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Some 15 years ago, optical topographic signals with subwavelength resolution were obtained independently
by several experimental teams. Since this exploratory period, a growing number of experimental configurations
have been proposed and continuously developed. Simultaneously, this research field was supported by different
theoretical works, aimed at developing our understanding of the interaction of optical fields with mesoscopic
objects. Over the past three years, several theoretical frameworks have been proposed~Green’s functions, field
susceptibility, boundary conditions methods, multiple multipoles expansions, etc.!. In this paper, an attempt at
a careful comparison between two classes of numerical models is presented. Using the same test object, we
discuss and compare the numerical solutions issued from a reciprocal-space perturbative method~Rayleigh
approximation! and the solution originating from a direct-space integral approach~Green’s function or field
susceptibility!. The discussion is given for different values of the relevant experimental parameters. The
convergence of both approaches is investigated.@S1063-651X~96!07309-6#

PACS number~s!: 42.25.2p, 61.16.Ch, 02.60.Cb, 02.70.2c

I. INTRODUCTION

When an optical electromagnetic wave interacts with a
localized surface defect, the electromagnetic energy distribu-
tion observed around the surface defect is extremely sensi-
tive both to the illumination mode and the physical param-
eters of the defect~shape, optical index, and relative size
compared to the wavelength! @1–5#.

A detailed understanding of this optical interaction be-
tween subwavelength structures and external light sources
represents indisputably one of the most serious challenges
raised by the tremendous recent experimental progress of
near-field optics~NFO! @6,7#.

The accurate description of the optical field distribution,
prior to its local detection, is mandatory for describing prop-
erly the image formation mechanisms in NFO@8#. The main
difficulties in achieving this goal are inherent to the com-
plexity of the geometries investigated in NFO~nonperiodic
objects, localized surface defects, nanometer size holes, etc.!
as well as to the need of accounting for a large spectra of
nonradiative optical field components. Particularly, corners,
sharp edges, and angular regions much smaller than the in-
cident wavelength generate specific difficulties for most of
the theoretical schemes and numerical methods for solving
Maxwell’s equations. Recently, Van Labeke and Barchiesi
proposed a brief overview of the main numerical methods
currently applied to NFO@9#. During the last three years this

research field has grown exponentially and generated an im-
portant amount of peculiar results obtained with different
methods @10–22# ~Green functions, field susceptibilities,
boundary conditions based method, multiple multipoles de-
scription, etc.!. Nowadays, in order to guide the ongoing
development of NFO instrumentation, and to improve the
predictive character of current computerized work, we feel
that it is necessary to assess the validity range as well as the
versatility of different model classes.

In this paper an attempt at a careful comparison between
two classes of numerical approaches is presented. By using
the same test object, we discuss and compare the numerical
solution obtained from a reciprocal-space perturbative ap-
proach based on Rayleigh approximation@12,18# and the so-
lution obtained with a direct-space macroscopic approach
based on the Green’s function technique or field-
susceptibility technique@10,11,16,20#. A discussion is given
for different values of the external parameters accessible to
most experimental setups~polarization and direction of the
incident light, observation distance!.

The paper is organized as follows. In Sec. II we define the
geometry of our test case. The reciprocal-space approach is
detailed in Sec. III and the direct-space approach in Sec. IV.
In Sec. V we compare the results obtained with these two
approaches and analyze the convergence of each method.
Finally, we conclude and discuss the applicability limits of
both approaches in Sec. VI.
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II. TEST OBJECT AND ILLUMINATION MODE

As test object, let us consider the three-dimensional sur-
face protrusion depicted in Fig. 1. This object is formed by
five square pads placed on a perfectly flat surface. The opti-
cal index of this protrusion is similar to the surface index
(n51.5). The upper half space is air (n51).

We consider the total internal reflection configuration
~TIR!, where the surface is illuminated from below by a
monochromatic plane wave of frequencyv0 , incident at an
angleu2 larger than the total reflection angleu tot . Note that
the present treatment could also be applied to other experi-
mental configurations, based, for example, on external re-
flection. Two different incident polarizations can be consid-
ered: s polarization, where the incident electric field is
parallel to the glass-air interface, andp polarization, where it
is in the plane of incidence~Fig. 1!.

As a total reflection occurs at the glass-air interface, only
an evanescent electrical fieldE0(r ,t) is established above the
surface (z.0). If we neglect the protrusion and consider a
perfectly flat surface, this evanescent field can be obtained
analytically. This analytical solution plays a key role in the
two procedures investigated in this paper. Indeed, for both
procedures, the final solution of the problem is obtained from
this zeroth-order solution:

E0~r ,t !5E0~r !e
2 iv0t5E0e

ik• le2Kze2 iv0t, ~1!

where r5(x,y,z)5( l,z) represents an observation point
above the surface,

K5
v0

c
~sin2u22sin2u tot!

1/2, ~2!

and

iki5
v0

c
sinu2 . ~3!

When, for example, the incident field is propagating along
theOy axis ~which corresponds tou15p/2 in Fig. 1!, Eqs.
~1!, ~2!, and~3! lead to

E0x~r !5A0Ts , E0y~r !50, E0z~r !50, ~4!

for s-polarized illumination and

E0x~r !50, E0y~r !5A0Tpdc , E0z~r !5A0Tpds ,
~5!

for p-polarized illumination, where

ds5
sin~u2!

sin~u tot!
, dc5

iK

k0sin~u tot!
. ~6!

In Eqs.~4! and~5!, A0 is an arbitrary amplitude that depends
on the illumination intensity, and the factorsTs andTp are
the usual transmission coefficients for each polarization@23#.

III. RECIPROCAL-SPACE PERTURBATIVE METHOD
„RSPM…

When a surface exhibits well-defined protrusions, differ-
ent theoretical schemes may be applied to describe its optical
response to an arbitrary excitation. As extensively discussed
in @3–5#, the perturbative diffraction method provides an in-
teresting framework to study low relief objects. In this case,
the boundary conditions problem is solved by assuming that
the fluctuation heights of the surface are weak compared to
the incident wavelength. Corrections to the usual result asso-
ciated with a perfectly flat sample are obtained in terms of
the Fourier transform of the corrugation functionj( l) limit-
ing the surface of the solid~cf. Fig. 2!. This method repre-
sents an interesting tool towards the interpretation of NFO
images and does not need extensive computational work.
Nevertheless, we must emphasize that such a perturbative
approximation limits its validity range to surface corruga-
tions of weak amplitude. We give in this section a brief
description of the main features of this method.

The zeroth-order fieldE0(r ) above the sample~i.e., in the
absence of corrugation! is defined in the preceding section
@Eq. ~1!#. The additional contributionEd(r ) introduced by
the surface protrusion~the so-called diffracted field! is deter-
mined by assuming the following plane wave expansion:

Ed~r !5E Ẽd~q!ei ~q• l1vz!dq, ~7!

whereq 5 (qx ,qy) and v represents the Cartesian compo-
nents of the different wave vectors associated to the dif-
fracted surface field. These components verify the well-
known dispersion equation

FIG. 1. Three-dimensional system considered in our simula-
tions: ~A! side view and~B! top view. This system is composed of
five identical pads of square section, placed on a perfectly flat sur-
face, at the nodes of a centered square lattice. The sample is illu-
minated by total internal reflection and the resulting field distribu-
tion is computed in different planesZ5H above the substrate. The
illumination mode is defined by two angular parameters: the inci-
dent angleu2 defined with respect to the normal axisOz and the
angleu1 that defines the direction of the evanescent surface wave
traveling along the surface.
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qx
21qy

21v25
v0
2

c2
5k0

2 , ~8!

and the twofold integral in Eq.~7! runs over the spatial fre-
quencies (qx ,qy) and generally contains both homogeneous
~propagating! and inhomogeneous~evanescent! waves. A
given plane wave of the series is homogeneous if the com-
ponentv is real~i.e., qx

21qy
2<v0

2/c2) or evanescent ifv is a
pure imaginary number~i.e., qx

21qy
2.v0

2/c2). Note that the
amount of evanescent components is directly related to the
lateral size of the surface protrusion with respect to the inci-
dent wavelengthl0 . Thus, when we deal with a sample that
displays topographical details much smaller thanl0, the
Fourier integral~7! is mainly composed by evanescent com-
ponents and the resulting diffracted fieldEd(r ) turns out to
be confined around the surface roughness.

The evaluation of the field amplitudeẼd(q) requires the
Fourier transform of the topographical functionj( l):

j~ l!5E j̃~q!eiq• ldq. ~9!

The application of standard boundary conditions at the sur-
facez5j( l) leads to complex relations between the incident
and the diffracted field. This difficulty may be avoided by
working within the perturbative approximation introduced
some years ago by Elson@3#, Toigo et al. @4#, and Agarwal
@5# to study the reflectivity of metallic corrugated surfaces.
This approximation consists in expanding the exponential
function occurring in Eq.~7! as a power series ofvj( l):

ei @q• l1vj~ l!#5eiq• l$11vj~ l!1@vj~ l!#21 • • • %. ~10!

As discussed in@3–5#, the validity range of this expansion
depends on thevj( l) amplitude and therefore must be re-
stricted to weak surface height fluctuations compared to the
incident wavelength. For small surface structure heights, this
expansion can be limited to the first-order term. In this case,
the diffracted amplitude is proportional to the Fourier trans-
form j̃(q) of the surface profile and depends linearly on the
zeroth-order fieldE0(r ) associated with a perfectly planar
sample:

Ẽd~q!5 i ~n221!j̃~q2k!Ã~q!•E0~r !. ~11!

The (333) transfer matrixÃ(q) in Eq. ~11! is defined by

Ã~q!5
k0
2

v1v8
I2B̃~q!, ~12!

whereI represents the identity matrix,v8 a z component of
the wave vector inside the sample (v825q22n2k0

2), and

B̃~q!5
1

v81n2v S qx
2 qxqy qxv

qxqy qy
2 qyv

v8qx v8qy v8v
D . ~13!

By combining the above results@Eqs.~7!, ~11!, ~12!, and
~13!#, we can now derive the total optical field generated
near the surface protrusions:

E~r !5E0~r !1E i ~n221!ei ~q• l1vz!j̃~q2k!

3 Ã~q!•Ẽ0~q!dq. ~14!

This field can be evaluated numerically with standard fast
fourier transform~FFT! routines. At this stage, we note that
in this reciprocal-space scheme, the structural information on
the object is given by the Fourier transform of the surface
profile j̃(q2k). Consequently, the accuracy of the results
will directly depend on the number of spatial harmonics used
in the FFT. The presence of a second corrugated interface
could be introduced without any formal difficulty by extend-
ing the present method to a multilayered system@18#.

Let us emphasize that the RSPM is based on the discreti-
zation of the entire surface profilej(X,Y), as illustrated in
Fig. 2~A!.

IV. DIRECT-SPACE INTEGRAL EQUATION METHOD
„DSIEM …

The numerical difficulties inherent to the low symmetry
of the subwavelength objects currently analyzed with SNOM
devices may be overcome by solving directly the integral
equation associated with Maxwell’s equations
@10,11,16,19,20#. The kernel of the master equation can then
be factorized in two different ways, leading to two different
kinds of dyadic propagators:field susceptibilityor Green’s
tensor. This technique, associated with a convenient discreti-
zation procedure, has proven to be powerful and versatile for
studying many properties associated with local probe experi-
ments.

In Sec. III we have seen that the RSPM solution is com-
posed of two terms: the zeroth-order fieldE0(r ) representing
the solution for a perfectly flat surface and the fieldEd(r )
diffracted by the protrusions. The DSIEM also relies on the
splitting of the solution into two terms, based on the decom-
position of the system into two parts: a highly symmetrical

FIG. 2. Schematic illustration of the discretization principle un-
derlying each numerical method investigated in the present study.
~A! For the reciprocal-space perturbative method~RSPM!, the
matching of the different Fourier components is realized on the
entire boundaryZ5j(X,Y) of the object.~B! In the direct-space
integral equation method~DSIEM!, only the geometry elements
that do not belong to the reference system~i.e., the pads above the
surface, the latest being the reference system! must be discretized
into meshes of volumeWi .
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reference system~in the simulations to be discussed below, a
perfect planar surface limiting the infinite homogeneous half
spaces, Fig. 1!, and a low symmetry, spatially limited system
placed in interaction with this reference system@the three-
dimensional~3D! defects lying on the surface in Fig. 1#.

Starting from the zeroth-order fieldE0(r ) defined in Sec.
II, it is a simple matter to derive the self-consistent field
E(r ) by introducing the implicit integral equation
@10,11,19,20#

E~r !5E0~r !1E K ~r ,r 8!•E~r 8!dr 8. ~15!

In this self-consistent equation, the integral runs over the
volume occupied by the surface protrusions.

Depending on the adopted physical point of view, the
dyadic kernelK (r ,r 8) in Eq. ~15! may be factorized in two
equivalent ways.

~i! In the framework of the field-susceptibility method,
this factorization reads@10#

K ~r ,r 8!5S~r ,r 8!•x~r 8!, ~16!

whereS(r ,r 8) represents the field susceptibility of the refer-
ence system andx(r 8) the linear susceptibility of the pertur-
bation ~localized defect!. In the case of continuous matter,
x(r 8) is given in terms of the local optical indexn associated
with the surface defect~cgs units!

x~r 8!5
n2~r 8!21

4p
I ~17!

for all the pointsr 8 in the localized defect, and

x~r 8!50 ~18!

outside the defect. This factorization was originally intro-
duced to deal with atoms or molecules adsorbed on a surface
@24–26#.

~ii ! The second point of view uses the Green’s dyadic
G(r ,r 8) of the reference system to factorize the kernel of Eq.
~15!:

K ~r ,r 8!5G~r ,r 8!•V~r 8!, ~19!

whereV(r 8) is the dyadic defined by

V~r 8!52k0
2n

2~r 8!21

4p
I ~20!

for all points r 8 located inside the surface defect, and

V~r 8!50 ~21!

outside the perturbation. This factorization is standard in
classical electrodynamics theory@27#. Moreover, these two
different factorizations of the kernel of Eq.~15! emphasize
that the DSIEM formalism is aimed at treating discrete as
well as continuous perturbations. Therefore the transition
from classical to quantum electrodynamics problems can be
performed in the same unique framework@28#.

Whereas the RSPM relies on the discretization of the en-
tire surface profile, the DSIEM requires only the discretiza-

tion of the geometrical elements that do not belong to the
reference system, as illustrated in Fig. 2~B!.

Dividing the surface defect intoN meshes of respective
volumeWi , centered atr i , i51, . . . ,N; and introducing
the discretized variablesEi , Ei

0 , andK i , j for E(r i), E0(r i),
andK (r i ,r j ), respectively, we obtain the discretized form of
Eq. ~15!:

Ei5Ei
01 (

k51

N

K i ,k•EkWk . ~22!

Equation~22! corresponds to a large system of algebraic
equations that must be solved to obtain the self-consistent
solutionE(r ) for a given incident fieldE0(r ). It is important
to note that for physical systems relevant to NFO, the con-
dition number of the matrix associated with Eq.~22! can
become very large; therefore extremely stable algorithms
must be used to solve this system of equations@19#.

The diagonal elementsK i ,i of the discretized kernel play
an extremely important role in this formalism. Indeed, they
account for the local response of the matter to the external
field ~depolarization! and must be handled with the appropri-
ate renormalization procedure@29#.

V. COMPARISON OF THE METHODS

Let us emphasize that the aim of the present paper is not
to investigate new physical effectsper se,but to show, using
an experimentally relevant configuration, that a good agree-
ment between completely different theoretical approaches is
obtained. The cross-comparison of the results obtained with
such different approaches is important because many funda-
mental NFO phenomena are extremely subtle and difficult to
model. Therefore, in order to efficiently analyze ongoing ex-
perimental work, the possible artifacts related to numerical
methods must be carefully investigated and the validity do-
main of each approach assessed.

Our test object is composed of five identical pads of
square section, placed on a perfectly flat surface, at the nodes
of a centered square lattice~cf. Fig. 1!. This structure is
defined by three geometrical parameters: the sides and the
height h of each individual protrusion and the spacingD
between two pads. In the present study, we uses540 nm,
D580/A2 nm andh510 nm, except in Fig. 6, where we use
h520 nm. The optical indexes of the surface and of the pads
are equal (n51.5) and the surrounding medium is air
(n51). As in the scanning tunneling optical configuration
@30–36#, the sample is illuminated by total internal reflection
and the resulting field distribution is computed in different
planesZ5H above the substrate. The illumination mode is
defined by two angular parameters: the incident angleu2
defined with respect to the normal axisOz and the angle
u1 that defines the direction of the evanescent surface wave
traveling along the surface. For each incident direction
(u1 ,u2), two polarizations can be considered: TE polariza-
tion, where the incident electric field vector is parallel to the
substrate and TM polarization, where it is in the plane of
incidence defined by the vectork. The illumination wave-
length in vacuum is 633 nm and we consider an incident
angleu2545°.

In Fig. 3, we present the total near-field intensity com-
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puted at an observation heightH520 nm, with the RSPM,
using 192 harmonics in Eq.~14!. Two different incident po-
larizations are considered. For TM polarization, the total
electric field intensity reproduces the surface protrusions~the
incident field is propagating alongX direction! @Fig. 3~a!#,
whereas for TE polarization, it emphasizes the object’s sides
orthogonal to the incident field@the incident field is propa-
gating alongX direction and polarized alongY direction,
Fig. 3~b!#. Therefore, while TM polarization leads to a strong
confinement of the total field intensity above the surface de-
fects, TE polarization gives rise to large field intensity gra-
dients at the vicinity of the pads. All these effects are con-
sistent with previous calculations performed near 3D-surface
protrusions@10,16,20#. The same situation is investigated in
Fig. 4 with our DSIEM numerical code, where we used a
53535 nm3 discretization grid for the surface protrusions.
Comparison with the results of Fig. 3 shows that DSIEM
provides a stronger contrast for both polarizations~e.g., for
TM polarization, the square section of each pad is well re-
produced!.

The convergence of the RSPM method is assessed in Fig.
5. The relative total field intensityI /I 0 is computed along a
scan line crossing the center of the structure~dashed line in
the inset! with, respectively, 32 harmonics~long-dashed line!
and 96 harmonics~dashed line!. For a higher number of har-
monics than 96, the result does not change. The total field
intensity is computed at a heightH520 nm and normalized
to the valueI 0 computed for a perfectly flat surface~without

protrusions! in TM incident polarization. The same problem
is investigated in Fig. 6, but with the DSIEM approach. As
the convergence of this method is extremely rapid for such
small surface protrusions, we considered in this calculation
surface pads withh520 nm@instead ofh510 nm in Fig. 5#
and the field intensity was computed at a heightH530 nm
above the surface. In this manner, we were able to
use an extremely rough grid for the discretization:
20320320 nm3 ~i.e., only four meshes per pad! ~continu-
ous line!. The results obtained with this grid are already ex-
tremely good and almost indistinguishable in the intermedi-
ate region from the results obtained with a much finer grid
(53535 nm3, dashed line!. Just above the pad the agree-
ment is not very good, as the rough grid leads to a depletion
of the field just at the center of the pad side. This depletion is
simply the manifestation of the two meshes used to dis-
cretized the pad. Note also that the enhancement factor
~i.e., the amplification of the field above the pad! is much
more important in this figure than in Fig. 5; this is due to the
larger volume of the surface protrusion in the present case.

In order to get more insight into the numerical results
supplied by the two methods investigated in this paper, we
give in Figs. 7 and 8 a comparison of the relative total field
intensity I /I 0 scans obtained with the RSPM~continuous
line! and the DSIEM~dashed line!. The scans are performed
along the center of the structure~dashed line in the inset!, at
a heightH520 nm and normalized to the valueI 0 computed
for a perfectly flat surface~without protrusions!. For RSPM,
192 harmonics were used, whereas a 53535 nm3 discreti-

FIG. 3. Total near-field intensity computed at an observation
heightH520 nm, with the RSPM, using 192 harmonics in Eq.~14!.
High intensity: white; low intensity: black.~a! TM polarization,~b!
TE polarization.

FIG. 4. Same situation as in Fig. 3, but computed with the
DSIEM, using a 53535 nm3 discretization grid for the surface
protrusions.
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zation was used for DSIEM. We note the extremely good
qualitative agreement between both methods. In the TM
mode~Fig. 7!, DSIEM gives nonetheless a stronger contrast
and a steeper intensity profile than RSPM. This is easily
understood if one remembers that RSPM is based on a plane
wave expansion, which is less appropriate to reproduce
edges and corner profiles. We remark also the field confine-
ment above the surface defect and a small depletion just
outside the defect. In the TE mode~Fig. 8!, the field profile is
now smoother than in Fig. 7 and the quantitative agreement
between both methods is excellent. This result again empha-
sizes the ability of RSPM to accurately reproduce smooth
field profiles associated with subwavelength objects. Never-
theless, thefirst Born approximationimplicitly incluced in
the RSPM scheme described in Sec. III may be insufficient
for investigating the optical near-field distributions spawned
by more extended objects. In this case, it will be necessary to

solve the problem by including in Eq.~14! nonlinear higher-
order terms with respect to the corrugation profile.

VI. CONCLUSION

In the preceding section, we have observed a very good
qualitative agreement, for the system under study, between
the near fields computed using RSPM and DSIEM. The con-
vergence of DSIEM is extremely rapid and a satisfactory
representation of the field can be obtained even with a rough
grid, although this representation cannot reach in the very
near field a higher resolution than the grid used for the dis-
cretization ~see, e.g., the continuous line in Fig. 6!. The
RSPM is particularly well suited for smooth field profiles,
but encounters more difficulties for reproducing edges and
straight profiles.

On the other hand, RSPM has a definite advantage for
periodic structures such as grating. Indeed, a periodic struc-
ture is easily formulated in Fourier space and the evaluation

FIG. 5. Convergence study of the RSPM
method. The relative total field intensityI /I 0
computed along a scanning line at the center of
the structure~dashed line in the inset! with, re-
spectively, 32 harmonics~long-dashed line! and
96 harmonics~dashed line!.

FIG. 6. Convergence study of the the DSIEM approach. We
considered for this analysis surface pads withh520 nm and the
field intensity was computed at a heightH530 nm above the sur-
face. Discretization grid 20320320 nm3 ~i.e., only four meshes
per pad! ~continuous line!. Discretization grid 53535 nm3

~dashed line!.

FIG. 7. Comparison of relative total field intensityI /I 0 scans
obtained with the RSPM~continuous line! and the DSIEM~dashed
line! for TM polarization. The scans are performed along the center
of the structure~dashed line in the inset!, at a heightH520 nm.
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of the field using Eq.~14! becomes extremely efficient.
Nonetheless, for a periodic structure with a high topographic
or dielectric contrast, the accuracy provided by RSPM might
be insufficient. We have not considered such a periodic sys-
tem in the present study because for DSIEM, the discretiza-
tion of an infinite periodic structure involves a prohibitory
amount of computational effort.

This actually brings up an extremely important point: the
computational effort required by both methods. For small
systems, similar to those investigated in the present study,
both methods provide results within a few minutes on a stan-
dard desktop workstation. The main difference between the
method is the scaling of the computational effort with the
complexity of the problem. The RSPM requires a discretiza-
tion of the surface of the system, and the computational ef-
fort grows with the square of the number of discretization
points used on the entire surface. On the other hand, DSIEM
requires only a discretization of the surface defects, but leads
to large systems of equations that require basically a number
of operations that grows with the third power of the number
of meshesN @more efficient schemes that require a number
of operations proportional toN2ln(N) can speed up the pro-
cess, but at the price of some accuracy, because of the ex-
tremely high condition number of the involved matrices#. As
we see, there is always in the choice of an appropriate
method for NFO a tradeoff between accuracy and efficiency.

Let us emphasize that we were able to reproduce with
both approaches a fundamental effect for NFO: the confine-
ment of light by subwavelength structures. Such confined
fields can be detected by a NFO local probe, which explains
how a resolution much better than the diffraction limit can be

achieved in near-field microscopy. Many subtle effects are
involved in NFO microscopy as is illustrated in Fig. 9. This
figure emphasizes the influence of the illumination condi-
tions on the imaging properties of subwavelength objects in
near-field microscopy.
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