oo, oo), the set of square inte-
grable functions defined on the real line. For this class of functions the integral
(1) exists for almost all y, and it defines a function in the same class [7, p. 311].
As for applications, the Hubert transform plays an important role in optics [4],
signal processing [11], and waves in stratified fluids [3, 17].

A list of Hubert transforms is presented in Table 1 (next page)—it provides
the test problems for later sections. The special functions in the table are defined
below. Table 1 supplements the one given in Erdélyi et al. [10, Vol. 2] to a
modest degree—only the first and last entries of our table can be found in
theirs.

In practice the transform can seldom be found in tables such as these. And
even when this occurs the result often involves special functions that may pose
their own individual challenges to computation; cf. Examples 5-7 in Table 1.
Moreover, in many applications f(x) is available only at discrete points Xj.
For these purposes a direct numerical evaluation of-(l) is required. The follow-
ing methods have been proposed:

• Kress and Martensen applied the rectangle rule to (1) to derive

(2) *\M)~\±*+£Xm.
n=—oo

where « is the step size [16].
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Table 1. Hubert transforms

f(x)
T

1+x2

1+x4

sinW
T+j?

Y41+x
-X2e x

sech(x)

*{f)(y)
T+y7

vj'+y2)
\/2(l+y4)

cos(y)-e~'
1+p

COS(v)—£    ^2 C0S(4»)-e     v/2 sin(4;)j'2

tanh(y) + ¿ [< + £)-<-£)]

-isgnM^l^dyD + e-l^idyl)]

• Stenger derived essentially the same formula, by using expansions in
Whittaker's cardinal (or sine) basis functions [20].

• Henrici proposed a method based on the following well-known property
[11, p. 203]. If f(x) e L2(-oo, oo), then

(3) ^{f}(y) = ^-l{isga(k)^{f}(k)},

almost everywhere, where 9 represents the Fourier transform

/oo f(x)e~ikxdx,
-oo

and 9"  ' its inverse
— i   r°° ■*F-l{f}(x) = f(x) = j¿j    f(k)e'kx dk.

These Fourier integrals are approximated by discrete Fourier series on
a truncated domain x € [-L, L]. Equidistant gridpoints are used, and
the Fast Fourier Transform (FFT) may be used for a rapid summation
of the series.

In this paper we introduce what we believe to be a new method for the compu-
tation of the Hubert transform on the real line. It is based on a series expansion
in rational eigenfunctions of the Hubert transform operator in L2(-oo, oo).
The method is closely related to two other methods for the computation of in-
tegral transforms: Weber's method for the computation of Fourier transforms
[21], and Weeks' method for the numerical inversion of the Laplace transform
[22].

An overview of the paper is as follows: In §2 we recall that the functions

Pn(x) =
(\ + ix)n

(1 -ix)"+i
0, ±1, ±2, ..

form a basis for L2(-oo, oo). We then show that these functions are eigenfunc-
tions of the Hubert transform operator in L2(-oo, oo). Section 3 is devoted to
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COMPUTING THE HILBERT TRANSFORM 747

some approximation properties of series expansions involving these eigenfunc-
tions. In particular, we estimate the decay rate of the expansion coefficients for
certain classes of functions. In §4 we introduce the algorithm. It is a collocation
method based on a truncated eigenfunction expansion. An attractive property
is that the FFT can be used for an efficient implementation. An error analysis
for the algorithm is given in §5. We do not strive for full generality here: we
focus merely on predicting the convergence rates for the test problems in Ta-
ble 1. In §6 we compare the methods listed above with the method introduced
here. The new method turns out to be more accurate for several test problems.
We conclude in §7 with a synopsis of two applications: the computation of the
complex error function, and the solution of a nonlinear wave equation.

A few comments on Table 1 are in order. Entries 1-4 can be verified straight-
forwardly using contour integration. The calculations of entries 5 and 7 are
given in [18, Ch. 12]. Entry 6 was obtained via a direct computation of (3).
The appropriate Fourier transforms may be found on pp. 30 and 88 of [10,
Vol. 1].

The special functions in Table 1 are defined as follows: D(x) is Dawson's
integral

D(x) = e~x2 f e'2dt,
Jo

and the exponential integrals are defined by
roo *»oo

Ex(x)=       e-'rldt,    Ei(jc) = -PV/    e-'rldt.
Jx J-x

The psi (digamma) function y/(z) is defined in terms of the gamma function
as

V(z) = T'(z)/T(z).

It satisfies  \¡/(z) = y/(z), so the transform for sech(x) listed in Table 1 is
indeed a real function.

2. Rational eigenfunctions

It is well known that the functions
( 1 + ix)n

Pn{x)=(l-ix)n+>'    n = 0,±l,±2,...,

form a complete and orthogonal basis set for L2(-oo, oo) ; see [12, p. 63]. One
way to see this is to make the change of variable

(4) e'8 = rr§'   Le- * = ta40'
which maps the entire real line x e [-oo, oo] to 6 e [-7T, n]. Expansions in
terms of pn(x) now turn into Fourier series:

oo oo

/(*)=  £ a„p„(x)    =»    f(x)(l-ix)=  £ aneine.
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Im(z)

I      Re(z)=y

Figure 1. Contour of integration used in the proof of Theorem 1

The orthogonality properties of Fourier series may be used to deduce that

/     pn(x)pm(x)dx = nôn,m,

where the overline denotes the complex conjugate, and ¿„>m is the Kronecker-
delta. This leads to the integral formula for the expansion coefficients

1   r00        _
(5) a„ = - /     f(x)p„(x)dx.

n J-oo

As for history, the functions pn(x) could be traced back to Wiener's book
[26, p. 35]. Further theoretical properties of these functions are discussed in
[6], [12, §2.6.4], and [13, Ch. 19]. Numerical applications are considered in
[8, 15,21,23,24,25].

What is perhaps not so well known is that the functions pn(x) also form
a complete set of eigenfunctions of the Hubert transform operator (1) in
L2(-oo, oo), with eigenvalues i sgn(«). The proof is a straightforward exercise
in contour integration.

Theorem 1. For all real y and n = 0, ±\, ±2, ...

^{Pn}(y) = /sgn(«) pn(y).

(We define sgn(O) = 1.)
Proof. By definition

¿r{pn}(y) = -PV /     „     \,  T/-rdx.\rnSW>       n        ^(l-urjn+l^-j,)

For « > 0 and fixed y we evaluate this integral using the contour shown in
Fig. 1. The contribution along the big semicircle disappears in the limit R —> oo,
and the contribution along the little one approaches -ipn(y) as r —> 0. Since
the integrand is analytic in the upper half-plane, Cauchy's Theorem yields

*{Pn)iy) = iPn(y).

For « < 0, two semicircles in the lower half-plane are used to complete the
proof.   D
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COMPUTING THE HILBERT TRANSFORM 749

From the above theorem we deduce that if f(x) e L2(-oo, oo), then
oo oo

(6) /(*)=   Yl anpn(x)    =>    ß?{f}(x)=  Y  isgn(n)anp„(x).
n=—oo /!=—oo

Our algorithm is based on truncated versions of these series. Implementation
details are deferred to §4.

3. Approximation properties

In applications the rate of decay in the coefficients a„ in (6) determines
the accuracy of the method. However, giving a complete classification of this
decay in terms of the usual smoothness properties of f(x) like differentiability,
Lipschitz condition, and so on, is no easy task. We remind the reader that even
for ordinary Fourier series such a comprehensive theory does not exist (see [2,
Ch. 2], for example). We restrict our discussion therefore to estimating the an
for a few simple classes of functions, aimed at covering the test problems in
Table 1.

The reader wishing to avoid wading through the details is directed to Fig. 3.
There the an are plotted, together with the asymptotic estimates derived here,
for the functions listed in Table 1. Note that in the figure, and also in the
analyses below, we consider only « > 0. We do not sacrifice any generality in
doing so, since a„ - a_i_„ for all « , provided f(x) is real-valued.

Fig. 3 reveals that the rate of decay in the an increases in the following order:
f(x) = ûn(x)/(\+x2), <?-W, sin(x)/(l + x4), sech(x), e~xl, 1/(1 + x4),
and 1/(1 + x2). The accuracy of a numerical method based on (6) is therefore
expected to increase in the same order. We confirm this numerically in §5.

If f(x) is sufficiently regular, methods from analytic function theory may be
used for estimating the an , as was pointed out in [6, 21]. In particular, consider
the bilinear map
,_, 1 + iz A-w(7) w =-—,     z = i--,v ' 1 - iz 1 +w

related to (4), with z = x + iy. It maps the upper half-plane in the z-variable
to the unit disc in the to-variable. The first expansion in (6) may thus be viewed
as a Laurent series:

oo oo

f(z) =   Y a„p„(z)     =>     g(w)=   Y anW",
n=—oo «=—oo

where
, 2       /A-w

g(w) = TT^f(l1 +w    \ I+w
Let R > 1, and consider the regions

1 — rp'e
(8) YR:z = iY^re,    AR:w = re'°,

both defined for R~l < r < R, -n < 6 < n. These regions are represented
by the shaded areas in Fig. 2 (next page); the tick marks in the figure indicate
the values z = ±i and the dot-dash curve represents the unit circle |u;| = 1.
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750 J.A.C. WEIDEMAN

m
Figure 2. The regions FR (left) and AR (right) defined in (8)

(Similar figures can be found in [5, 6].) The domain TR is mapped conformally
to the annulus A^ under the bilinear transformation (7). Here, TR consists of
the exterior of two circles centered at z = ±i(R2 + l)/(R2 - 1), respectively,
both with radius 2R/(R2 - 1).

If f(z) is analytic in TR , then g(w) is analytic in AR, and the Laurent
series converges. Therefore, by Cauchy's estimate [11, Ch. 13]

(9) \a„\ < C(r)r C(r) = max \ g (w)\,
\w\=r

valid for each r such that R~l < r < R. This establishes at least geometric
decay in the an . The bigger R, the quicker the an are expected to decay. This
means that if the poles of f(z) are clustered near z = ±i, one can expect rapid
convergence of the series (6).

The analytic function theory sketched here applies to both Examples 1 and
2 of Table 1. Example 1 represents the extreme case R = oo. Only two of the
coefficients an are nonzero, since f(z) = 1/(1 + z2) => g(w) = j(w~l + 1).
Example 2 allows explicit computation of the an too. We summarize as follows:
Example 1.
0,-1.
Example 2.

f(x) i
1+x2 ao _ i~~   2 a~\ and an = 0 when « /

A*) = nb
(10)

for all « > 0, and a2n-X

a2n (-\)"-(V2-l)2".

-a2n, a~n =an-i-

Though elegant, the above approach to estimating the a„ has limited appli-
cability in practice. First, it requires f(x) to be analytic in a neighborhood of
the entire real axis, including at x = ±oo . Only the first two examples in Table
1 meet this requirement; the others have an essential singularity at x = ±oo.
Second, when transplanted from the real line to the unit disk under the mapping
(7), functions such as Examples 3-7 in the table assume complicated forms. For
these functions different strategies have to be devised.

To deal with Examples 3 and 4, we consider the more general class of func-
tions

(11) Ax) = e— 0i^x P(x)
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COMPUTING THE HILBERT TRANSFORM 751

where X is real, P(x) and Q(x) are polynomials in x with deg(Q) > deg(P),
and Q(x) has no real zeros. We need to estimate the coefficients

!   yoo    egx   p^ (i_jxy
a"~ñJ^00l + ixQ(x){l + ix)   dx-

One approach is repeated integration by parts, based on the identity

(11, /     '      (\=±\'*x- -J- (\=±)" + C,    nfO.y    '        J  \+x2\\ + ix) 2in\\ + ix)
For example, one step of integration by parts looks like

.A.«,       S(Jc)Vl + 'JC/ 2i«y_oo       S(x)\ ! + »•«/

where R(x) = P(x) and S(x) = Q(x)(\ + ix) in the first step. Each successful
application of integration by parts reduces the difference between the degrees
of the denominator and numerator by two, i.e.,

deg(S) - deg(J?) = deg(S) - deg(Ä) - 2.
This can be continued as long as deg(S) - deg(Ä) > 2. Thus it is deduced that
for functions of the form (11) one can expect

(13) an = 0(n-c),

where c = [%(a\eg(Q) - deg(.P))J. This result may be improved, however, as we
now show.

We first record the fact that

(14)

/.
e iXx , 2nX2

dx = -^—2l-m-'e-ÁU(l -l,2-m-l,2X),
_«, (1+ /*)'( 1-zx)* (I-I)

where m and / are integers such that I + m > 1, X > 0, and U(a, b, x)
is the confluent hypergeometric function (see [19, p. 325]). We also need the
asymptotic formula

U(a,b,x)=v(h-a + ^\ jr^e****-**

( \j2bx - 4ax - -bn + an + -n Jx cos 1 + 0 jb-a
-r

as a-> -oo, for b bounded, x real (see [1, p. 508]).
First consider Example 3 of Table 1. We need to evaluate

1   [°° ^Hxl_J_([^jxY   .   _I r sin(x)
Un~ nj_00\+x2l + ix\l + ix)   aX     jc 7.«, (1 +/x)"+»(l - ix)1-"

If we split the numerator as sin(x) = (e'x - e~'x)/(2i) and assume « > 0 the
integral involving the term e~'x vanishes. That leaves the integral involving
e'x, which is in the form (14), with X = 1, I = n + 2, and m = \ - n.
Together with the fact that T(« + 3/4)/f(« + 2) ~ «~5/4, one obtains:
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752 J.A.C. WEIDEMAN

Examples f(x) = g$     =>

a" = 4/g(« + l)!C/(-1-"'-1'2)

(15)        = (-l)"+1/rt-1/2(2«)-5/4cos(2(2« + l)1/2 - 7i/4)[l + 0(n-xl2)}.

Next, consider f(x) = sin(x)/(l + x4), and write the rational part as

1 1 2jc2
+

1+x4     (1+x2)2     (l+x4)(l+x2)2'

Multiply with (l/7t)sin(.x)(l - ix)"/(l + ix)n+l and integrate over (-oo, oo) ;
this gives a„ on the left. The first integral on the right can be estimated as in
Example 3. Integration by parts establishes that the second integral on the right
is 0(«~3). Therefore:

Example 4.  f(x) = 2g$     =*

a" = J6lelk+^U{-2-n'-3'2) + 0{n~3)
(16) = (-l)"+1/7t-1/2(2«)-9/4cos(2(2« + l)1/2 - n/S)[l + 0(n~xl2)].

It is relatively straightforward to generalize Examples 3 and 4 to obtain a
theorem applicable to all functions of the form (11). Since we shall not use
such a general result further on, we omit the particulars. It suffices to say that
this improves the earlier estimate (13) marginally to an = 0(n~c~ll4).

For functions infinitely differentiable on the real line, and decaying expo-
nentially fast as |x| —> oo, the integration by parts approach establishes that
a„ = 0(n~l), for all integers /, as « -> oo. This is a rapid rate of conver-
gence though not necessarily as fast as the geometric rate of Example 2. The
precise rate can be obtained by asymptotic methods in some cases, as the au-
thor demonstrated for f(x) = e~x in [24]. A steepest descent analysis was
used to predict that an = 0(e~W2)"2 3), which represents a rapid decay, but not
quite the geometric rate of Example 2. A similar analysis establishes that for
f(x) = sech(x) the convergence is slightly slower, namely a„ = 0(e~2n ). We
omit the calculation. The complete estimates are:

Example 5. f(x) = e~xl    =>

(17) a„~(-l)'!2e2/3(37r)-1/2m-1/3cos((33/2/2)m2/3 + 57r/3)e-(3/2,m2/3,

where m = n + \/2.

Example 6. f(x) = sech(x)    =>

(18) an ~ (-l)"23/27T-1/2«-1/4cos(2«1/2 + 57r/8)ir2"1/2.

Finally, we consider a function with a discontinuity in the first derivative,
namely f(x) = e~^ . The coefficients are

a" ~ n J_00 l + ix\l + ix) ~ n      [J0    \ + ix\l + ix)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



COMPUTING THE HILBERT TRANSFORM 753

0        10       20       30      40       50      60       70       80       90      100

Figure 3. Rate of decay in the coefficients a„, « > 10. The
labels refer to the test functions in Table 1. The continuous
lines represent the true values \an\ and the circles represent the
asymptotic approximations given in ( 15)—( 19). Ex. 1 is absent
since only two coefficients are nonzero

Integration by parts, based on (12), can be applied to the second integral to
conclude that the convergence rate falls somewhere between that of Examples
3 and 4:

Example 7. f(x) = <?-W

(19) an = 2nn2 + 0(«-3).

As verification of these asymptotic estimates we offer Fig. 3. There is good
agreement between the estimated and the actual coefficients, even for relatively
small « . The exceptions occur near the downward spikes in Examples 3, 4, and
6. For these values of an the leading terms in the approximations (15), (16),
and ( 18) are no longer dominant, owing to the small cosine factor. Higher-order
asymptotics are required here. We computed the "true" coefficients in Fig. 3
using Matlab's FFT (see formula (22) of the next section). A large number
of sampling points was used ( N = 214), so that these values can indeed be
considered exact, at least on the scale of the figure.

We now introduce the algorithm.

4. The algorithm

The need for computing the Hubert transform on the real line arises in vari-
ous ways. For example, f(x) may be known explicitly as a function of x , with
£?{f}(x) to be computed at any x. Alternatively, f(x) may be known only at
a discrete set x¡, and %?{f}(x¡) needs to be computed, thereby defining a dis-
crete Hubert transform operator. We first focus on the latter situation, which
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754 J.A.C. WEIDEMAN

arises for example in the numerical solution of integro-differential equations
such as (28) below.

Consider the truncated version of (6), defined by

N-\
(20) <W}(x)= £ i^(n)anPn(x).

n=-N

Note that the index ranges over -N to N - 1. This is the natural truncation,
since pn(x) and /?_„_i(x) form a conjugate pair. The coefficients are given by
(5), that is

1   r00        _
a" = Z        f(x)pn(x)dx

=¿£(i-"anH/(,aní9)<-'",rf«'

where we have made the change of variable (4). Assuming that f(x) is available
at the collocation points

(21) xj = tmjdj,    0j = ^,    \j\<N,

one may approximate the integral with the trapezoidal rule with spacing n/N.
This yields the approximations â„ « an, where

(22) 5„ = i   ¿    (l-itank-)/(tank)g-^.

We have set ( 1 - i tan ^8j)f (tan \6j) = 0 when j = ±N, since we are assuming
that f(x) = o(l/x) as x -* ±oo.

Once the a„ are known, the approximation to (20) may be computed by

(23) *N{f}(Xj) = ,     .!    Xa   ¿ isgn(«)âne™',     \j\< N.
i - í tan j tf/ n=_N

The linear transformations f(Xj) -»• 5„ -> ^k{f}(Xj) define the discrete
Hilbert transform operator. In summary, it is computed as follows: Given the
function values /(x;-) at the collocation points (21), compute the coefficients
an according to (22). Then evaluate (23). Both formulas (22) and (23) can
be computed with the FFT, rather than separate summations. This reduces the
operation count from 0(7Y2) to 0(N\o%N).

When f(x) needs to be evaluated at arbitrary jc , one uses

(24) mf}(x) = T^- ¿ iW(n)an (j3§)" -

which may be evaluated by Homer's algorithm.
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5. Error estimates

The algorithm summarized by (22)-(23) produces the results shown in Fig. 4.
We have plotted the error, defined by

(25) error = max \^{f\(Xj) ■*N{f}(Xj)\..

as a function of N, for the test examples in Table 1. These results, and also
those shown in Figs. 5-8 of the next section, were computed with Matlab, with
working precision about sixteen digits. The special functions in Table 1 were
evaluated with Matlab's Symbolic Toolbox, which is based on the Maple kernel.

It is possible to predict the rate of convergence observed in Fig. 4 in terms
of the rate of decay in the coefficients an . To this end we use the following
properties: (a) |/>«(x)| < 1/Vl + x2, for all « and x. (b) If f(x) is real-
valued, then a„ = a~-n-X for all « > 0, and a similar property applies to
the computed coefficients an , for all « = 0, ... , N - 1. (c) Assuming that
Y^L-oo \a»\ < °° ' the true coefficients and the computed coefficients are related
through [11, p. 19]

oo

5« - a„ = ¿^(an+2kN + an-2kN)-
k=\

Theorem 2. Let &{f}(x) and ^N{f}(x) be defined by (6) and (24), and as-
sume that Y^=-oo \an\<oo. Then, for each real x,

\^N{f}(x)-^{f}(x)\< vTTx2 £lfl»l-
n=N

Proof The error consists of two parts, namely the error associated with using
a„ instead of a„ , and the error incurred by truncating the infinite series. These

Figure 4. The error as defined by (25) as a function of N, for
the algorithm summarized by (22)-(23). The labels refer to the
test examples in Table 1. Notes: (a) Ex. 1 is not represented,
since the method is exact with only two terms in the series, (b)
The figure on the left is a log-plot, the one on the right is a
loglog-plot
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errors may be separated, by writing

*k{f){x)-X{f){x)
N-l -7V-1 oo

=  ^2 isën(n)(àn-an)pn(x)+  ^  ianp„(x)-^ ianpn(x).
n=-N n=—oo n=N

By applying the triangle inequality and the properties (a)-(c) listed above, the
error bound follows.   D

In §3 we estimated the coefficients an for some simple functions. This en-
ables us to apply the above theorem. For example, suppose the analytic function
theory as sketched in (7)-(9) is applicable. That is, we assume there exist posi-
tive constants C and r < 1 such that

(26) \a„\ <Cr",    « > 0.
By summing the geometric series we establish geometric convergence of our
algorithm:

mf}(x)-^{f)(x)\< ,,4f 2!N .Vl + x1 1 - r
The estimate (26) applies to Example 2 in Table 1, with r = y/2 — 1 ; recall
(10). The geometric convergence is verified in Fig. 4.

When the coefficients decay algebraically, like

\a„\ < Cn~(p+X)

for some p > 0, the analysis is similar, except that we manipulate p-series
rather than geometric series. This predicts that the error decreases like 0(N~P).
This may be confirmed for Example 7 in Fig. 4. The estimate (19) indicates
that p = 1 , and a convergence rate of 0(N~l) is evident from the figure. For
Examples 3 and 4 we can estimate p tobe 1/4 and 5/4 respectively; recall (15)
and (16). However, the convergence rates observed in Fig. 4 seem to be better
than the predicted 0(N~1/4) and 0(N~5^4) ; it appears to be closer to 0(N~il4)
and 0(N~nl4). This discrepancy can be ascribed to cancellation effects: note
the oscillatory nature of the coefficients in (15), (16). Such cancellations are
disregarded when the triangle inequality is applied.

Finally, this error analysis suggests that the convergence rates for Examples 5
and 6 are essentially <9(e_(3/2)Ar2/3) and 0(e~2N" ). This is in agreement with
the empirical results observed in Fig. 4.

6. Comparisons

We now compare the methods listed in §1 with the rational eigenfunction
method introduced here. For a fair comparison we note that the rectangle
rule (2) and the Fourier-transform method (3) both contain a free parameter
that may be adjusted for optimum accuracy. We have the freedom to choose
a domain x e [-L, L] outside of which we set f(x) = 0. To allow for a
similar freedom in the rational expansion, we introduce a modified basis set
pn(x) = p„(x/L). Essentially the only modification to the algorithm given in
§4 is that the collocation points are changed to Xj = Ltan \6j. Estimating such
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free parameters is no easy task however; cf. [9, p. 212]. We return to this issue
below.

We implement the rectangle rule on an interval x 6 [-L, L] using equidis-
tant gridpoints Xj = jh, \j\ < N, where h = L/N. Formula (2) is therefore
computed as

(27) ww^E^
where we set f(x¡) = 0 when |;c/| > L. The Fourier-transform method is
implemented on the same grid, and the FFT is used to compute the transforms
in (3).

In our tests it transpired that the Fourier-transform method (3) often yields
very poor results compared to the other two methods, most notably for the test
functions e~xl and sech(jc). The problem is that the Hilbert transforms of
these two functions are slowly decaying as \x\ -» oo; see Table 1. Such long-
tailed functions cannot be represented accurately by a discrete Fourier series on
a truncated infinite domain. For this reason the Fourier-transform method was
eliminated from the tests discussed below.

Comparisons of the remaining two methods are presented in Figs. 5-8. In
each case we show the maximum absolute error at the gridpoints (cf. (25)) as a

Rational Expansion Ex. 1 Rectangle Rule Ex. 1

Figure 5. The error as defined by (25) as a function of L, for
the rational expansion method summarized by (22)-(23) versus
the rectangle rule summarized by (27). The test functions are
f(x) = 1/(1 +x2) (top) and f(x) = 1/(1 + x4) (bottom)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



758 J.A.C. WEIDEMAN

Rational Expansion Ex. 3 Rectangle Rule Ex. 3

10'

io-

ë io-

10'

10'

.0 10 20 30 40
L

Rational Expansion Ex. 4

20 40 60 80
L

Rectangle Rule Ex. 4

Figure 6. Same as Fig. 5, but the test functions are f(x)
sin(x)/(l +x2) (top) and f(x) = sin(x)/(l + x4) (bottom)

function of the free parameter L, for various N. The rational eigenfunction
method is superior for Examples 1, 2, 6, and 7. The rectangle rule is superior
for Example 5, and for Examples 3 and 4 there is not much of a difference. For
such assessments we assume of course that a near optimal value of L is used.

As for computational efficiency, the rectangle rule and the rational method use
respectively 2vV and 2N - 1 function evaluations to compute the transform.
However, computing the rectangle rule (27) using straightforward summation
requires 0(N2) operations, compared to the O(yVlogTY) of the eigenfunction
method (23). Our Matlab implementation indicated that the eigenfunction
method requires fewer operations when TV > 128, provided we restrict N
to be a power of two.

To be fair to the rectangle rule we mention two strategies that may improve
its efficiency. First, the formula (27) can be viewed as a matrix-vector product
involving a Toeplitz matrix. It is possible to perform such a multiplication with
the FFT in 0(N log N) operations, provided one embeds the Toeplitz matrix in
a circulant matrix of twice the size. Such an approach will only be efficient for
N much bigger than the values considered here. Second, it may be possible to
apply some form of convergence acceleration to the summation (27). However,
this requires prior knowledge of the function. When solving integro-differential
equations, for example, the function is an unknown and such information may
not be readily available.
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Rational Expansion Ex. 5 Rectangle Rule Ex. 5

Figure 7. Same as Fig. 5, but the test functions are f(x) = e x
(top) and f(x) = sech(x) (bottom)

Rational Expansion Ex. 7 Rectangle Rule Ex. 7

0 0.1 0.2
L

Figure 8. Same as Fig. 5, but the test function is f(x) = e~M

The rational expansion method has two further advantages. First, it obviates
the need for selecting a relationship L vs. N. A fixed value of L leads to
convergence as N -> oo for each of the test Examples 1-7. This is not true for
the rectangle rule: keeping L fixed as N —> oo does not lead to convergence
as is clear from Figs. 5-8. Second, the rational eigenfunction method can be
used to compute asymptotic values of ß?{f}(x), x -* ±oo. Consider for
example %'{e~x }(x) = -(2/^/n)D(x), and suppose we would like to confirm
that D(x) ~ l/(2x), JC -► oo. Define the approximate Dawson function Dn(x)
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Table 2. Numerical verification of 2xD(x) ~ 1 as x —> oo

x     | 2xDn(x) - 1
ÏÔ 5.1(-3)
100 5.0(-5)
1000 5.0(-7)

through ß^N{e~xl}(x) = -(2/y/ñ)DN(x), and evaluate (24) with Homer's rule.
With N = 64, L = 1, this produces the results in Table 2. It is not clear how
such large-x calculations can be performed efficiently with the rectangle rule or
the Fourier-transform method.

7. Conclusions

In this paper we introduced what we believe to be a new method for the
computation of the Hubert transform on the real line. Convergence rates for
some simple classes of functions were established, and these results were verified
numerically for the test problems in Table 1.

The method was found to yield higher accuracy than its competitors in several
(but not all) test problems considered. In addition, it has several attractive
features which sets it apart from its rivals: First, no grid refinement strategy
( L vs. N) is required. Second, it is useful for asymptotic calculations such as
those presented in Table 2. Third, it can be implemented by the FFT.

We also presented some preliminary results on the rate of decay of the ex-
pansion coefficients an for some test functions (§3). These estimates are not
only applicable to the calculation of the Hubert transform. It may also be useful
for computing Fourier transforms using Weber's method [21], for the inversion
of the Laplace transform with Weeks' method [22], or for solving differential
equations using expansions in the basis functions pn(x) [5, 8, 23].

One problem that has not been resolved completely is the selection of the
optimal parameter L in our method. As is clear from Figs. 5-8, the optimal
L typically depends on N, but in general the precise relationship is hard to
determine. However, for individual test examples asymptotic analysis may pro-
vide the answer. The case f(x) = e~x was analyzed in detail in [24]. The
optimal choice was shown to be L = 2_1/4/V'/2, which correlates well with the
numerical results presented in Fig. 7.

We conclude with some remarks on two applications, namely the complex
error function and the Benjamin-Ono equation. Certain refinements of our
algorithm lead to a very efficient algorithm for calculating the complex error
function w(z) = e~z erfc(-zz), which can be represented as a Hubert trans-
form of f(x) = e~x   extended into the complex plane. See [24, 25] for details.

We also implemented the method on the Benjamin-Ono (BO) equation

(28) u, + uux + ^{Uxx} = 0,     -oo < x < oo,

which, together with a suitable initial condition u(x, 0), describes waves in
stratified fluids [3, 17]. This equation is similar to the well-known Korteweg-
de Vries equation (KdV), which replaces the term ß^{uxx} with uXXx ■ Like the
KdV equation the BO equation admits soliton solutions. These are solitary wave
solutions which preserve their shape during nonlinear interaction.   However,
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the BO solitons are algebraic, i.e., rational functions in x and t (see [17]). By
contrast KdV solitons decay exponentially as |jc| —► oo.

This rational nature of the BO solitons makes the present method especially
suitable for the BO equation. The function u(x, t) was expanded in terms of
the basis functions p„(x) with time-dependent coefficients. The .x-derivatives
were computed by the methods described in [8, 15, 23], and the Hubert trans-
form was computed by the method introduced here. This led to a nonlinear
system of ordinary differential equations in the / variable, which we integrated
with the explicit midpoint method. This approach turned out to be very ac-
curate, at least in the initial stages before the waves move too far from the
origin. When this occurs, the increasing grid-spacing (recall Xj = tan(nj/2N))
leads to a lack of resolution, and the quality of the approximation deteriorates.
Numerical results are presented in [15].
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