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Abstract- Problems with multiple objectives can be solved by 
using Pareto optimization techniques in evolutionary multi-
objective optimization algorithms. Many applications involve 
multiple objective functions and the Pareto front may contain a 
very large number of points. Selecting a solution from such a 
large set is potentially intractable for a decision maker. Previous 
approaches to this problem aimed to find a representative subset 
of the solution set. Clustering techniques can be used to organize 
and classify the solutions. Implementation of this methodology 
for various applications and in a decision support system is also 
discussed. 
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I. INTRODUCTION  

Multi-objective optimization is applied to a variety of 
fields and sufficient computational power exists to generate 
very large non-dominated sets for these problems. In order to 
be sufficiently representative of the possibilities and tradeoffs, 
a non-dominated set may be too large for decision makers to 
reasonably consider. Some means of reducing or organizing 
the non-dominated set is needed [1]. Several researchers have 
dealt with this issue using cluster analysis or filtering. This 
paper differs from their work in that it intends to not only 
make the non-dominated set tractable but to do so without 
removing any elements of the non-dominated set before 
presenting the solutions to the decision makers. 

Cluster analysis can be applied to the results of a multi-
objective optimization algorithm to organize or partition 
solutions based on their objective function values. The goal of 
clustering is to create an “efficient representation that 
characterizes the population being sampled” [2]. Such a 
representation allows a decision maker to further understand 
the decision by making available the attainable limits for each 
objective, key decisions and their consequences, and the most 
relevant variables; this presentation is an improvement on a 
list of potential solutions and their associated objective 
function values. 

This paper details a k-means cluster analysis approach. 

 

 

 

 

 

 

 

 

 

 

 

 

II. MULTIOBJECTIVE OPTIMIZATION AND BACKGROUND 

DETAILS 

Three approaches can be taken to find a solution to multi-
objective problems (Benson and Sayin 1997). The first 
approach entails reformulating the problem as a single 
objective problem. To do so additional information is required 
from the decision makers such as the relative importance or 
weights of the objectives, goal levels for the objectives, values 
functions, etc. The second approach requires that the decision 
makers interact with the optimization procedure typically by 
specifying preferences between pairs of presented solutions. 
The third approach, Pareto optimization, finds a representative 
set of non-dominated solutions approximating the Pareto front. 
Pareto optimization methods, such as evolutionary multi-
objective optimization algorithms, allow decision makers to 
check the potential solutions without a priori judgments 
regarding the relative importance of objective functions. Post-
Pareto analysis is necessary to select a single solution for 
implementation. 

All three approaches to solving multi-objective 
optimization problems have shortcomings. The solution 
returned by the single objective approach can be highly 
dependent on the weights and, in non-convex problems, the 
responses to changes in weights or goals may be 
unpredictable. As well, with conflicting and non-
commensurate criteria it can be hard to make value judgments 
such as choosing weights or goals for the criteria. Given 
decision maker input the first approach returns a single 
solution. Interactive approaches consider only a small set of 
non-dominated solutions due to the effort required [3]. Pareto 
optimization approaches return a potentially large number of 
solutions for consideration. Selecting a single solution from a 
large non-dominated set is likely to be difficult for any 
decision maker. It was proposed that an ideal solution 
procedure for multi-objective optimization is to provide the 
decision makers with a globally representative subset of the 
non-dominated set that is sufficiently small so as to be 
tractable [4]. This work aims to approach this ideal procedure 
by accepting the computational effort required for generating a 
large non-dominated set and subsequently organizing it based 
on its structure. This approach allows decision makers to 
tractably consider interesting subsets without a priori removal 
of any solutions from consideration. 
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Any Pareto optimization method could be employed in this 
methodology. Evolutionary multiobjective algorithms apply 
biologically inspired evolutionary processes as heuristics to 
generate non-dominated sets of solutions. It should be noted 
that the solutions returned by evolutionary multiobjective 
algorithms may not be Pareto optimal, that is, globally non-
dominated, but the algorithms are designed to evolve solutions 
that approach the Pareto front and spread out to capture the 
diversity existing on the Pareto front in order to obtain a good 
approximation of the Pareto front. 

III. POST-PARETO ANALYSIS 

Post-Pareto analysis aids decision makers in choosing a 
single solution from the potentially large set of Pareto 
optimization results. Several researchers have applied 
clustering methods in different ways to non-dominated sets to 
aid decision makers. Most of these methods use the similarity 
of elements in the non-dominated set based on their objective 
function values and remove elements that are too similar to 
other elements.  

The main goal of multi-objective optimization is to seek 
Pareto-optimal solutions. Over the years there have been 
various approaches toward fulfillment of this goal. It has been 
observed that convergence and diversity are two conflicting 
criteria which must be balanced in trying to generate the entire 
efficient front [5]. Clearly, there are two different possible 
principles for generating a set of solutions representing the 
entire Pareto-optimal front: 

 One-at-a-time strategy, and 

 Simultaneous strategy 

In the former method, a multi-objective optimizer may be 
applied one at a time with the goal of finding one single 
Pareto-optimal solution. Most classical generating multi-
objective optimization methods use such an iterative 
scalarization scheme of standard procedures. The main 
criticism of most of these approaches is that although there are 
results for convergence, diversity among obtained Pareto-
optimal solutions is hard to maintain in the objective space. 
Moreover, a careful thought suggests that a systematic 
variation of weight vectors or “parameters in these 
scalarization techniques does not guarantee a good diversity in 
the solution sets [6]. Another important issue is that 
independent applications of a single-objective optimization 
algorithm to find different Pareto-optimal solutions one-at-a-
time do not make an efficient search and the search effort 
required to solve the problem to optimality this way needs to 
be found in every single time the algorithm is applied. 

Morse (1980) detailed one of the first applications of 
cluster analysis to a non-dominated set. The multi-objective 
programs considered were linear programs. A solution was 
removed from the non-dominated set if it was 
indistinguishable from another solution based on decision 
maker-defined thresholds. Morse (1980) evaluated seven 
hierarchical clustering methods. Ward‟s method, the group 
average method, and the centroid method performed very 
well; the other hierarchical clustering methods considered 

exhibited chaining which reduced the usefulness of the cluster 
structure. Ward‟s method was preferred since the clusters at 
the same level of the hierarchy were of similar size and shape 
although it performed only slightly better than the centroid and 
group average methods (Rosenman and Gero 1985). 

Rosenman and Gero (1985) applied complete linkage 
hierarchical clustering to „reduce the size of the Pareto optimal 
set whilst retaining its shape‟. This method allowed control of 
the diameter of the resulting clusters. They distinguished that 
solutions whose vectors of objective function values are 
similar may have decision variable vectors that are similar or 
very different but this idea was not further explored. The 
objective functions were considered successively in order to 
avoid the implicit aggregation in applying proximity 
measures. First, elements of the non-dominated set were 
clustered using a single criterion. If a solution within a cluster 
dominated another solution in the cluster on all criteria except 
the clustering criterion then the dominated solution was 
eliminated from consideration. The process was repeated for 
each criterion until the non-dominated set was sufficiently 
small. 

This paper differs from the above wherein partitional (k-
means) clustering is used for combinatorial multi-objective 
problems. Either the most interesting cluster, i.e., the „knee‟ 
cluster, was considered in detail by discarding the solutions in 
other clusters, or one solution from each of the k clusters was 
considered to form a representative subset of the non-
dominated set. 

IV. CLUSTER ANALYSIS 

Cluster analysis, also known as unsupervised learning, is 
one of the most useful methods in the cluster analysis process 
for discovering groups. Clustering aims to organize a 
collection of data items into clusters, such that objects within 
the same cluster have a high degree of similarity, while objects 
belonging to different clusters have a high degree of 
dissimilarity. Cluster analysis makes it possible to look at 
properties of whole clusters instead of individual objects. This 
is a simplification that is useful when handling large amounts 
of data [9].  

According to the method adopted to define clusters, the 
algorithms can be broadly classified into the following types: 
Partitional and Hierarchical [10]. Partitional clustering 
attempts to directly decompose the data set into a set of 
disjoint clusters. Probably, one of the most popular partitional 
methods is the k-means clustering algorithm. The k-means 
clustering algorithm is well known for its efficiency in 
clustering data sets [11]. The grouping is done by calculating 
the centroid for each cluster, and assigning each observation to 
the group with the closest centroid. For the membership 
function, each data point belongs to its nearest center, forming 
a partition of the data. A recurrent problem that many 
clustering algorithms encounter is the choice of the number of 
clusters. Thus, different cluster validity indices have been 
suggested to address this problem, since this is an important 
issue for partitional clustering in general. A cluster validity 
index indicates the quality of a resulting clustering process. 
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The silhouette plot method is one of these cluster validity 
techniques [12]. Then, the clustering partition that optimizes 
the validity index under consideration is chosen as the best 
partition. The silhouette plot is used to evaluate the quality of 
a clustering allocation, independently of the clustering 
technique that is used [13]. 

V. METHODOLOGY 

Proposed Approach  

This approach is proper for decision-makers that do not 
have a prior knowledge of the relative importance of the 
conflicting objectives in multi-objective optimization problem.  

The developed approach is based on the following 
steps: 

1. Obtain the entire Pareto-optimal set or sub-set of 
solutions by using a multiple-objective evolutionary 
algorithm (MOEA) or by another means. 

2. Apply the cluster analysis algorithm to form clusters on 
the solutions enclosed in the Pareto set. 

3. To determine the “optimal” number of clusters, k, in 
this set, silhouette plots are used. A value of the silhouette 
width, s(i), is obtained for several values of k. The clustering 
with the highest average silhouette width is selected as the 
“optimal” number of clusters in the Pareto-optimal set. 

4. For each cluster, select a representative solution. To do 
this, the solution that is closest to its respective cluster 
centroid is chosen as a good representative solution. 

5. Analyze the results. At this point, the decision-maker 
can either: 

5.1 Analyze the “knee” cluster. The suggestion is to focus 
on the cluster that has solutions that conform to the “knee” 
region. The “knee” is formed by those solutions of the Pareto-
optimal front where a small improvement in one objective 
would lead to a large deterioration in at least one other 
objective. Moreover, from this “knee” cluster the decision 
maker can select a promising solution for system 
implementation. This would be the solution nearby to the ideal 
or utopian solution of the multiple objective problems, in a 
standardized space.  

5.2 Analyze the k representative solutions and/or select the 
most promising solutions among this k set, selecting the 
solution closest to the ideal point. By applying the proposed 
technique, the Pareto-optimal front of a multiple objective 
problem can be reduced to the “knee cluster” as in 5.1, or to a 
set of k solutions as in 5.2. In both cases the decision maker 
can choose a superior tradeoff for system implementation by 
selecting the closest solution to the ideal or utopian solution of 
the multiple objective problems, in a standardized space.  

A Matlab code is developed to perform the steps of the 
proposed method. From standardized data, the code will run 
the clustering algorithm and from two to a specified number 
of means it will calculate the average silhouette values and it 
will return the value of k suggesting the most optimal 

allocation. After this, it will also return the “knee cluster” of 
the optimal partition, the k representative solutions of the 
Pareto front, and in both cases, the solution closest to the ideal 
or utopian point. 

Multi-Objective Redundancy Allocation Problem  

A R.A.P. example was solved to exemplify how data 
clustering can be of great aid for the decision-maker. The 
example system configuration consists of 3 subsystems, with 
an option of 5, 4 and 5 types of available components for each 
subsystem, respectively. The optimization involves selection 
from among these component types. The maximum number of 
components is 8 for each subsystem. Table 1 defines the 
component choices for each subsystem. 

TABLE 1. Component selection for each subsystem. 

 

Another way to take advantage of this method is to 
consider the cluster(s) that contain(s) the most interesting 
solutions of the Pareto-optimal set, i.e., those where a small 
improvement in one objective would lead to a large 
deterioration in at least one other objective. These solutions 
are often referred as “knees.” In this case, as we can see from 
Figure 4, solutions in cluster 4 are likely to be more significant 
to the decision-maker. The maximum and minimum values of 
reliability, cost and weight of cluster 4 are shown in Table 2. 

Design    Subsystem i     

Alternative  1   2   3   

j 

R C W R C 

 

W R C W 

 

   

1 0.94 9 9 0.97 12  5 0.96 10 6  

2 0.91 6 6 0.86 3  7 0.89 6 8  

3 0.89 6 4 0.70 2  3 0.72 4 2  

4 0.75 3 7 0.66 2  4 0.71 3 4  

5 0.72 2 8     0.67 2 4  



(IJACSA) International Journal of Advanced Computer Science and Applications,  
     Vol. 1, No. 4, October 2010 

66 | P a g e  

http://ijacsa.thesai.org/ 

TABLE 2. Maximum and minimum values in cluster 4. 

Cluster 4 Reliability Cost Weight 

max 0.999036 77 55 

min 0.961883 38 32 

 

At this point, the decision-maker has two choices: either to 
choose solution #43 from cluster 4 as a good representative 
solution of this “knee” region or decide to focus his/her search 
more intensely on this knee region. Then, the initial 75 
solutions have been reduced to only the 30 solutions found in 
the “knee” region as shown in Figure 1. 

 

Figure 1. “Knee” of the Pareto-optimal set. 

For instance, if the decision-maker decides to further 
investigate this “knee” region, then the 30 solutions contained 
in cluster 4 are further investigated. Clustering is again used to 
find groups just on this reduced space, and with the use of the 
silhouette plots, 11 was found to be the optimal number of 
clusters. In this way, one systematically contracts the subspace 
in the direction of the most relevant solutions for the decision-
maker. Figure 2 shows the clusters found on the original 
cluster 4 from normalized data. 

 

 

 

 

 

 

 

 

Figure 2. Clusters from original cluster 5. 

Since the original cluster 5 already contained promising 
trade-offs, plotting the solutions in two dimensions can be of 
graphical support for the decision-maker. Figures 3, 4 and 5 
plot reliability vs. cost, reliability vs. weight and cost vs. 
weight, respectively, from normalized (0 to 1) objective 
function data. 

 

Figure 3.    Reliability vs. Cost. 

 

 

 

 

 

 

 

Figure 4. Reliability vs. Weight. 

From Figures 3 and 4, clusters 3, 10 and 11, can be 
considered as undesirable because they do not have a large 
reliability compared with the other clusters, but in Figure 5, it 
can be observed that these three clusters are the ones that 
provides the minimum values for cost and weight. 
Nevertheless, clusters 1 and 6 in Figures 3 and 4 have large 
reliability but it is achieved at comparatively high cost and 
weight. 

The analysis of these trade-offs continues until a solution 

or a small portion of the nondominated set is located. Then, 

this solution or sub-set will contain the preferred solutions of 

the overall problem. It is important to note that, even when the 

space has been reduced to the “knee” region or to the region 

that contains the most promising solutions, in the absence of 

information, none of the corresponding trade-offs can be said 

to be better than the others. Thus, the choice of one solution 

over the other is going to lie on the capability of the decision-

maker and on his/her knowledge of the system‟s intended 

usage and the priorities and preferences of the system‟s 

intended user/owner. 

 

 

 

 

 

 

Figure 5. Cost vs. Weight 
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The representative solutions of these 11 clusters found on 
the “knee” region are shown in Table 3 with their 
corresponding values of reliability, cost and weight. 

TABLE 3. Clustering results of the “knee” 

 # of Representative 

Reliability Cost Weight 

 

 

solutions solution 

 

     

Cluster 1 3 51 0.998043 68 45  

Cluster 2 3 47 0.992115 59 37  

Cluster 3 3 28 0.963644 39 35  

Cluster 4 4 44 0.986416 55 41  

Cluster 5 1 34 0.979653 44 38  

Cluster 6 2 56 0.999036 77 51  

Cluster 7 4 40 0.983483 46 46  

Cluster 8 2 36 0.982178 52 35  

Cluster 9 3 50 0.994940 60 49  

Cluster 10 2 31 0.973035 42 34  

Cluster 11 3 30 0.970198 41 39  

 

For this particular multi-objective RAP, clusters 2, 4 and 7 
seem to contain desirable solutions. For ease of interpretation 
and analysis, the 11 representative solutions of this “knee” 
region are plotted in two dimensions in Figure 6 for reliability 
vs. cost. From this figure, one can easily notice that solutions 
#47, #44 and #40 belonging to clusters 2, 4 and 7 respectively 
are the ones that are presented to the decision-maker as good 
trade-offs if no previously defined objective function 
preference have been specified by the decision-maker. 

For example, solution #44, shown in Figure 7, achieves a 
reliability of 0.986416 at a cost of 55 and a weight of 41. For 
system execution, the configuration is composed of one 
component of type 1, one component of type 2 and one 
component of type 5 for subsystem 1; two components of type 
1 for subsystem 2, and one component of type 1 and one 
component of type 3 for subsystem 3. 

 

 

 

 

 

 

Figure 6. Representative solutions of the “knee” in a 

two- dimensional space. 

 

 

 

 

 

 

 

 

 

Figure7. The system configuration for solution #44. 

VI. CONCLUSION 

Pareto optimization methods allow the use of multi-
objective optimization models without prior decision maker 
preferences. The decision makers can consider the possibilities 
and trade-offs between objectives before selecting a solution 
for implementation. These methods undergo the limitations of 
requiring the decision makers to consider many possible 
solutions resulting from the optimization procedure. This 
paper developed and evaluated a cluster analysis methodology 
to address the issue.  
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